二元一次方程组主题单元教学设计

合集下载

人教版七年级数学下册第八章二元一次方程组大单元教学设计

人教版七年级数学下册第八章二元一次方程组大单元教学设计
教师强调代入法和消元法在实际问题中的应用,提醒学生注意解题过程中易错点和注意事项。同时,教师鼓励学生提出疑问,解答学生的困惑。
五、作业布置
为了巩固学生对二元一次方程组的学习,教师应布置具有针对性和层次性的作业,让学生在课后能够自主复习和拓展提高。
1.基础作业:
(1)完成课本后的练习题,包括填空题、选择题和解答题,以巩固二元一次方程组的基本概念和解法。
(二)过程与方法
在学习本章的过程中,学生将经历以下过程与方法:
1.通过小组合作、讨论的方式,探究二元一次方程组的解法,培养学生的团队协作能力和问题解决能力。
2.利用代入法、消元法解决实际问题,提高学生运用数学知识解决实际问题的能力。
3.通过绘制图形,观察二元一次方程组的几何意义,培养学生的空间想象能力和直观感知能力。
在讲解过程中,教师注重引导学生观察方程组的变化,解释每一步操作的数学原理。此外,教师还会通过图形展示方程组的几何意义,帮助学生建立直观的认识。
(三)学生小组讨论
在这一环节,教师将学生分成小组,每组分配一个实际问题,让学生合作讨论,将问题转化为二元一次方程组,并尝试使用代入法或消元法求解。
教师巡回指导,观察学生的讨论过程,及时解答学生的疑问,鼓励学生发表自己的观点。小组讨论结束后,每个小组分享解题过程和答案,教师点评并给予反馈。
(一)教学重难点
1.理解并掌握二元一次方程组的定义及其解法(代入法、消元法)。
2.能够将实际问题抽象为二元一次方程组,并运用所学知识解决实际问题。
3.理解二元一次方程组的几何意义,通过图形分析方程组的解。
(二)教学设想
1.教学方法:
(1)采用启发式教学,引导学生通过观察、思考、讨论的方式,主动探究二元一次方程组的解法。

二元一次方程组教案精选3篇

二元一次方程组教案精选3篇

二元一次方程组教案精选3篇元一次方程组教学设计篇一了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。

通过讨论和练习,进一步培养学生的观察、比较、分析的能力。

通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。

二元一次方程组的含义判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。

一、引入、实物投影1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?2、请每个学习小组讨论(讨论2分钟,然后发言)这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x 个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次练习(投影)下列方程有哪些是二元一次方程+2y=1 xy+x=1 3x-=5 x2-2=3xxy=1 2x(y+1)=c 2x-y=1 x+y=0二、议一议、师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成x-y=2x+1=2(y-1)像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

二元一次方程组大单元(教学主题)设计

二元一次方程组大单元(教学主题)设计

二元一次方程组大单元(教学主题)设计一、教学目标1.了解二元一次方程组的概念和基本形式;2.掌握解二元一次方程组的方法;3.能够应用解二元一次方程组的方法解决实际问题;4.培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1.二元一次方程组的概念及基本形式(1)二元一次方程组的概念和意义(2)二元一次方程组的基本形式2.解二元一次方程组的方法(1)代入法(2)消元法3.应用解二元一次方程组的方法解决实际问题(1)宾馆住宿问题(2)商品打折问题(3)长方形总面积和周长问题三、教学策略1.教师讲述与板书相结合,注重举例说明;2.课堂讨论,引导学生自主学习并发表观点;3.教师指导实例训练,强化学生的解题技能;4.课后巩固作业,培养学生的解题能力。

四、教学资源1.教材:初中数学教材;2.多媒体课件;3.白板、彩色粉笔、草稿纸。

五、教学过程1.引入教师通过一个有趣的小问题,如“草地上有雌雄两只兔子,雌兔子每年可以生一窝兔子,每窝兔子有两只,问n年后,草地上有多少只兔子?”来引出本节课内容,激发学生的学习兴趣。

2.学习重点和难点分析(1)学习重点:二元一次方程组的概念、基本形式,解题方法;(2)学习难点:运用解题方法解决实际问题。

3.知识讲授(1)二元一次方程组的概念和意义;(2)二元一次方程组的基本形式;(3)代入法、消元法解二元一次方程组的方法。

4.例题讲解和练习(1)利用代入法解题;(2)利用消元法解题;(3)运用解题方法解决实际问题。

5.总结和小结(1)总结二元一次方程组的基本概念和解题方法;(2)小结本节课内容,查漏补缺。

6.作业布置布置课后作业,既要巩固知识点,又要拓展思路,调动学生的自主学习积极性。

六、教学评估1.学生自评,反思学习过程中不足之处;2.小组合作学习互评,互相提出宝贵的建议;3.教师评估学生的作业完成情况,解答学生的疑难问题,及时调整教学进度和策略。

二元一次方程组单元教学设计

二元一次方程组单元教学设计

二元一次方程组单元教学设计教学分析本单元设计内容从二元一次方程的概念到二元一次方程组解的概念,环环相扣,层层递进;学生从理解二元一次方程组的概念到学会归纳解的概念,再到自主探索解题,循序渐进,逐步提高。

让学生成为课堂的真正主体是本课设计的主要理念。

让他们在积极尝试后进行讲解,把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

学情分析学生已经学习了一元一次方程,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验。

在此基础上,本章进一步研究二元一次方程组的有关概念、解法和应用等。

可引导学生由熟悉的一元一次方程入手,归纳总结出二元一次方程和二院一次方程组的有关概念,,使学生进一步体会方程的模型思想,感受代数方法的优越性,同时也将有助于巩固有理数、整式的运算、一元一次方程等知识。

教材分析本章与一元一次方程类似,强调建模思想,关注知识的形成与应用过程。

为此,教科书设计继续遵循“问题情境—建立模型—解释、拓展与应用”的模式,首先通过具体问题情境,建立有关方程并归纳出二元一次方程和二元一次方程组的有关概念,然后探索其各种解法,并在现实情境中加以应用,切实提高学生的应用意识和能力。

单元主要内容:二元一次方程、组及其解等相关概念,建立消元思想,利用代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题。

本单元强调建模思想,关注知识的形成与应用过程。

在学生有理数、整式的运算、一元一次方程等知识基础上,从实际问题入手,学习二元一次方程组及其解法,并利用二元一次方程组解决简单的实际问题,进一步使用方程刻画现实世界中的等量关系,体会代数方法的优越性。

