2解一元一次方程优质课件PPT

合集下载

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT

人教版七年级上册数学:解一元一次方程二--去括号与去分母第课时精品课件PPT
数转化为整数,然后再去分母.
等式性质二
先去小括号,再去中括号,最 去括号法则
后去大括号.
乘法分配律
把含有未知数的项移到方程 的一边,常数项移到方程的 等式性质一 另一边.
将未知数的系数相加,常数 合并同类项
项项加。
的法则
在方程的两边除以未知数的 等式性质二 系数.
1、不要漏乘不含分 母的项;2、分子是 多项式,去分母后应 加上括号. 1、不要漏乘括号里 的任何一项; 2、不要弄错符号. 1、移动的项要变号, 不移动的项不变号; 2、不要丢项. 字母及指数不变.
0.7 0.03
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级数学上册 第三章一元一次方程
3.3解一元一次方程(二)---去括号与去分 母(第2课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时) 人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)
问题 一个数,它的三分之二,它的一半,它的七分
之一,它的全部,加起来总共是33.试问这个 数是多少?
你能解决这个问题吗?
人教版七年级上册数学课件:3.3解一 元一次 方程( 二)-- 去括号 与去分 母(第2 课时)

5.2 解一元一次方程课时1-合并同类项 课件(共30张PPT)

5.2 解一元一次方程课时1-合并同类项  课件(共30张PPT)
2∶3∶4,且这次活动三个年级共捐书1 890本,则七年级共捐了______本
420
书.
新课讲解
练一练
2. 某工厂的产值连续增长,2022年是2021年的1.5倍,2023年是2022年的2倍,
这三年的总产值为550万元.2021年的产值是多少万元?
解:设2021年的产值是x万元,则2022年的产值是1.5x万元,2023年的
13=-x
D. 由 6x-2-4x+2=0,得 2x=0.
当堂小练
2
2. 将方程− = 1的系数化为1时,下列做法正确的是( C )
3
A.方程两边同时加上
1
3
C.方程两边同时除以−
B.方程两边同时减去
2
3
2
3
D.方程两边同时乘以−
2
3
当堂小练
3. 解下列方程:
(1)2x + 3x + 4x = 18
解:合并同类项,得
9x = 18
系数化为1,得
x=2
(2)13x - 15x + x = -3
解:合并同类项,得
-x = -3
系数化为1,得
x=3
当堂小练
3. 解下列方程:
(3)2.5y + 10y - 6y = 15 - 21.5
解:合并同类项,得
6.5y = - 6.5
系数化为1,得
y = -1
解:设前年购买计算机x台,则去年购买计算机2x台,今年购买计算机4x台.
列得方程得 + 2 + 4 = 140.
把含有x的项合并同类项,得 7 = 140.
系数化为1,得x=20.
答:前年这所学校购买了20台计算机.

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得

数学:3.2《解一元一次方程(二)》课件(人教新课标七年级上)

数学:3.2《解一元一次方程(二)》课件(人教新课标七年级上)

尝试应用:
1.P97练习 2.解下列方程方程 (1)x-3(1-2x)=9 (2)2(x-3)-3(x-5)=7(x-1) 3.同步开放性作业
反思总结
请同学们谈谈这节课有哪些收获?
;装修公司 / ;
进去,而是将四周空间划破出一条道黑幽幽裂缝,瞬间将雨后和他一起笼罩进去. "嘶!" "这…" "疯了,廖奇疯了!" 外面四帝在这一刻,纷纷眼睛爆射出道道精光,齐齐动容.这廖奇竟然选择了最后一搏,但是博の却不是自己の命,而是博得一次同归于尽の机会.他竟然选择了 硬受着雨后无数玉刀の攻击,同时开始燃烧神晶,自爆神体,拖着雨后一起死. 雨后の灵魂攻击,很诡异,很凶残,但是却是有一些致命の弱点,距离太远の话,威力不大,并且距离远了,也就不能无声无息飘渺诡异の伤敌了.此刻如此近の距离,并且廖奇最后爆发了一次绝招,将四周 空间用空间裂缝**了,想逃の话,绝对也是无路可逃了… "哼,廖奇你呀似乎忘记了一点,你呀对俺很熟悉,换句话说…俺对你呀也不陌生!还有,其实你呀对俺并不熟悉,至少俺最新感悟の一种魂技,你呀就不知道." 一些冷冷の声音淡淡の在场中响起,伴随着这个声音响起,在廖 奇面前の雨后身影慢慢消失在空中.而远处她の身影却是慢慢の在空中显露出来,冷冷の注视着化成一些火人の廖奇,身子飘然朝后退去. "轰隆隆!" 一条刺得众人眼睛生疼の强光亮起,巨大の爆炸声震得外面の四帝耳膜轰鸣生痛,强大能量将里面の护罩冲击着不断剧烈摇晃 着,七彩光芒不断爆闪.整个护罩内全是泥屑翻飞,飙射,烟雾漫天,根本看不清里面の任何事物. "呃…" 四帝脸色集体错愕起来,四人也是第一次见到七品破仙级别自爆,没想到竟然这么大威力.这护罩就是雷帝全力一击,最多也是微微颤抖一下,没想到此刻却是剧烈の摇晃起来

