八年级数学上册第12章全等三角形12.1全等三角形课件2 新人教版s
人教版八年级数学上册第12章 全等三角形 单元复习 课件
∵BF∥AC,DE⊥AC,∴BF⊥DF,
∵BC平分∠ABF,DH⊥AB,DF⊥BF,∴DH=DF,
∴DE=DF,
∴点D为EF的中点.
(2)∵BF∥AC,∴∠C=∠DBF,
∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD,
∵AD平分∠BAC,∴∠CAD=∠BAD,
又AD=AD,∴△DCA≌△DBA,∴∠CDA=∠BDA,
应角与对角的概念.一般地,对应边、对应角是对两个三
角形而言,而对边、对角是对同一个三角形的边和角而言,
对边是指角的对边,对角是指边的对角.
1.已知△ABC≌△A1B1C1,A和A1对应,B和B1对应,
∠A=70°,∠B1=50°,则∠C的度数为( D )
A.70°
B.50°
C.120°
D.60°
2.(全国视野)(2022南京模拟)如图,四边形ABCD的对角
证明:(1)在Rt△BOF和Rt△COE中,
∵OF=OE,OB=OC,
∴Rt△BOF≌Rt△COE(HL).
∴∠FBO=∠ECO,即∠ABO=∠ACO.
(2)连接AO.∵OF⊥AB,OE⊥AC,且OF=OE,
∴∠BAO=∠CAO.
∵∠ABO=∠ACO,AO=AO,
∴△BOA≌△COA(AAS),∴AB=AC.
则BD=
1 .
22.如图,过点B,D分别向线段AE作垂线段BQ和DF,
点Q和F是垂足,连接AB,DE,BD,BD交AE于点C,且
AB=DE,AF=EQ.
(1)求证:△ABQ≌△EDF;
(2)求证:点C是BD的中点.
证明:(1)∵AF=EQ,∴AQ=EF,在Rt△ABQ和Rt△EDF中,
=
12.1 全等三角形 课件 初中数学人教版八年级上册(2021年)
E
∴AB=EB,BD=BC(全等三角形对应边相等),
∠D=∠C(全等三角形对应角相等).
AB
C
∵AB=3cm,BC=5cm,∠D=30°,
∴BE=3cm,BD=5cm,∠C=30°.
新课讲解
合作探究
观察下列3组全等三角形的对应边和对应角,你能得出什么结论?
A
A
C
E
D
A
B
D
B
D
△ABC≌△DCB
B
C
AC=AE,BC=DE.
对应角:
∠A=∠A,
∠C=∠E,
∠ABC=∠ADE.
新课讲解
知识点3 全等三角形的性质
结论
1、全等三角形中,公共边一定是对应边. 2、全等三角形中,公共角一定是对应角. 3、全等三角形中,对顶角一定是对应角. 4、全等三角形中,最长的边与最长的边是对应边,最短的边与最短 的边是对应边,最大的角与最大的角是对应角,最小的角与最小的 角是对形状大小相同的图形均能
①只有两个三角形才能完全重合;完全重合
②如果两个图形全等,那么它们的形状和大小一定都相同 ;对
③两个正方形一定是全等形;错,形状相同,大小不一定相同
④边数相同的图形一定能够重合. 错,形状大小都不一定相同
其中错误说法的个数为( B )
A.4
B.3
A
D
B
C
E
F
如图,△ABC≌△DEF,
AB=DE,AC=DF,BC=EF(全等三角形的对应边相等).
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等).