本单元组成:二元一次方程和二元一次方程组及解等概念;解二元一次方程组的方法;二元一次方程组应用问题.教学目标1、经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活运用有关知识解决实际问题的能力,培养学生良好的熟悉应用意识。

二元一次方程组教学设计

二元一次方程组教学设计

二元一次方程组教学设计第一篇:二元一次方程组教学设计3.3二元一次方程组(1课时)教学设计【教学重点与难点】教学重点:二元一次方程、二元一次方程组、二元一次方程组的定义及解的意义,以及检验一对数值是不是某个二元一次方程组的解教学难点:求二元一次方程的特殊解【教学目标】1.能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解2.通过实例认识二元一次方程和二元一次方程组都是反映数量关系的重要数学模型,能设两个未知数并列方程组表示实际问题中的两种相关的等量关系3通过对本课知识的探究与应用,提高学生的逻辑思维能力和分析、解决问题的能力。

【教学过程】一、创设情境提出问题(设计说明:从学生亲身体验中提出问题,引导学生思考,自然进入新课)问题:星期天,我们8个人去合肥动物园玩,买门票花了34元.每张成人票5元,每张儿童票3元。

他们到底去了几个成人、几个儿童呢?若设他们中有x个成人,y个儿童.由此你能得到怎样的方程? 先放开让学生说,接着提出下面的问题:你得到的两个方程是一元一次方程吗?与一元一次方程比较有什么不同?如果让你给它起名字,你认为应该叫它什么合适?二、探索新知解决问题1.二元一次方程的概念(设计说明:由实际问题引导学生开始对二元一次方程概念的探索。

学生自己归纳总结出方程的特点之后给出二元一次方程的概念,比直接定义印象会更深刻,有助于学生对概念的理解)学生给方程x+y=8,5x+3y=34命名之后,类比一元一次方程进一步讨论下面的问题:问题1:请你写出几个二元一次方程,和同桌交流,判断写出的方程是否符合要求问题2:请找出二元一次方程的特点①含有两个未知数②含未知数项的次数是一次③是整式方程问题3:二元一次方程的定义(类比一元一次方程的定义由学生归纳得出)含有两个未知数且含未知数项的最高次数都是1的方程叫二元一次方程练一练:请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由⑴2x+5y=10 ⑵ 2x+y+z=1 ⑶⑹2x+10xy =0+y=20(4)x2+2x+1=0 ⑸2a+3b=5 解析:(2)中含有三个未知数,(3)中含有分式,(4)中 x2的次数是2,(5)中10xy 的次数是2,所以,(2)、(3)、(4)、(6)都不是二元一次方程,(1)、(5)是二元一次方程(教学说明:本环节设计的问题引导学生用类比法分析二元一次方程的特征,逐步得出二元一次方程的定义,并在应用中进一步巩固对定义的理解)2.二元一次方程的解(设计说明:用类比的方法学习二元一次方程解的意义,在求解的过程中体会二元一次方程解的不唯一性,在正确理解的基础上归纳出解决问题的一般方法)问题1 :满足方程x+y=22且符合问题实际意义的x,y的值有哪些? 问题2:二元一次方程的解结合问题1,类比一元一次方程解的意义归纳出二元一次方程的解的意义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.同时指出:(1)一元一次方程只有一个解,而二元一次方程有无限多解(本题中需要考虑x,y的实际意义),其中一个未知数(x或y)每取一个值,另一个未知数(x或y)就有惟一的值与它相对应.(2)二元一次方程的每一个解是一对数值(教学说明:用填表的方式学生容易找到x,y的值,然后结合表格数据得出二元一次方程解的意义,并进一步体会二元一次方程解的不唯一性)3.二元一次方程组方程X+Y=8和5X+3Y=34中,X的含义相同吗?Y呢?,x、y的含义分别相同.因而x,y必须同时满足方程X+Y=8和5X+3Y=34.把它们联立起来,得:像这样,把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.说明:方程组各方程中,同一字母必须代表同一数量,才能合在一起练习已知x、y都是未知数,判别下列方程组是否为二元一次方程组? ①②③④ 解析:①④是二元一次方程组,②中第一个方程是二元二次方程,③中的两个方程共含有3个未知数,所以②③不是二元一次方程组4.二元一次方程组的解问题1: 请找出同时满足方程X+Y=8和5X+3Y=34的x,y的值.指导学生找出x,y的值,并进一步说明这一组数值就是方程组的解问题2:二元一次方程组的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解三、巩固训练熟练技能(设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对相关观念的理解,形成初步技能。

