空冷系统
直接空冷系统
整理课件
26
喷淋水系统
❖ 为了有效地降低机组的背压,提高机组的效率, 平稳顺利地防暑过夏,二期空冷岛加装了喷淋水 系统,即为每个风机加了10个雾化喷头,使除 盐水经过雾化被风机直接吹到散热管束上,降低 散热管束的温度,从而使管束中的蒸汽能够更好 地被冷却。
整理课件
27
二期化学 除盐水箱
第1列
第1列
整理课件
13
空冷防冻
❖ 在机组处于空负荷或低负荷运行时,蒸汽流量很小,经 试验发现加上旁路系统的蒸汽流量也不能达到空冷凝汽 器全部投入时的设计流量。此时,即使将所有风机全部 停运,由于此时蒸汽流量很小,当蒸汽由空冷凝汽器进 汽联箱进入冷却管束后,在由上而下的流动过程中,冷 却管束中的蒸汽与外界冷空气进行热交换后不断凝结。 由于环境温度很低,远远低于水的冰点温度,其凝结水 在自身重力的作用下,沿管壁向下流动的过程中,其过 冷度不断增加,当到达冷却管束的下部(即冷却管束与 凝结水联箱接口处)时达到结冰点产生冻结现象。在冷 却过程中蒸汽不断凝结并不断在冷却管束的下部冻结,
整理课件
25
冲洗水系统
❖ 系统包括每纵冷凝器两侧的可移动扶梯、安装在扶梯上 的水流分配集管及安装在集管上方的雾化喷嘴。水流通 过一软管供给至扶梯。由於扶梯可平行于管束表面由人 工移动,这样水流分配均匀,清洁工作持续有效。先清 洗冷凝器一侧,然后在清洗另一侧。每一侧应清洗6遍。 (每个扶梯安放6个集管,1/6的管道可被同时清洗。这 样作的目的是为了限制清洁用水的水流量。) 清洁应自 上而下,从顶部母管开始,至中间母管,最后清洁底部 母管。高压水喷嘴均匀分布并与水流分配集管固定,全 部垂直于管束,并通过一软管与供水装置/泵连接。最 好在机组停运、ACC处於真空状态下期间实施清洁,在 机组运作时亦可实施清洁。
汽轮机直接空冷系统工艺流程
汽轮机直接空冷系统工艺流程汽轮机直接空冷系统是一种用于蒸汽动力发电的冷却系统,其工艺流程如下:1.蒸汽供应:汽轮机的蒸汽来自锅炉或其他蒸汽源。
蒸汽通过管道输送至汽轮机,推动汽轮机转动,从而驱动发电机发电。
2.蒸汽调节:进入汽轮机的蒸汽通过调节阀进行压力和流量的控制。
这些调节阀根据汽轮机的负荷需求和系统压力的变化进行调节。
3.汽轮机转子及叶片:蒸汽在汽轮机内部膨胀并推动转子转动,转子带动叶片旋转,从而将蒸汽的动能转化为转子的旋转动能。
4.冷凝器:从汽轮机排出的蒸汽进入冷凝器,与冷却水进行热交换,使蒸汽中的水蒸气冷凝为水。
这个过程释放出蒸汽的潜热,将蒸汽转化为液态水。
5.冷却水系统:冷却水系统由水泵、冷却塔和循环管道组成。
冷却水被水泵从储水池中抽出,通过循环管道输送到冷却塔进行喷淋,与空气进行热交换,将热量传递给空气,使冷却水温度降低。
6.直接空冷:从冷凝器出来的水蒸气和液态水混合物进入直接空冷系统。
直接空冷系统由一系列空冷散热器组成,液态水混合物在散热器表面蒸发,吸收热量,使散热器冷却。
7.凝结水收集:在直接空冷系统中,液态水混合物在散热器表面蒸发后形成凝结水,凝结水通过凝结水管道收集并输送到储水池。
8.循环利用:从储水池中回收的凝结水经过处理后可以再次用于锅炉供水,实现水资源的循环利用。
9.控制系统:汽轮机直接空冷系统配备了一套控制系统,用于监控系统的运行参数、调节蒸汽流量和压力以及控制凝结水的回收利用。
控制系统由传感器、执行器和控制器组成,可以实现自动化控制和远程监控。
10.维护管理:汽轮机直接空冷系统需要进行定期的维护和保养,确保系统的正常运行。
维护内容包括清洗冷凝器和散热器、检查阀门和管道的密封性、更换损坏的零件等。
总的来说,汽轮机直接空冷系统的工艺流程涉及蒸汽的供应、调节、转化、冷却、空冷散热、凝结水收集、循环利用以及控制系统和维护管理等多个环节。
这些环节相互关联、相互影响,共同保障了汽轮机直接空冷系统的正常运行和发电过程的顺利进行。
空冷系统组成及运行控制措施
空冷系统组成及运行控制措施气化中心工艺工程师辽宁大唐国际阜新煤制天然气有限责任公司 123000直接空冷凝汽器(air cooled condender system,以下简写ACC)是指汽轮机的排气直接进入ACC,通过蒸汽与空气的热交换来冷凝汽轮机的排汽,以维持汽轮机的低背压。
近年来,ACC被作为辅助系统广泛应用于石化行业。