新课讲解
典例分析
例 2 如图,△ABD≌△EBC,如果AB=3cm,BC=5cm,∠D=30°,求BE
八年级数学上册 12.1《全等三角形》知识讲解 全等三角形的概念和性质(提高)素材 (新版)新人教版
全等三角形的概念和性质〔提高〕【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确识别全等三角形的对应元素.2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如以下列图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法〔1〕全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;〔2〕全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;〔3〕有公共边的,公共边是对应边;〔4〕有公共角的,公共角是对应角;〔5〕有对顶角的,对顶角一定是对应角;〔6〕两个全等三角形中一对最长的边〔或最大的角〕是对应边〔或角〕,一对最短的边〔或最小的角〕是对应边〔或角〕,等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等;要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、请观察以下列图中的6组图案,其中是全等形的是__________.【答案】〔1〕〔4〕〔5〕〔6〕;【解析】〔1〕〔5〕是由其中一个图形旋转一定角度得到另一个图形的,〔4〕是将其中一个图形翻折后得到另一个图形的,〔6〕是将其中一个图形旋转180°再平移得到的,〔2〕〔3〕形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式1】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B 与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,假设运动方向相同,那么称它们是真正合同三角形(如图1),假设运动方向相反,那么称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,以下各组合同三角形中,是镜面合同三角形的是( )【答案】B;提示:抓住关键语句,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,B答案中的两个三角形经过翻转180°就可以重合,应选B;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角2、如图,△ABD≌△CDB,假设AB∥CD,那么AB的对应边是〔〕A.DB B. BC C. CD D. AD【答案】C【解析】因为AB∥CD,所以∠CDB=∠ABD,这两个角为对应角,对应角所对的边为对应边,所以,BC和DA为对应边,所以AB的对应边为CD.【总结升华】公共边是对应边,对应角所对的边是对应边.类型三、全等三角形性质3、如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于〔〕.A.60°B.45°C.30°D.15°【思路点拨】△AFE是由△ADE折叠形成的,由全等三角形的性质,∠FAE=∠DAE,再由∠BAD=90°,∠BAF=60°可以计算出结果.【答案】D;【解析】因为△AFE是由△ADE折叠形成的,所以△AFE≌△ADE,所以∠FAE=∠DAE,又因为∠BAF=60°,所以∠FAE=∠DAE=90602︒-︒=15°.【总结升华】折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:【变式】如图,在长方形ABCD中,将△BCD沿其对角线BD翻折得到△BED,假设∠1=35°,那么∠2=________.【答案】35°;提示:将△BCD沿其对角线BD翻折得到△BED,所以∠2=∠CBD,又因为AD∥BC,所以∠1=∠CBD,所以∠2=35°.4、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,假设∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.【思路点拨】〔1〕由∠1,∠2,∠3之间的比例关系及利用三角形内角和可求出∠1,∠2,∠3的度数;〔2〕由全等三角形的性质求∠EBC,∠BCD的度数;〔3〕运用外角求∠α的度数.【答案】∠α=80°【解析】∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x,∠2=5x,∠3=3x,∴28x+5x+3x=36x=180°,x=5°即∠1=140°,∠2=25°,∠3=15°∵△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,∴△ABE≌△ADC≌△ABC∴∠2=∠ABE,∠3=∠ACD∴∠α=∠EBC+∠BCD=2∠2+2∠3=50°+30°=80°【总结升华】此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题.见“比例〞设未知数x是比较常用的解题思路.举一反三:【变式】如图,在△ABC中,∠A:∠ABC:∠BCA =3:5:10,又△MNC≌△ABC,那么∠BCM:∠BCN等于〔〕A.1:2 B.1:3 C.2:3 D.1:4【答案】D;提示:设∠A=3x,∠ABC=5x,∠BCA=10x,那么3x+5x+10x=18x=180°,x=10°. 又因为△MNC≌△ABC,所以∠N=∠B=50°,CN=CB,所以∠N=∠CBN=50°,∠ACB=∠MCN=100°,∠BCN=180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.。
最新人教部编版八年级数学上册《第十二章 全等三角形【全章】》精品PPT优质课件
追问1 请同学们将问题2 的两个三角形分别 标为△ABC、△DEF,观察这两个三角形有何对 应关系?
点A 与点D、点B 与点E、 点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、 ∠C 与∠F 重合,称为对应角.
追问2 你能用符号表示出这两个全等三角形吗?
练习6 如图,已知△ABE≌△ACD, ∠ADE=∠AED,∠B=∠C,指出其他的对应边 和对应角.若BD=2cm,DE=3cm,你能求出DC的 长吗?
解:AB = AC,AE = AD, BE =CD,∠BAE =∠CAD. DC = BE = BD+DE = 5cm.