8.1-二元一次方程组(单元教学设计)-【大单元教学】七年级数学下册

8.1-二元一次方程组(单元教学设计)-【大单元教学】七年级数学下册

8.1 二元一次方程组(大单元教学设计)一、【单元目标】通过情景导入,了解二元一次方程与二元一次方程组的概念与区别,学会根据题目的条件列出二元一次方程或二元一次方程组,学会根据实际情况,找出二元一次方程组的整数解情况等;(1)用生活中常见的事例,让学生可以根据题目中所给的条件,列出二元一次方程组,从中提炼出二元一次方程和二元一次方程组的概念;由之前所学内容“一元一次方程”,归纳总结出二元一次方程与一元一次方程的联系与区别,从而加深学生对方程的理解;(2)通过小组合作探究,让学生参与教学过程,加深对二元一次方程和二元一次方程组解的理解,同时会根据实际情况找出满足要求的整数解,提升了学生的数学抽象素养,进一步发展了学生的类比推理素养;(3)通过典型例题的训练,加强学生的做题技巧,训练做题的方法,提升学生的逻辑推理素养;(4)在师生共同思考与合作下,学生通过概括与抽象、类比的方法,体会了归因与转化的数学思想,同时提升了学生的数学抽象素养,并发展了学生的逻辑推理素养;(5)通过生活中的事例,提高学生对周围事物的感知能力,同时激发学生的学习兴趣,提升学生的人文素养;二、【单元知识结构框架】二元一次方程组{二元一次方程及其解的定义二元一次方程组及其解的定义列二元一次方程组三、【学情分析】1.认知基础二元一次方程和二元一次方程组及其解的定义,对我们后面学习的消元法解二元一次方程组和二元一次方程组的应用题具有关键作用,本节内容强调基础概念,锻炼学生的思维能力和判断能力;2.认知障碍学生在理解二元一次方程组的概念时,会和分式方程混淆,导致概念不清晰;在讲到二元一次方程的解时,要理解此时的解具有无数组,但一旦限定在整数范围内,那就要根据题目实际含义缩小范围;根据题意列二元一次方程组时,要读清题意,加强对逻辑关系的分辨,准确列出二元一次方程组;四、【教学设计思路/过程】课时安排: 约1课时教学重点: 二元一次方程及其解的定义,二元一次方程组及其解的定义;根据实际情况列二元一次方程组;教学难点: 二元一次方程组的认识与识别,根据二元一次方程组解的情况求参数的值;五、【教学问题诊断分析】 情境导入小红到邮局寄挂号信,需要邮费3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种票额的邮票?这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x 张,需要票额为8角的邮票y 张,你能列出方程吗?8.1.1二元一次方程及其解的定义问题1(利用二元一次方程的定义求参数):已知|m -1|x |m |+y 2n -1=3是二元一次方程,则m +n =________.问题2(二元一次方程的解):已知⎩⎪⎨⎪⎧x =1,y =-1是方程2x -ay =3的一个解,那么a 的值是( )A .1B .3C .-3D .-1 8.1.2二元一次方程组及其解的定义问题3(识别二元一次方程组):有下列方程组:①⎩⎪⎨⎪⎧xy =1,x +y =2;②⎩⎪⎨⎪⎧x -y =3,1x+y =1;③⎩⎪⎨⎪⎧2x +z =0,3x -y =15;④⎩⎪⎨⎪⎧x =5,x 2+y3=7;⑤⎩⎪⎨⎪⎧x +π=3,x -y =1,其中二元一次方程组有( )A .1个B .2个C .3个D .4个问题4(利用二元一次方程组的解求参数的值)甲、乙两人共同解方程组⎩⎪⎨⎪⎧ax +5y =15;①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2014+(-110b )2015的值.8.1.3列二元一次方程组问题5:小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x 张,2元的贺卡y 张,那么可列方程组( )A.⎩⎪⎨⎪⎧x +y 2=10,x +y =8B.⎩⎪⎨⎪⎧x 2+y 10=8,x +2y =10C.⎩⎪⎨⎪⎧x +y =10,x +2y =8D.⎩⎪⎨⎪⎧x +y =8,x +2y =10六、【教学成果自我检测】 1.课前预习设计意图:落实与理解教材要求的基本教学内容. 1.下列方程组是二元一次方程组的是( ) A .57x y y z +=⎧⎨=+⎩B .24257x y x y ⎧+=⎨+=⎩C .23xy x y =⎧⎨+=⎩D .515328y x y =⎧⎨+=⎩2.下列方程的解为21x y =⎧⎨=-⎩的是( )A .3410x y -=B .1232x y += C .32x y += D .2()6x y y -=3.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n +的值是( )A .2B .2-C .3D .3-4.若方程()135mm x y ++=是关于x ,y 的二元一次方程,则m 的值为 ______ .5.已知11x y =⎧⎨=-⎩是方程35x ay -=的一个解,那么a 的值是______.6.哪些是二元一次方程?为什么?(1)x 2+y =20;(2)2x +5=10;(3)2a +3b =1;(4)x 2+2x +1=0;(5)2x +y +z =1.2.课堂检测设计意图:例题变式练.【变式1】在下列方程组中,不是二元一次方程组的是( )A .331x y y -=⎧⎨=-⎩B .1321x y +=⎧⎨+=-⎩C .23321x y x y +=⎧⎨-=-⎩D .34xy x y ⎧=⎪⎨⎪-=⎩【变式2】已知21x y =⎧⎨=-⎩是二元一次方程7y kx -=的解,则k 的值是( )A .2B .2-C .4D .4-【变式3】已知21x y =⎧⎨=⎩是方程3ax by +=的解,则代数式631a b +-的值为_________.【变式4】已知124x y ⎧=⎪⎨⎪=⎩是二元一次方程2x y a +=的一个解. (1)则=a _________(2)试直接写出二元一次方程2x y a +=的所有正整数解. 3.课后作业设计意图:巩固提升.1.下列是二元一次方程35x y +=的解为( )A .10x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .05x y =⎧⎨=-⎩2.下列方程组中,表示二元一次方程组的是( )A .35x y z x +=⎧⎨+=⎩B .51x y x y +=⎧⎪⎨=⎪⎩C .2512x y x y +=⎧⎨+=⎩D .11122x y y x =+⎧⎪⎨+=⎪⎩3.下列方程中,二元一次方程的个数是( ) ①423=-x ,②57=+y x ,③02=-y x ,④x y =,⑤122=++x yx ,⑥2210x x -+=,⑦z y x 4=+-,⑧20.x y -=,⑨1xy =. A .2B .3C .4D .54.方程22136m n x y -+-=是关于x ,y 的二元一次方程,则2m n +的值为______.5.若32x y =⎧⎨=-⎩是二元一次方程2ax by +=-的一个解,则322025a b -+的值为______________.6.哪些是二元一次方程组?为什么?(1)32950x y y x -=⎧⎨+=⎩;(2)39835x y z y z -+=⎧⎨+=⎩;(3)21x x y =⎧⎨+=⎩;(4)54xy y x y +=⎧⎨-=⎩7.(1)找到几组适合方程0x y +=的x ,y 值; (2)找到几组适合方程2x y -=的x ,y 值;(3)找出一组x ,y 值,使它们同时适合方程0x y +=和2x y -=;(4)根据上面的结论,你能直接写出二元一次方程组02x y x y +=⎧⎨-=⎩的解吗?七、【教学反思】。

二元一次方程组教学设计

二元一次方程组教学设计

二元一次方程组教学设计二元一次方程组教学设计(精选5篇)作为一名老师,时常要开展教学设计的准备工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

我们应该怎么写教学设计呢?下面是店铺为大家收集的二元一次方程组教学设计(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