六年级数学上册4.2解一元一次方程(第2课时) 精品优选PPT课件鲁教版五四制

六年级数学上册4.2解一元一次方程(第2课时) 精品优选PPT课件鲁教版五四制

2.解方程 1 x-1= 2 x去分母时,两边同乘6最合适.
3.方程
2
3
=3x,去分母得2x+1=3x.
(×)xΒιβλιοθήκη 14.方程 2去分母得3x+2x=1. ( × )
x + x = 1, 23
(√)
知识点一 解含括号的一元一次方程 【示范题1】解方程:(1)4x+2(x-2)=14-(x+4). (2)2(x-1)-(x+2)=3(4-x). 【思路点拨】去括号→移项→合并同类项→方程两边同除以未 知数的系数.
【自主解答】(1)去括号,得4x+2x-4=14-x-4, 移项,得4x+2x+x=14-4+4, 合并同类项,得7x=14, 方程两边同除以7,得x=2. (2)去括号,得2x-2-x-2=12-3x, 移项,得2x-x+3x=12+2+2, 合并同类项,得4x=16,方程两边同除以4,得x=4.
5.方程两边同除以未知数的系数得:__x_=__-_52__.
解一元一次方程的一般步骤
去分母、_去__括__号__、移项、_合__并__同__类__项__、未知数的系数化为1, 即最终将方程转化为“_x_=_a_”的形式.
【思维诊断】 (打“√”或“×”)
1.由2(x-2)-3(x+3)=1去括号得2x-4-3x+9=1. ( × )
【方法一点通】 解一元一次方程的步骤 1.去分母. 2.去括号. 3.移项. 4.合并同类项.
5.未知数的系数化为1. 但并不是解每一个方程都需要这五个步骤,这五个步骤的
先后顺序并非固定不变,要根据方程的特点,确定恰当的步骤, 灵活解方程.

课件《一元一次方程》优秀PPT课件 _人教版6

课件《一元一次方程》优秀PPT课件 _人教版6

典型例题
例3.解方程 9-3x=-5x+5. 解:移项,得 5x-3x=-9+5.
合并同类项,得 2x=-4. 系数化为1,得 x=-2.
随堂练习
1.下列解方程 2(x 15) 3 5(x 7) 时, 去括号正确的是( C ).
A. 2x 15 3 5x 35 B. 2x 30 3 5x 7 C. 2x 30 3 5x 35
解:去括号: 4x+2+x=17.
移项:
4x+x=17-2.
合并同类项: 5x=15.
方程两边同除以5: x=3.
典型例题
例2 解方程-2(x-1)=4. 解法一:去括号: -2x+2=4. 移项: -2x=4-2. 合并同类项: -2x=2. 方程两边同除以5: x=-1. 解法二:方程两边同除以-2,得x-1=-2. 移项: x=-2+1,即x=-1.
随堂练习
3.甲、乙两人登一座山,甲每分登高10米,并且先出发30分, 乙每分登高15米,两人同时登上山顶.甲用多少时间登山?这座山 有多高?
随堂练习
解:设甲用x分登山. 列方程:10x=15(x-30). 去括号: 10x=15x-450. 移项: 10x-15x=-450. 合并: -5x=-450. 系数化为1: x=90. 把x=90代入10x=900. 答:甲用90分登山,这座山高为900米.
复习巩固
3.(1)一元一次方程的解法我们学了哪几步? 移项,合并同类项,系数化为1.
(2)合并同类项及移项的依据是什么? 等式的性质.
(3)“移项”要注意什么? 移项要注意变号.
探究新知
小明家来客人了,爸爸给了小明20元钱,让他买1听果奶和4听
可乐.从商店回来后,小明交给爸爸3元钱.如果我们知道1听可乐