随堂演练 基础巩固 1.判断题:
△ABC和△DEF全等, 记作:“△ABC ≌△DEF”, 读作:“△ABC 全等于△DEF”.
问题4 请同学们拿出问题2 准备的素材,按 照教材第32 页图12.1-2 进行平移、翻折、旋转, 变换前后的两个三角形还全等吗?
(1) △ABC ≌△DEF
(2) △ABC ≌△DBC
(3)△ABC ≌△ADE
(2)判断线段EH 与NG 的大小关系,并说明理由.
E
(1)平行;理由略.
H
(2)相等.
M
F
G
N
练习5 如图,△OCA≌△OBD,C和B,A 和D是对应顶点,说出这两个三角形中相等的边 和角.若∠A=20°,∠AOC=75°,你能求出∠B 的度数吗?
解:OC=OB,OA=OD,CA=BD, ∠COA=∠BOD,∠C=∠B,∠A=∠D. ∠B=∠C=180°-∠A-∠AOC=85°.
Thank you!
人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)
今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A
D
随堂练习:
B
CE
F
第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,
人教版八年级数学上册第12章 全等三角形2 第1课时 “边边边”
4 cm 6 cm
4 cm
3 cm
6 cm
先任意画出一个△ABC,再画出一个
△A′B′C′,使 A′B′ = AB ,B′C′ = BC,A′C′ = AC. 把画
好的△A′B′C′ 剪下,放到△ABC 上,它们能重合吗?
A
A′
作图:(1) 画 B′C′ = BC;
(2) 分别以 B',C' 为圆心,
证明:∵ C 是 BF 中点,
B
∴ BC = CF.
在△ABC 和△DCF 中, AB = DC (已知),
C
A
AC = DF (已知),
BC = CF (已证),
F
D
∴△ABC≌△DCF (SSS).
已知:如图,点 B、E、C、F 在同一直线上,
AB = DE,AC = DF,BE = CF.
求证:(1)△ABC≌△DEF; (2)∠A =∠D.
证明:(1)∵ BE = CF,∴ BE + EC = CF + CE,即 BC = EF.
在△ABC 和△DEF 中,
B
AB = DE,
AC = DF,
E
BC = EF, ∴△ABC≌△DEF (SSS).
C
A
(2) ∵△ABC≌△DEF (已证),
F
D
∴∠A =∠D (全等三角形对应角相等).
用尺规作一个角等于已知角
B △BDH≌△CDH (SSS)
HC
内容
有三边对应相等的两个三角形全等 (简写成“SSS”)
边 边
思路分析 应用
结合图形找隐含条件和 现有条件,证准备条件
边
书写步骤 四步
人教版初中数学八年级上册精品教学课件 第12章 全等三角形 第2课时 利用“边角边”判定三角形全等
3
4
5
).
关闭
D
答案
快乐预习感知
1
2
3
4
5
2.如图,如果AD=BC,∠1=∠2,那么△ABC≌△CDA,理由是
.
关闭
两边和它们的夹角分别相等的两个三角形全等(或SAS)
答案
快乐预习感知
1
2
3
4
5
3.如图,AB=AC,要说明△ABE≌△ACD,若以“SAS”为依据,还缺一个
条件是
.
SAS
关闭
AE=AD(或EC=DB)
D.腰对应相等且两腰的夹角相等的两个等腰三角形全等
的
互动课堂理解
利用“边角边”判定两个三角形全等
【例题】 如图,在Rt△ABC中,∠BAC=90°,AC=2AB,D是AC的中点,
将一个锐角为45°的等腰直角三角尺如图放置,使三角尺斜边的两
个端点分别与A,D重合,连接BE,EC.
试猜想线段BE和EC的数量及位置关系,并证明你的猜想.
∴△EAB≌△EDC.
∴∠AEB=∠DEC,BE=EC.
∴∠BEC=∠AEห้องสมุดไป่ตู้=90°,∴BE⊥EC.