二元一次方程组教学设计1教学目标1.认识二元一次方程和二元一次方程组。

2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解。

重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作。

满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

二元一次方程组教案3 篇

二元一次方程组教案3 篇

二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。

每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。

以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。

之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。

另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。

3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。

二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。

初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。

初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。

而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。

此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。

八年级数学上册《认识二元一次方程组》教案、教学设计

八年级数学上册《认识二元一次方程组》教案、教学设计
2.培养学生的团队合作精神,让学生在合作交流中互相学习、共同进步。
3.使学生认识到数学知识在解决实际问题中的重要作用,增强学生的应用意识。
在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。以下是具体的教学设计:
1.导入:通过生活中的实际问题,引导学生发现并认识二元一次方程组。
(1)过程性评价:关注学生在课堂上的参与程度、合作交流能力、问题解决能力等;
(2)总结性评价:通过课后作业、测试等方式,评价学生对二元一次方程组知识的掌握程度;
(3)个性化评价:根据学生的个体差异,给予有针对性的评价和建议,激发学生的学习动力。
4.教学反馈:
(1)及时了解学生的学习情况,针对学生存在的问题进行针对性的辅导;
八年级的学生已经具备了一定的数学基础,掌握了线性方程的相关知识,但对于二元一次方程组的认识还不够深入。在此阶段,学生的抽象逻辑思维能力逐渐增强,但仍然需要通过具体实例来理解和掌握抽象的数学概念。此外,学生在解决实际问题时,可能存在将问题转化为数学模型的困难,需要教师在教学过程中给予适当的引导和帮助。
3.鼓励学生主动提问,积极参与课堂讨论,提高自身数学素养。
五、作业布置
为了巩固学生对二元一次方程组知识的掌握,提高学生的解题能力和应用意识,特布置以下作业:
1.基础练习题:完成课本P56页第1-6题,要求学生熟练掌握二元一次方程组的定义、一般形式及其解法。
2.实践应用题:根据课堂所学的代入法、消元法,解决以下实际问题:
(1)小红和小李同时从同一地点出发,小红以每小时5公里的速度向北走,小李以每小时4公里的速度向东走,问两小时后,两人相距多远?
2.教师提问:让学生尝试用之前学过的知识解决这个问题,并引导学生发现问题的难点,即需要同时考虑两个未知数。

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)

初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)元一次方程教学设计篇一一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。

用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。

本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。

以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。

结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。

初中数学教案:二元一次方程组【优秀8篇】

初中数学教案:二元一次方程组【优秀8篇】

初中数学教案:二元一次方程组【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学教案:二元一次方程组【优秀8篇】元一次方程组篇一第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。

二元一次方程组教学设计(通用12篇)

二元一次方程组教学设计(通用12篇)

二元一次方程组教学设计(通用12篇)二元一次方程组教学设计(通用12篇)作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。

教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

二元一次方程组教学设计篇1一、说教材分析1、教材的地位和作用二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。

本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。

通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2、教学目标知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。

会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3、重点、难点重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。

根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)

二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。

教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。

情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。

教学难点:二元一次方程组的解的含义。

教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。

3.如何检验一对数是否是某个二元一次方程(组)的解。

6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。

并不是任意两个二元一次方程都能组成二元一次方程组。

(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。

《4.1二元一次方程》教学设计范文(通用7篇)

《4.1二元一次方程》教学设计范文(通用7篇)

《4.1二元一次方程》教学设计《4.1二元一次方程》教学设计范文(通用7篇)作为一位兢兢业业的人民教师,总归要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。

教学设计应该怎么写呢?下面是小编精心整理的《4.1二元一次方程》教学设计,仅供参考,希望能够帮助到大家。

《4.1二元一次方程》教学设计篇1一、教材的地位与作用《二元一次方程》是九年义务教育课程标准实验教科书浙教版教材七年级下册第四章《二元一次方程组》的第一节。

在此之前学生已经学习了一元一次方程,这为本节的学习起了铺垫的作用。

本节内容是二元一次方程的起始部分,因此,在本章的教学中,起着承上启下的地位。

二、教学目标(一)知识与技能:1.了解二元一次方程概念;2.了解二元一次方程的解的概念和解的不唯一性;3.会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

(二)数学思考:体会学习二元一次方程的必要性,学会独立思考,体会数学的转化思想和主元思想。

(三)问题解决:初步学会利用二元一次方程来解决实际问题,感受二元一次方程解的不唯一性。

获得求二元一次方程解的思路方法。

(四)情感态度:培养学生发现意识和能力,使其具有强烈的好奇心和求知欲。

三、教学重点与难点教学重点:二元一次方程及其解的概念。

教学难点:二元一次方程的概念里“含未知数的项的次数”的理解;把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

四、教法与学法分析教法:情境教学法、比较教学法、阅读教学法。

学法:阅读、比较、探究的学习方式。

五、教学过程(一)创设情境,引入新课从学生熟悉的姚明受伤事件引入。

师:火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。

(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?(本场比赛姚明没投中三分球)师:能用方程解决吗?列出来的方程是什么方程?(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?(罚进1球得1分,本场比赛姚明没投中三分球)师:这个问题能用一元一次方程解决吗?,你能列出方程吗?设姚明投进了x个两分球,罚进了y个球,可列出方程______。

初中数学《二元一次方程组》单元教学设计以及思维导图

初中数学《二元一次方程组》单元教学设计以及思维导图

初中数学《二元一次方程组》单元教学设计以及思维导图1.培养学生对数学的兴趣和热爱,认识数学在现实生活中的应用和重要性。

2.培养学生的思维能力和解决问题的能力,提高学生的自信心和创造力。

3.培养学生的团队合作意识和沟通能力,鼓励学生互相研究和帮助。

4.培养学生的责任感和积极性,鼓励学生勇于尝试和探索新的知识和方法。

本单元的研究目标包括知识与技能、过程与方法、情感态度与价值观三个方面。

学生将学会利用二元一次方程组解决实际问题,了解二元一次方程组及其相关概念,掌握解二元一次方程组的代入法和加减法,以及了解三元一次方程组及其解法。

同时,学生将培养类比思维、应用意识、团队合作和创造力等方面的能力,提高自信心和责任感。

本单元的研究将为今后研究不等式组、线性方程组及平面解析几何等知识奠定基础,是整个初中数学知识体系中数与式部分的必备基础知识。

1.研究二元一次方程组的应用价值,感受数学文化。

2.培养学生的方程意识,渗透方程思想。

3.在解决实际问题的过程中,体验数学的实用性,提高研究数学的兴趣。

同时,敢于发表自己的见解,理解他人的看法并与他人交流。

根据课标,本单元旨在通过实际问题,让学生体会方程组是刻画现实世界中含有多个未知数的问题的数学模型,研究二元一次方程组及其解法和应用,提高分析问题、解决问题的能力。