解一元一次方程复习课PPT课件一等奖新名师优质课获奖比赛公开课

解一元一次方程复习课PPT课件一等奖新名师优质课获奖比赛公开课
(2)2x+3=x-1移项得2x-x=3-1; 2x-x=-3-1
火眼金睛 (3)3x-12-2x=4x-3移项得
3x-2x+4x=-12-3. 3x-2x-4x=12-3 (4)5(y+8)-2 =4y
去括号得 5y+8-2=4y; 5y+40-2=4y
火眼金睛
(5)2x-3(3x-2)=x-1
等式性质2
先去小括号,再去中 括号,最终去大括号
乘法分配律
把具有未知数旳项都移到方 程旳一边,其他旳项移到方 程旳另一边(记住:移项要 变号)
等式性质1
把方程化为ax=b (a≠0)旳形式
乘法分配律
在方程两边都除以未知数旳 等式性质2
系数,得到方程旳解x= a
注意事项
不要漏乘不含分母旳项,分子是 一种整体,去分母后应加括号
选苹果 游戏
规则:每个苹果上旳数字代表该类题旳分值, 其中必答题是每个小组必须作答,答对得1分, 答错得0分;抢答题只有两道,答对得2分, 答错倒扣1分;挑战题只有一道,答对得3分, 答错倒扣2分。
1
必答题
2
抢答题
3
挑战题
火眼金睛 1、下列解方程旳过程有无错,若错,错在哪里?
(1)5y+8=9y移项得5y-9y=8; 5y-9y=-8
1、不要漏乘括号内旳各项 2、注意“+”、“-”号旳变化
移项要变号
系数相加,字母 及其指数不变 不要把分子分母旳位 置颠倒
2、解一元一项
例:一元一次方程 3Y 1 1 5Y 7
4
6
去分母,得:( 3 3Y3(3Y1-)1)-112=22((55YY-7)7)
例:方程3X+20=4X-25+5

《解一元一次方程》PPT课件 人教版七年级数学上册【2024年秋】

《解一元一次方程》PPT课件 人教版七年级数学上册【2024年秋】
得2x+8=3x-12.解得x=20.
答:这个班共有20名小朋友
课堂小结
1.移项的概念:把等式一边的某项变号后移到另一边,叫作移项.
2.移项的作用:使含未知数的项与常数项分别位于方程左、右
两边,使方程更接近于x=m的形式.
3.移项法则:移项要变号.
4.解一元一次方程的步骤:移项、合并同类项、系数化成1.
1
x+ x=19,解这个方程就可以求出“它”了.
18
探究新知
学生活动一 【一起探究】
问题:某校三年共购买计算机140台,去年购买数量
是前年的2倍,今年购买数量又是去年的2倍.前年这
个学校购买了多少台计算机?
探究新知
方法一:设前年这个学校购买了计算机x台,则去年
购买计算机 2x台,今年购买计算机4x台.
过的一元一次方程在结构上有什么不同?
(2)怎样才能将它转化为x=a(常数)的形式呢?
(3)将方程3x+20=4x-25转化为x=a的形式的依据是
什么?
探究新知
思考:(1)怎样解这个方程?方程3x+20=4x-25与前面学
过的一元一次方程在结构上有什么不同?
解:(1)把方程转化为x=m(常数)的形式,方程
第五章 一元一次方程
5.2 解一元一次方程
第2课时 利用移项解一元一次方程
学习目标
1.能够根据实际问题列出一元一次方程,进一步体会方程模型的作
用及应用价值,培养学生的模型意识.
2.通过经历“移项”这一解方程步骤的得出过程,掌握“ax+b=cx+
d”型方程的解法,培养学生的化归思想,提高学生的运算能力。
对于x+2x+4x=140这个方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、怎样运用合并同类项的 方法解一元一次方程? 2、合并同类项注意的问题?
2021/02/17
4
自主学习反馈
自主学习任务2:完成自主学习检测的题目。
1.下列各方程合并同类项不正确的是( C ) A.由3x-2x=4,合并同类项,得x=4
B.由2x-3x=3,合并同类项,得-x=3
C.由5x-2x+3x=12,合并同类项,得x=-2
【分析】回顾列方程解决实际问题的一般过程:
(1)设未知数:设前年购买计算机 x 今年购买计算机__4_x___台.
台,那么去年购买计算机__2__x__台,
2021/02/17
7
新知讲解
(2)找等量关系:前年购买量+去年购买量+今年购买量=_1__4_0____台.
(3)列方程:x_+_2_x_+_4__x_=_1_4_0___. 要解这个方程,可以先把方程左边合并同类项,再用等式的性质解出x的值. (4)解方程:把含有x的项合并,得7x=140 。
b是常数)的形式.从而简化方程.
2021/02/17
17
THANK YOU 感谢聆听 批评指导 汇报人:XXX 汇报日期:20XX年XX月XX日
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为 了方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
3.2.1 解一元一次方程
七年级上册
2021/02/17
1
情境引入
1、根据等式的性质填空: (1)如果x-7=5, 则x=_1_2____; (2)如果3x=6,则x=_2_______.
2、合并同类项: (1)x+2x+3x= _6_x_ ; (2)-3x+7x= __4_x_.
2021/02/17
D.由-7x+2x=5,合并同类项,得-5x=5
2.方程10x-6x-2x=3的解是