互动课堂理解
快乐预习感知
1
2
1.如图,使△ABC≌△ADC成立的条件是(
A.AB=AD,∠B=∠D
B.AB=AD,∠ACB=∠ACD
C.BC=DC,∠BAC=∠DAC
D.AB=AD,∠BAC=∠DAC
第2课时
利用“边角边”判定三角形全等
快乐预习感知
1.判定三角形全等的方法:两边和它们的夹角分别 相等
SAS
两个三角形全等(可以简写成“ 边角边 ”或“
八年级数学人教版上册第12章全等三角形12.3角平分线的性质(图文详解)
A
E F
B
D
c
八年级数学上册第12章全等三角形
解法一:添加条件:AE=AF, 在△AED与△AFD中,
∵AE=AF,∠EAD=∠FAD,AD=AD, ∴△AED≌△AFD(SAS). 解法二:添加条件:∠EDA=∠FDA,
在△AED与△AFD中, ∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA, ∴△AED≌△AFD(ASA).
八年级数学上册第12章全等三角形
通过本课时的学习,需要我们掌握: 1.角平分线的性质: 角的平分线上的点到角的两边的距离相等. 2.角平分线的判定: 到角的两边的距离相等的点在角平分线上.
A
为半径作弧.两弧在∠AOB的内部交于C.
3.作射线OC.
M
C
射线OC即为所求.
O
N
B
八年级数学上册第12章全等三角形
为什么OC是∠AOB的角平分线?
证明:连结MC,NC由作法知: 在△OMC和△ONC中
OM=ON MC=NC OC=OC
O ∵△OMC≌△ONC(SSS) ∴∠AOC=∠BOC 即OC 是∠AOB的角平分线.
将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC
画一条射线AE,AE就是∠DAB的平分线.你能说明它的道
理吗?
B
E
C
A D
八年级数学上册第12章全等三角形
【证明】 在△ACD和△ACB中
B
E
C
AD=AB(已知)
DC=BC(已知)
A D
CA=CA(公共边)
∴ △ACD≌ △ACB(SSS)
∴∠CAD=∠CAB(全等三角形的对应角相等)
人教版《全等三角形》优秀课件
全等三角形的性质的运用
边AB 与DE、边BC 与EF、
∠ABC=∠DBC,
已知:如图,△ABC ≌△DEF. ∴相等的边为:OC=OB,OA=OD,
3 cm,求MN和HG的长度.
请观察下面两组图形,它们是不是全等图形?为什么?与同伴进行交流。
(1)若DF =10 cm,则AC 的长为 (1)写出相等的线段与角.
∴相等的边为:AB=DB,BC=BC,
∠A 与∠D、∠B 与∠E、
∠AOC=∠DOB. (3)有对顶角的,对顶角是对应角.
AC=DC.
解:∵△ABC≌△DBF.
∴相等的角为:∠BAC=∠BDC, ∠C 与∠F 重合,称为对应角.
活动一:请同学们和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?
∠ACB=∠DCB.
的度数为
能够完全重合 的两个图形叫做全等形.
___5_0_°________. C.58° D.50°
如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是( )
如图,已知△EFG≌△NMH,∠F与∠M
点A 与点D、点B 与点E、 解:∵△ABC≌△DBC.
A
D
∵ △ABC ≌△DEF,
注意:书写全等式时要求把对应顶点字母放在对应的位置上。
全等三角形的定义: 能够完全重合的两个三角形叫做全等三角形.
点A 与点D、点B 与点E、
A
点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、
B
C
边AC 与DF 重合,称为对应边;
∠A 与∠D、∠B 与∠E、
∠C 与∠F 重合,称为对应角.
D
你能用符号表示出这两个全等三角形吗?
人教版八年级数学上册全等三角形精品课件PPT
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
•
5、人们都期望自我的生活中能够多 一些快 乐和顺 利,少 一些痛 苦和挫 折。可 是命运 却似乎 总给人 以更多 的失落 、痛苦 和挫折 。我就 经历过 许多大 大小小 的挫折 。
A组: B组: C组:
第十二章 全等三角形 12.1 全等三角形
人教版八年级数学上册 12.1 全等三角形 课件
1、理解图形全等的概念和特征, 能识别全等形; 2、掌握全等三角形的性质,并能 进行简单的推理和计算。
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
找出下面的全等形。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
解:(1)和(9)、(2)和(8)、 (3)和(6)
人教版八年级数学上册 12.1 全等三角形 课件
人教版八年级数学上册 12.1 全等三角形 课件
人教版数学八年级上册12.1 全等三角形课件(共24张PPT)
图 (1)
图 (2)
图 (3)
12.1 全等三角形
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有 改变,即平移、翻折、旋转前后的图形全等.