在专题一中,学生已经熟悉了一元一次方程的解法,本节课将介绍二元一次方程组的概念。

学生可以通过分别考虑两个等量关系,分别列出两个方程的方式来列二元一次方程组。

但是,由于方程中出现两个未知数,因此如何解方程组成为新问题。

本节课的重点问题是如何用一个未知数表示另一个未知数。

这为后面研究消元法解二元一次方程组做好铺垫。

通过学生对实际例子的分析,实现对二元一次方程的把握,从而提高利用二元一次方程解决实际问题的能力。

在本节教学中,应对列检验二元一次方程(组)的解以及用一个未知数表示另一个未知数进行充分的指导和训练,让学生列方程解应用题,进行分组讨论。

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇

解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2、能力目标:1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3、情感目标:1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。

设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。

方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

4、点明课题:二元一次方程组。

(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。

找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

七年级数学二元一次方程组教案

七年级数学二元一次方程组教案

七年级数学二元一次方程组教案七年级数学二元一次方程组教案(精选9篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢?下面是店铺帮大家整理的七年级数学二元一次方程组教案,仅供参考,欢迎大家阅读。

七年级数学二元一次方程组教案篇1教学目标1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点把方程组变形后用加减法消元。

教学难点根据方程组特点对方程组变形。

教学过程一、复习引入用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。

或互为相反数?能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?三、练习。

1.P40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的加减法,代入法有何异同?五、作业。

P33.习题2.2A组第2题(3)~(6)。

B组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:2.3二元一次方程组的应用(1)七年级数学二元一次方程组教案篇2一、教材分析1.教材的地位与作用二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。

在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。

本节内容主要学习和二元一次方程组有关的四个概念。

本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。

初中数学《二元一次方程组》主题单元设计

初中数学《二元一次方程组》主题单元设计

二元一次方程组学科领域(在学科名称后打√ 表示主属学科,打+ 表示相关学科)思想品德语文数学体育音乐美术外语物理化学生物历史地理信息技术科学社区服务社会实践劳动与技术其他(请列出):适用年级所需时间(说明:课内共用几课时,每周几课时;课外共用几课时)主题单元学习概述(说明:简述主题单元在课程中的地位和作用、单元的组成情况,单元的学习重点和难点、解释专题的划分和专题之间的关系,单元的主要的学习方式和预期的学习成果,字数300-500)主题单元规划思维导图(说明:将主题单元规划的思维导图导出为jpeg文件后,粘贴在这里;如果提交到平台,则需要使用图片导入的功能,具体操作见《2013学员教师远程研修手册》。

)主题单元学习目标(说明:依据新课程标准要求描述学生在本主题单元学习中所要达到的主要目标)知识与技能:过程与方法:情感态度与价值观:对应课标(说明:学科课程标准对本单元学习的要求)主题单元问题设计(说明:设计几个能引领本单元学习的核心问题)专题划分(说明:除了说明主题单元将划分成几个专题以及每个专题所用的课时外,还应说明哪一个专题或专题中的哪一个活动将以研究性学习活动的形式来开展学习活动。

)专题一:(课时)专题二:(课时)专题三:(课时).......其中,专题(或专题中的活动作为研究性学习)专题一所需课时(说明:课内共用几课时,每周几课时;课外共用几课时)专题学习目标(说明:描述学生在本专题学习中所要达到的学习目标,注意与主题单元的学习目标呼应)专题问题设计(说明:设计一系列能引领本专题学习的问题)所需教学环境和教学资源(说明:在此列出本专题所需要的教学环境和学习过程中所需的信息化资源、常规资源等和各种支持资源)学习活动设计(说明:为达到本专题的学习目标,从学生的角度设计学生应参与的学习活动。