3.有一个计算系统:输入x→2x→2.5x→输出,当输出40时,则输入的x= 8 .
2021/02/17
5
自主学习反馈
自主学习任务2:完成自主学习检测的题目。
27.6
2021/02/17
6
新知讲解
问题1 某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买 的数量又是去年的2倍,前年这个学校购买多少台计算机?
2021/02/17
9
分层教学
做一做下面的题目,看谁做得又快又准确。
1、2组
3、4组
例1 解下列方程:
例2 有一数列,按一定的规律排列成1,-3, 9,-27,81,-243,......,其中某三个相邻 数的和是-1071,这三个数各是多少?
2021/02/17
10
小组展示
争先恐后
1组
2组
3组
9 3.已知式子2x-5与5x-4互为相反数,则有x=_7___.
4.三个连续偶数的和为72,则这三个连续偶数分别为_2_ 2,24,26 __.
5.对有理数a,b,规定运算*的意义是a*b=a+2b,则方程3x*x=2-x
的解是

2021/02/17
14
学以致用
分组探讨学习,看哪个组做得又快又准确。
16
课堂小结
解一元一次方程
1.列方程解决实际问题的一般过程:
(1)设未知数;
(2) 找等量关系 (找等量关系是关键,也是难点,注意抓住基本等量关系:
总量=各部分量的和); (3) 列方程 ;
(4)解方程; (5) 答 .
2.合并同类项解一元一次方程通过合并同类项把方程化为_a__x_=_b__(a≠0,a、
系数化为1,得x=-243 所以-3x=729 9x=-2178 答:这三个数是-243,729,-2178.
归纳:合并同类项解一元一次方程通过合并同类项把方程化为ax=b(a≠0,a、b 是常数)的形式.从而简化方程.
2021/02/17
பைடு நூலகம்12
随堂检测
D A
2021/02/17
13
随堂检测
1 3
(5)系数化为1,得_x_=_2_0__.
2021/02/17
8
新知讲解
注意:本题蕴含着一个基本的等量关系,即总量=各部分量的和. 思考:上面解方程中“合并同类项”起了什么作用?
合并同类项起到了“化简”的作用,即把含有未知数的项合并,从而把 方程转化为ax=b,使其更接近x=a的形式(其中a,b是常数) .
4组
2021/02/17
11
解析一览
解:(1)合并同类项,得_________. 系数化为1,得__________.
(2)合并同类项,得_________. 系数化为1,得_________.
解:设所求三个数分别是x,-3x,9x 由三个数的和是-1701,得 x+(-3x)+9x=-1701 合并同类项,得7x=-1701
A组
B组
把230座城市按水资源情况可分为三类,暂不缺水 城市,一般缺水城市和严重缺水城市.其中,暂 不缺水城市数比严重缺水城市数的4倍少50座,一 般缺水城市数是严重缺水城市数的2倍,求严重缺 水城市有多少座?
2021/02/17
15
解析一览
2021/02/17
解:设严重缺水城市有x座, 4x-50+x+2x=230, 解得:x=40.
2
学习目标 1 经历运用方程解决实际问题的过程,体会方程是刻
画现实世界的有效数学模型. 学会合并同类项,会解“ax+bx=c”类型的一元一
2 次方程. 3 能够找出实际问题中的已知数和未知数,分析它们
之间的数量关系,列出方程.
2021/02/17
3
自主学习
自主学习任务1:阅读课本86-87页并学习,掌握下列知识要点。
相关文档
最新文档