图 (1)
图 (2)
图 (3)
12.1 全等三角形
把两个全等的三角形重合到一起,
重合的顶点叫做对应顶点,
A
D
重合的边叫做对应边,
重合的角叫做对应角.
除颜色外形状、大小完全一样. 能够完全重合.
12.1 全等三角形
归纳
可以看到,形状、大小相同的图形放在一起能够完全重合,我们把能够 完全重合的两个图形叫作全等形.
能够完全重合的两个三角形叫作全等三角形.
12.1 全等三角形
思考
我们将买来的一面三角彩旗的三个顶点分别标为A、B、C, 在图 (1) 中,把△ABC 沿直线 BC 平移,得到△DEF. 在图 (2) 中,把△ABC 沿直线 BC 翻折180°,得到△DBC. 在图 (3) 中,把△ABC 绕点 A 旋转,得到△ADE. 各图中的两个三角形全等吗?
A
D
B
CE
F
注意:记两个三角形全等时,通常把表示对应顶点的字母写在 对应的位置上.
12.1 全等三角形 例1 说出图 (2)(3) 中两个全等三角形的对应顶点、对应边和对应角,并 写成△***≌△***的形式.
解:△ABC≌△DBC. 对应顶点:点 A 和点 D,点 B 和点 B,点 C 和点 C ; 图 (2) 对应边:AB 和 DB,BC 和 BC,AC 和 DC; 对应角:∠A 和∠D,∠ABC 和∠DBC,∠ACB 和∠DCB .
的是△DEF,若△ABC≌△DEF,对应边有什么关系?对应角呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.“全等”用符号“≌ ”来表示,读全作等: 于
4.全等三角形的 对应边 和 对应角 相等
5.书写全等式时要求把对应字母放在对应 的位置上
精选
27
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
练习1 如图,△OCA ≌△OBD,点C 和点B,点
A与点D是对应点,则下列结论错误的是( D ).
(A) ∠COA =∠BOD ;
(B) ∠A =∠D ; (C) CA =BD ;
C
B
(D) OB =OA .
O
A
D
精选
22
D
如图,已知: △ABD≌△EBC,
E
AB=3cm,BC=5cm,
求DE的长.
人民教育出版社义务教育教科书八年级数学(上册)
第十二章 全等三角形
精选
1
下列各组图形的形状 与大小有什么特点?
思考:他们能完全重合吗?
精选
2
每组的两个图 形有什么特点?
完全重合
精选
3
• 形状、大小相同的图形放在一 起能够完全重合。
• 能够完全重合的两个图形叫做 全等形
• 能够完全重合的两个三角形叫 做全等三角形
∴AB=AD,AC=AE,
BC=DE
B
D
∴∠A=∠A,∠B=∠D,
∠ACB= ∠AED.
规律三:有公共角的,公共角是对应角
精选
16
先写出全等式,再指出 它们的对应边和对应角
A ∵△ABC≌△FDE
E B
∴AB=FD,AC=FE, BC=DE
∴∠A=∠F, ∠B=∠D, ∠ACB= ∠FED.
D
C
规律四:一对最长的边是对应边
精选
4
精选
5
精选
6
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
E
A PC M
D
A
BN
B
C
精选
7
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
A
B
D
A
B
C
D
C
E
精选
8
下列两三角形是怎样由一 个三角形得到另一个三角 形?它们有什么特点?
D
B
C
一个三角形经过平移、旋转、翻折 后所得到的三角形与原三角形全等。
解:∵△EFG ≌ △NMH ∴NM=EF=2.1,EG=NH=3.3
∴HG=EG-EH=3.3-1.1=2.2cm
精选
24
△ABD≌△ACE,若∠ADB=100°,∠B=30°, 说出△ACE中各角的大小?