如本专题由几个课时组成,则应分课时描述每个课时的学习活动设计。

请以活动1、活动2、活动3等的形式,提纲挈领地描述每个课时包含哪些学习活动以及每个活动的主要步骤。

第五章二元一次方程组全章教学设计

第五章二元一次方程组全章教学设计

第五章二元一次方程组1.认识二元一次方程组一、学生起点分析学生的知识技能基础:学生在七年级上册已学过一元一次方程,学生已经具备列一元一次方程解决实际问题的经验基础,为本节的学习已做好知识储备,估计学生应有能力经过自主探索和交流列出二元一次方程组,解决简单的实际问题.学生活动经验基础:本节所涉及的实际问题包括:老牛、小马驮包裹问题、公园的门票问题等,这些问题均为全体学生所熟悉的情境,容易被学生接受和理解,从而也容易建立相应的数学模型来解题.二、教学任务分析《谁的包裹多》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元一次方程组》的第一节,本节内容安排1个课时完成.具体内容是:让学生通过对实际问题的分析,体会方程是刻画现实世界的一个有效数学模型;同时了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解.二元一次方程是继一元一次方程后,又一个体现符号表示思想的内容,它是刻画现实世界的一个有效数学模型,在数学上有着广泛的应用,同时也是学习物理、化学等其他学科知识的一个重要基础.它既是一元一次方程知识的延伸和拓广,又是今后学习一般线性方程组及平面解析几何等知识的基础,具有承上启下的作用.列方程(组)解应用题是联系实际的重要方面,突显了方程作为一种数学模型的重要特征,这既是培养学生逻辑思维能力的良好载体,也是培养学生应用意识和实践能力的良好题材.基于学生对一元一次方程理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程、二元一次方程组及其解等基本概念.在学习过程中,要突出强调建模思想,展现方程是刻画现实世界的有效数学模型,是贯穿方程与方程组的一条主线. 为此,本节课的教学目标是:(1)理解二元一次方程(组)及其解的概念, 能判别一组数是否是二元一次方程(组)的解;(2)会根据实际问题列简单的二元一次方程或二元一次方程组;(3)通过加深对概念的理解,提高对―元‖和―次‖的认识,而且能够逐步培养类比分析和归纳概括的能力,了解变与不变的辩证统一的思想.本节课的教学重点是:(1)掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;(2)判断一组数是不是某个二元一次方程组的解.本节课的教学难点是:从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想.三、教学过程设计本节课设计了四个教学环节:第一环节:情境引入;第二环节:新课讲解,练习提高;第三环节:课堂小结;第四环节:布置作业.第一环节:情境引入内容:(一)情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:―累死我了‖,小马说:―你还累,这么大的个,才比我多驮2个.‖老牛气不过地说:―哼,我从你背上拿来一个,我的包裹就是你的2倍!‖,小马天真而不信地说:―真的?!‖同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程2x y-=,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:()+=-.x y121(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程8x y+=和5334+=.x y在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.第二环节:新课讲解,练习提高内容:(一)二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:①含有两个未知数;②所含未知数的项的最高次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习:1.下列方程有哪些是二元一次方程:(1)093=-+y x ,(2)012232=+-y x ,(3)743=-b a ,(4)113=-y x ,(5)()523=-y x x ,(6)152=-n m . 2.如果方程13221=-+-n m m y x 是二元一次方程,那么m = ,n = .(二)二元一次方程组概念的概括师提请学生思考:上面的方程2121()x y x y -=+=-, 中的x 含义相同吗?y 呢?(两个方程中x 的表示老牛驮的包裹数,y 表示小马的包裹数,x 、y 的含义分别相同.)由于x 、y 的含义分别相同,因而必同时满足2x y -=和()121x y +=-,我们把这两个方程用大括号联立起来,写成()⎩⎨⎧-=+=-.121,2y x y x ,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如:⎩⎨⎧=-=+;03,332y x y x ⎩⎨⎧=+=+.8,835y x y x 注意:在方程组中的各方程中的同一个字母必须表示同一个对象.再呈现一些辨析题,让学生进行巩固练习:判断下列方程组是否是二元一次方程组:(1)⎩⎨⎧=+=-;1253,12y x y x (2)⎩⎨⎧=-=+;53,12y x y x (3)⎩⎨⎧=+=-;153,37z y y x (4)⎩⎨⎧==;2,1y x (5)⎪⎩⎪⎨⎧=+=-;1283,52y x y x (6)⎩⎨⎧=+=-.325,132b ab b a (三)因承上面的情境,得出有关方程的解的概念1.6,2x y ==适合方程8x y +=吗?5,3x y ==呢?4,4x y ==呢?你还能找到其他x ,y 值适合8x y +=方程吗?2. 5,3x y ==适合方程5334x y +=吗?2,8x y ==呢?3.你能找到一组值x ,y 同时适合方程8x y +=和5334x y +=吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x =6, y =2是方程x + y =8的一个解,记作⎩⎨⎧==2,6y x ;同样,⎩⎨⎧==3,5y x 也是方程8x y +=的一个解,同时⎩⎨⎧==3,5y x 又是方程5334x y +=的一个解. 二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.例如,⎩⎨⎧==3,5y x 就是二元一次方程组⎩⎨⎧=+=+3435,8y x y x 的解. 然后,同样呈现一些辨析性练习:(投影)1.下列四组数值中,哪些是二元一次方程13=-y x 的解?(A )⎩⎨⎧==;3,2y x (B )⎩⎨⎧==;1,4y x (C )⎩⎨⎧==;3,10y x (D )⎩⎨⎧-=-=.2,5y x 2.二元一次方程2832=+y x 的解有:⎩⎨⎧==._____,5y x ⎩⎨⎧-==.2_____,y x ⎩⎨⎧=-=._______,5.2y x ⎪⎩⎪⎨⎧==.37_____,y x …… 3.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 4.以⎩⎨⎧==2,1y x 为解的二元一次方程组是( ) (A )⎩⎨⎧=-=-;13,3y x y x (B )⎩⎨⎧-=+-=-;53,1y x y x (C )⎩⎨⎧-=+-=-;553,32y x y x (D )⎩⎨⎧=+-=-.53,1y x y x 5.二元一次方程6=+y x 的正整数解为 .6.如果⎩⎨⎧==2,1y x 是⎩⎨⎧=-=+n y x m y x 3,2的解,那么m = ,n = .7.写出一个以⎩⎨⎧-==3,2y x 为解的二元一次方程组为 . (答案不唯一)目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.设计效果:通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.第三环节:课堂小结内容:1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.目的:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.设计效果:本环节虽然用时不多,却是必不可少的教学环节,对学生回顾与整理本节课的知识效果明显.第四环节:布置作业习题5.1四.教学设计反思 1.本节课充分体现了从问题情景中抽象数学问题、使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能的有意义的这一变化学习过程.