2017年中考专题复习动点产生的等腰三角形问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0319动点产生的等腰三角形问题
1.如图所示,矩形ABCD中,AB=4,BC=,点E是折线段A﹣D﹣C上的一个动点(点E与点A不重合),点P是点A关于BE的对称点.使△PCB为等腰三角形的点E的位置共有()
A.2个 B.3个 C.4个 D.5个
2.如图,抛物线y=x2与直线y=2x在第一象限内有一交点A.
(1)你能求出点A的坐标吗?
(2)在x轴上是否存在一点P,使△AOP为等腰三角形?若存
在,请求出点P的坐标;若不存在,请说明理由.
3.如图,直线y=ax+b与双曲线y=有一个交点A(1,2)且与x轴、y轴分别交于B,C两点,已知△AOB的面积为3.
(1)求双曲线和直线的解析式;
(2)在x轴上是否存在一点P,使△ABP是等腰三角形?如果存在,直接写出满足条件的P点坐标;如果不存在,说明理由.
4.如图,抛物线y=﹣x2+bx+c与y轴交于点A(0,3),与x轴交于点B(4,0).(1)求抛物线的解析式;
(2)连接AB,点C为线段AB上的一个动点,过点C作y轴的平行线交抛物线于点D,设C点的横坐标为m,线段CD长度为d(d≠0)求d与m的函数关系式(不要求写出自变量m的取值范围);
(3)在(2)的条件下,连接AD,是否存在m值,使△ACD是等腰三角形?若存在,求出m的值;若不存在,请说明理由.
5.如图,在矩形ABCD中,AB=3cm,BC=4cm.设P,Q分别为BD,BC上的动点,在点P自点D沿DB方向作匀速移动的同时,点Q自点B沿BC方向向点C 作匀速移动,移动的速度均为1cm/s,设P,Q移动的时间为t(0<t≤4).(1)当t为何值时,△PBQ为等腰三角形?
(2)△PBQ能否成为等边三角形?若能,求t的值;若不能,说明理由.
6.如图,在梯形ABCD中,AD∥BC,∠C=90°,AB=BC=10,AD=16.动点P、Q
分别从点D、B同时出发,动点P沿射线DA的方向以每秒2个单位长的速度运动,动点Q在线段BC上以每秒1个单位长的速度向点C运动,当点Q运动到点C时,点P随之停止运动.设运动的时间为t(秒).
(1)直接用含t的代数式表示:PA=;
(2)当t=秒时,PQ∥AB;
(3)设射线PQ与射线AB相交于点E,△AEP能否为等腰三角形?如果能,请求出t的值;如果不能,请说明理由.
7.如图,在△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.(1)试求△ABC的面积;
(2)当边FG与BC重合时,求正方形DEFG的边长;
(3)设AD=x,当△BDG是等腰三角形时,求出AD的长.
8.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△ABC不动,△DEF运动,并满足:点E在边BC
上沿B到C的方向运动(E不与B、C重合),且DE始终经过点A,EF与AC交于M点.
(1)求证:△ABE∽△ECM;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.
9.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
10.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,
它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:
(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C 为菱形时,求t的值;′
(3)当t为何值时,△APQ是等腰三角形?
11.如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为,点D的坐标为(用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
12.在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°
(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长.
13.如图,已知一次函数y=﹣x+7与正比例函数y=x的图象交于点A,且与x 轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O﹣C﹣A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.