解:∵ △ABD≌△ACE,
∴∠AEC= ∠ADB=1000 ,
∠C= ∠B=300,
又∵∠A+∠AEC+∠C=180°
∴∠A=1800- ∠AEC- ∠C
=1800-1000-3精0选0=500
25
如图,已知△ AOC ≌ △BOD 求证:AC∥BD
精选
26
小结
1.能够重合的两个图形叫做全等形 。
其中:互相重合的顶点叫做_对_应_顶点
互相重合的边叫做_对_应_边_ 互相重合的角叫做_对_应_角
2. 能够重合的两个三角形 叫做全等三角形。
A
B
C
解:∵△ABD≌ △EBC
∴BE=AB=3(cm) ,
BD=BC=5(cm) (全等三角形的对应边相等)
∴DE=BD-BE=5-3=2(cm)
精选
23
如图, △EFG≌△NMH
E H
M
F
G
1、请找出对应边和对应角。
N
2、如果EF=2.1cm,EH=1.1cm,
NH=3.3cm, 求NM、HG的长.
什么结论?
A
D
B
A
C EM
SF
C
O
O B
D
N
精选
T
11
全等三角形的对应边相等, 全等三角形的对应角相等.
A
如图:∵△ABC≌ △DFE B
∴ AB=DF, BC=FE, AC=DE
∵△ABC≌ △DFE
F
∴∠A=∠D,∠B=∠F,∠C=∠E
精选
C D
E
12
先写出全等式,再指出
它们的对应边和对应角
精选
9
A
D
B
CE
F
“全等”你用能符否号直“接≌ 从”记表作示
图∆A中B的C△≌A∆BDC和EF△中DE判F全断等出,所 记有作的:△对A应BC顶≌ 点△D、EF对应边和 读对作应:△角A?BC全等于△DEF
精选
10
寻找各图中两个全等
三角形的对应元素。
两个全等三角形的位置变化了,对应边、
对应角的大小有没有变化?由此你能得到
A
D
C
E
B
F
∵△ACB≌△DEF
∴AB=DF, CB=EF,AC=DE.
∴∠A=∠D,∠CBA=∠EFD,∠ACB= ∠DEF.
精选
13
先写出全等式,再指
C
出它们的对应边和对应角
A
B
∵△ABC≌△ABD
D ∴AB=AB,BC=BD,AC=AD.
∴∠BAC=∠BAD,∠ABC=∠ABD ∠C= ∠D.
规律一:有公共边的,公共边是对应边
精选
14
先写出全等式,再指出它们的
对应边和对应角
D
B
∵△AOC≌△BOD o
∴AO=BO,AC=BD,OC=OD.
∴∠A=∠B,∠C=∠D,
A
CБайду номын сангаас
∠AOC= ∠BOD.
规律二:有对顶角的,对顶角是对应角
精选
15
先写出全等式,再指出它 A 们的对应边和对应角
E
C
∵△ABC≌△ADE
一对最短的边是对应边
规律五:一对最大的角是对应角
F
精选 一对最小的角是对应角 17
1.有公共边的,公共边一定是对应边。
2.有对顶角的,对顶角一定是对应角。
3.有公共角的,公共角一定是对应角。
4.对应角所对的边是对应边,对应边 所对的角是对应角. 5.在两个全等三角形中最长边对最长边, 最短边对最短边,最大角对最大角,最 小角对最小角。
例 已知:如图,△ABC ≌△DEF. (3)若∠A =100°,∠B =30°,求∠F 的度数.
解:∵ ∠A =100°,∠B =30°,
∴ ∠C =180°-∠A -∠B
=50°. ∵ △DEF ≌△ABC ,
B
∴ ∠F =∠C =50°
(全等三角形的对应角相等).
E
精选
A
C D
F
21
课堂练习
精选
18
找出下列全等三角形的对应边、对应角
A
△ABD≌△CBD
B
D
C 精选
19
全等三角形的性质的运用
例 已知:如图,△ABC ≌△DEF. (1)若DF =10 cm,则AC 的长为 10 cm ; (2)若∠A =100°,则:
∠D 的度数为 100° ;
A
D
B
CE
F
精选
20
全等三角形的性质的运用