在教学中力求体现―问题情景——建立数学模型——解释、应用与拓展‖的模式,使学生在自主探索和合作交流的过程中建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较全面的体验和理解.2.通过情境引入,让同学们体会到了生活中的数学无处不在,激发了学生强烈的求知欲望,学生的反应非常积极踊跃,丰富了学生们的情感与态度.充分利用小组合作交流,让同学们自己找出方程中的等量关系,启发同学们自己说出各个定义的理解.在同学们合作做题的时候,老师进一步强调小组合作交流、合理分配时间会取得更好的效果.教学过程各环节紧紧相扣,整个教学过程逻辑思维清晰,问题与问题之间衔接紧密,每一步都为下一步做了很好的铺垫.3.这个案例主要针对中等生而设计,教师可根据学生学习能力再进行设计上的侧重.比如,学生学习能力较强,可在实际问题中抽象二元一次方程组的模型环节、课后的拓展环节增加适当的深层次的内容,以满足学生的学习需要.第五章二元一次方程组2. 求解二元一次方程组(第1课时)一.学生起点分析学生的知识技能基础:在学习本节之前,学生已经掌握了有理数、整式的运算、一元一次方程等知识,了解了二元一次方程、二元一次方程组及其解等基本概念,具备了进一步学习二元一次方程组解法的基本能力,会通过列一元一次方程解应用题,能通过分析找出题中的等量关系列出二元一次方程组.学生活动经验基础:有同学间相互交流合作、自主探索的经验,有在活动过程中总结经验、归纳知识点的经验.二.教学任务分析《二元一次方程组的解法》是义务教育课程标准北师大版实验教科书八年级(上)第五章《二元一次方程组》的第二节,要求学生能利用消元思想熟练的解二元一次方程组,本节体现的消元方法有代入消元法、加减消元法,教材安排了2个课时分别完成.本节课为第1课时.基于学生对二元一次方程及二元一次方程组的基本概念理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程组的解法——代入消元法.代入消元法是解二元一次方程组的基本方法之一,它要求从两个方程中选择一个系数比较简单的方程,将它转换成用含有一个未知数的代数式表示另一个未知数的形式,然后代入另一个方程,求出这个未知数的值,最后将这个未知数的值代入已变形的那个方程,求出另一个未知数的值.在求出方程组的解之后,可以对求出的解进行检验,这样可以防止和纠正方程变形和计算过程中可能出现的错误.二元一次方程组的解法,其本质思想是消元,体会“化未知为已知”的化归思想.为此,本节课的教学目标是:(1)会用代入消元法解二元一次方程组;(2)了解―消元‖思想,初步体会数学研究中―化未知为已知‖的化归思想. 本节课的教学重点是:用代入消元法解二元一次方程组.本节课的教学难点是:在解题过程中体会―消元‖思想和―化未知为已知‖的化归思想.三.教学过程设计:本节课设计了六个教学环节:第一环节:情境引入;第二环节:探索新知;第三环节:巩固新知;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业.第一环节:情境引入内容:教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x 个成人,y 个儿童,我们得到了方程组⎩⎨⎧=+=+.3435,8y x y x 成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验⎩⎨⎧==3,5y x 是不是方程8x y +=和方程5334x y +=的解,从而得知这个解既是8x y +=的解,也是5334x y +=的解,根据二元一次方程组的解的定义,得出⎩⎨⎧==3,5y x 是方程组⎩⎨⎧=+=+3435,8y x y x 的解.所以成人和儿童分别去了5人和3人.提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?目的:“温故而知新”,培养学生养成时时回顾已有知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.设计效果:通过对已有知识的回顾和思考,学生知识获得既感到自然又倍添新奇,有跃跃欲试的心情.第二环节:探索新知内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题? (由学生独立思考解决,教师注意指导学生规范表达)解:设去了x 个成人,则去了(8)x -个儿童,根据题意,得:()53834x x +-=解得:5x =将5x =代入8x -,解得:8-5=3.答:去了5个成人, 3个儿童.在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)1.列二元一次方程组设有两个未知数:x 个成人,y 个儿童.列一元一次方程只设了一个未知数:x 个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8)x -个.因此y 应该等于(8)x -.而由二元一次方程组的一个方程8x y +=,根据等式的性质可以推出8y x =-.2.发现一元一次方程中53(8)34x x +-=与方程组中的第二个方程5334x y +=相类似,只需把5334x y +=中的“y ”用“()8x -”代替就转化成了一元一次方程.教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将⎩⎨⎧=+=+②y x ①y x 3435,8中的①变形,得8y x =-③,我们把8y x =-代入方程②,即将②中的y 用()8x -代替,这样就有()53834x x +-=.“二元”化成“一元”.教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)解:8,5334.x y x y +=⎧⎨+=⎩由①得:8y x =-. ③将③代入②得:()53834x x +-=.解得:5x =.把5x =代入③得:3y =.所以原方程组的解为:⎩⎨⎧==.3,5y x (提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.(放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想.)目的:通过学生自己对比、思考、发现,让学生惊喜的发现“温故而知新”,将新知融入旧知,体会“化未知为已知”的化归思想的神奇,培养学生独立获取知识的愿望和能力.设计效果:通过学生自己的观察、比较、总结出二元一次方程组的解法,从中体会到解方程组中“消元”的本质.第三环节:巩固新知内容:1.例:解下列方程组:(1) ⎩⎨⎧+==+;3,1423y x y x (2)⎩⎨⎧=+=+.134,1632y x y x (根据学生的情况可以选择学生自己完成或教师指导完成)(1)解:将②代入①,得:()14233=++y y .解得:1=y .把1y =代入②,得:4=x .所以原方程组的解为:⎩⎨⎧==.1,4y x (2)由②,得:y x 413-=. ③将③代入①,得:()1634132=+-y y .解得:2=y .将y=2代入③,得:5=x .所以原方程组的解是⎩⎨⎧==.2,5y x (⑵题需先进行恒等变形,教师要鼓励学生通过自主探索与交流获得求解,在求解过程中学生消元的具体方法可能不同,所以教学中不必强求解答过程的统一,但要提出如何选择将哪个方程恒等变形、消去哪个未知数能使运算较为简单.让学生在解题中进行思考)(教师在解完后要引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解.促使学生进一步理解方程组解的含义以及学会检验方程组解的方法.)2.思考总结:(教师根据学生的实际情况进行生与生、师与生之间的相互补充与评价,并提出下面的问题)⑴给这种解方程组的方法取个什么名字好?⑵上面解方程组的基本思路是什么?⑶主要步骤有哪些?⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法,请学生小组的代表回答或学生举手回答,其余学生可以补充,力求让学生能够回答出以下的要点,教师要板书要点,在学生回答时注意进行积极评价)1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.3.解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.目的:进一步熟悉解二元一次方程组的基本思路,熟练解二元一次方程组的基本步骤和过程,并能对二元一次方程组的解进行检验.设计效果:通过本环节的学习,学生能够独立地运用代入消元法解二元一次方程组.第四环节:练习提高内容:1.教材随堂练习(在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,可以不必强调解答过程统一.可能会出现整体代换的思想,若有条件可以提出,为下一课做点铺垫也可以)2.补充练习:用代入消元法解下列方程组:(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x ⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x (注:[2]题可以用整体代入法来解,把第二个方程变为23y x =-,再将它代入第一个方程,得()32319x x --=;[3]题分数线有括号功能;[4]题如果有时间,学生学有余力可作为补充题目.)目的:对本节知识进行巩固练习.设计效果:通过练习,巩固和熟练了运用代入消元法解二元一次方程组的方法.第五环节:课堂小结内容:师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”;解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.目的:鼓励学生通过本节课的学习,谈谈自己的收获与感受,加深对“温故而知新”的体会,知道“学而时习之”.设计效果:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识.第六环节:布置作业1.课本习题5.22.解答习题5.1第3题3.预习下一课内容四.教学设计反思1.引入自然.二元一次方程组的解法是学习二元一次方程组的重要内容.教材通过上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.2.探究有序.回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有了很好的认知基础,探究显得十分自然流畅.3.充分体现了转化与化归思想.引导学生充分思考和体验转化与化归思想,以利于总体目标中所提出的“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”的落实.4.值得注意的方面.在学生总结解题步骤的环节,一定要留给学生足够的观察、思考、总结、组织语言的时间,训练学生的观察归纳能力,提高学生学习能力.第五章二元一次方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解的定义是怎样的?与二元一次方程及
其解的定义有何不同?
主题单元问题设计
2、 解 一元二 次方程 组的基本 思路是 怎样 的?有几种方法可达此目的?
3、 列二元一次方程有哪些步骤?此类题目 可否用另外的方法解决?
专题划分 专题一
专题 1:二元一次方程组及其解的定义 专题 2:二元一次方程组的解法 专题 3:列二元一次方程组解应用题 二元一次方程组及其解的定义
学习必备
欢迎下载
二元一次方程组 主题单元教学设计
主题单元标题
二元一次方程组
作者姓名
联系地址
电子邮箱
学科领域 (在 内打√ 表示主属学科,打+ 表示相关学科)
思想品德 音乐 化学 信息技术 劳动与技术
语文 美术 生物 科学
其他(请列出):
所属单位 联系电话 邮政编码
√数学 外语 历史 社区服务
适用年级 所需时间 主题单元学习概述
3、了解二元一次方程组的图象解法,初步体会方程与函数的关系。 4、了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂
问题为简单问题的化归思想。
学习必备
欢迎下载
对应课标
1、经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活 运用有关知识解决实际问题的能力,培养学生良好的熟悉应用意识。
所需课时
课内 1 课时
专题一概述
本专题是本章的起始专题,进一步学习整个主题的基础。本专题的内容包括二元一次 方程组的定义,二元一次方程组的解的定义。
学习必备
欢迎下载
本专题的重点是二元一次方程组的相关概念,难点是二元一次方程的解的概念. 本专题的主要学习活动包括在学生已有知识和经验的基础上,在老师指导下系统准确 地提炼出二元一次方程、二元一次方程组的定义;理解并掌握二元一次方程、二元一次方 程组及其解等概念. 学生的主要学习成果包括:理解并掌握二元一次方程、二元一次方程组的定义及相关 概念,会判断二元一次方程、二元一次方程组、解.
专题学习目标
知识技能: 理解并掌握有关概念(二元一次方程、二元一次方程组,二元一次方程、二元一次方
程组的解),会用概念进行判断、 过程与方法:
经历从实际问题中抽象出数学问题的过程,培养数学建模能力; 情感态度与价值观:
体会数学应用的广泛性;
专题问题设计
1.怎样二元一次方程、二元一次方程组, 二元一次方程、二元一次方程组的解下定 义? 2. 怎样判断一个方程是不是二元一次方程 或二元一次方程组? 3.怎样判断一个方程 3 或一组数是不是二 元一次方程或二元一次方程组的解?
学生的主要学习成果包括:理解并掌握消元的思想,熟练地使用代入法和加减法解二 元一次方程组。
专题学习目标
知识技能: 1、了解解二元一次方程组的基本思路; 2、了解代入消元法并能用代入消元法解二元一次方程组; 3、了解解二元一次方程组的基本思路; 4、了解加减消元法并能用加减消元法解二元一次方程组;
过程与方法: 经历探索代入法和加减法解二元一次方程组的过程,体会并掌握消元等数学思想方法.
整式方程就叫做二元一次方程。 由两个一次方程组成,含有两个未知数的方程组叫做二元一次方程组。
活动 3:判断是否是二元一次方程或二元一次方程组。 【活动步骤】
1.说一说判断是否是二元一次方程或二元一次方程组的要点;
所需教学材料和资源 信息化资源 教学支撑环境
其他 学习活动设计
专题二
所需课时 专题二概述
学习必备
欢迎下载
课件 多媒体教室 纸笔等
二元一次方程组的解法
课内 2 课时
ቤተ መጻሕፍቲ ባይዱ
本专题是二元一次方程组这一主题的核心部分,主要学习二元一次方程组的两种解法 ——代入法和加减法。
本专题的主要学习活动包括在学生已经掌握概念的基础上,在老师指导下探索用代入 法、加减法解一元二次方程组的步骤,练习熟练地解二元一次方程组。
其他 学习活动设计
课件 多媒体教室 纸笔等
第一课时 二元一次方程与二元一次方程组
活动 1:鸡兔同笼问题 有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四
只脚。求笼中各有几只鸡和兔? 重在让学生参与,激发兴趣,体会数学问题的来源、
活动 2:尝试下定义 【活动步骤】 1.二元一次方程与二元一次方程组的定义 (1)学生思考什么是二元一次方程与二元一次方程组; (2)小组合作,组内交流各自的想法; (3)教师组织班内交流,明确定义及表示方法: 2.类比一元一次方程的定义,给二元一次方程级二元一次方程组下定义 个人思考,组内交流,班内交流. 如果一个方程含有两个未知数,并且所含未知数的项的次数都是 1 次,那么这个
学习必备
欢迎下载
主题单元学习目标
1、经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活 运用有关知识解决实际问题的能力,培养学生良好的熟悉应用意识。
2、了解二元一次方程(组)的有关概念,会解简单的二院一次方程组,能根据具体问题中 的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性。
七年级
课内 6 课时,课外 2 课时
体育 物理 地理 社会实践
本章与一元一次方程类似,强调建模思想,关注知识的形成与应用过程。为此,教科书设 计继续遵循“问题情境—建立模型—解释、拓展与应用”的模式,首先通过具体问题情境, 建立有关方程并归纳出二元一次方程和二元一次方程组的有关概念,然后探索其各种解法, 并在现实情境中加以应用,切实提高学生的应用意识和能力。
2、了解二元一次方程(组)的有关概念,会解简单的二院一次方程组,能根据具体问题中 的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性。
3、了解二元一次方程组的图象解法,初步体会方程与函数的关系。 4、了解解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂
问题为简单问题的化归思想。 1、 如何理解“二元一次方程组”的定义?其
情感态度与价值观:
学习必备
欢迎下载
体会消元等数学知识在生活中应用的广泛性;
专题问题设计
1. 二元一次方程组有几个未知数?与以前学的方程有何区别? 2. 怎样将二元一次方程组转化为一元一次方程?你有几种方法? 3. 什么样的方程组适合用代入法?什么样的方程组适合用加减
法?
所需教学材料和资源 信息化资源 教学支撑环境
相关文档
最新文档