1 ACC组成及控制要素ACC一般由空冷凝气单元(管束及风机),抽真空系统,凝水系统,仪电控系统及附属连接件等组成。
图1 空冷系统简图1.1空冷凝气单元空冷凝气单元主要包括管束和风机。
汽轮机排汽通过排汽管线直接进入空冷器管束,与由底部风机送的空气进行换热后的凝结水进入热井再送往下一工段。
操作风机时应注意汽轮机的排汽压力、空冷器凝结水温度及不凝气温度的变化。
在正常运行时以上参数与风机转速成反比,即风机转速越高,强制送风越多,蒸汽冷凝越快,排气压力越低,此时汽轮机效率越高。
而环境温度较低、排气压力高时,还应参照凝结水的温度,若凝结水温度过低则不应使用增加风机转速的方法来降低排汽压力,误操作风机将造成冻堵现象。
应及时查明排气压力高的原因,再进行调整。
排气压力高的原因一般有两种情况,一是风机转速低,换热量小,同时体现凝结水温度高;二是空冷管束部分可能存在漏气,外部空气漏入,导致排气压力高。
1.2抽真空系统及凝结水系统抽真空系统以维持汽轮机运行状态下的真空,及时抽出排汽中的不凝结气体(如空气),以防止不凝气在空冷器内积聚,占据管束换热面积,使排汽冷凝能力下降,汽轮机排汽压力升高、效率降低。
系统从逆流换热管束顶部的抽气口中将ACC中的不凝结其他与少量蒸汽一起抽出,再经抽气器两级冷却最终排入大气。
凝结水系统由热井和凝结水泵组成,ACC中凝结下来的凝结水靠重力自流送入热井,在由凝结水泵加压外送。
在运行过程中应注意空冷器凝结水的温度,过高将造成水泵的汽蚀,另外水温过高会降低水泵的使用寿命。
1.3管道系统管道系统作为设备间连接传送介质物料的重要组成部分。
发电工程空冷部分
发电工程空冷部分1. 简介发电工程空冷部分是发电站的重要组成部分,它负责对发电机组的热量进行散发,确保发电机组的顺畅运行。
空冷系统通常由散热器、风机、冷却液和控制系统等组件构成。
本文将对发电工程空冷部分的原理、主要组件以及维护保养等方面进行详细介绍。
2. 空冷原理发电机组在运行过程中会产生大量的热量,如果不及时散发,会导致发电机组过热,影响其性能和寿命。
空冷系统的作用就是通过散热器将发电机组产生的热量传递给空气,并通过风机将热空气排出,以保持发电机组的正常工作温度。
空冷系统的散热器通常采用铝制或铜制材料制成,具有良好的散热性能。
它们通过管道和发电机组连接,冷却液在管道中流动,与散热器表面接触,通过传热将热量散发出去。
风机则起到增加空气对散热器的流动速度的作用,加快散热过程。
一般会根据发电机组的功率和散热需求确定合适的风机数量和功率。
3. 主要组件3.1 散热器散热器是空冷系统的核心组件,它通过与冷却液接触,将冷却液中的热量传递给空气。
散热器通常由多排管构成,管道之间通过鳍片连接,以增加散热表面积。
散热器的材质选择常用的有铝和铜,铝制散热器具有良好的散热性能和轻量化特点,适用于大部分发电机组。
3.2 风机风机是用来增加空气流动速度的设备,通过将空气吹向散热器,加快热量传递过程。
风机一般根据发电机组的功率和散热需求进行选择,数量和功率的选择直接影响到散热效果。
3.3 冷却液冷却液是空冷系统中传递热量的介质,一般选择具有良好导热性能的液体作为冷却液,常见的有水和防冻液。
冷却液通过管道与散热器连接,流动时与散热器表面进行热交换,将热量传递给空气。
3.4 控制系统控制系统用于监测和控制空冷系统的工作状态,包括风机的启停控制、温度传感器的监测等。
控制系统可以根据需要进行调节,确保发电机组的工作温度在正常范围内。
4. 维护保养为了确保发电工程空冷部分的正常运行,定期的维护保养是必要的。
以下是一些常见的维护保养措施:•定期检查散热器和风机的工作状态,清除积尘和杂物,保持通风畅通。
电站空冷系统介绍
防冻保护模式……
这种系统在主厂房内的部分几乎与湿冷系统完全一样 ,在主厂房外的部分,简单地说,只是将湿冷塔换成了空
冷塔。
2.电站空冷系统的工作原理
2.3 喷射式间接空冷系统 2.3.1喷射式间接空冷系统的工作原理
2.电站空冷系统的工作原理
2.3 .2喷射式间接空冷系统的主要特点
系统 主 要 特
点
自然风速等)。 冷却系统一般由: ①循环系统功能组…… ②扇区功能组(扇区充水和泄水)……
③旁路阀控制功能组……
④水平衡控制功能组…… ⑤紧急泄水阀控制功能组…… ⑥温度控制功能组等逻辑控制功能组组成……
2.电站空冷系统的工作原理
整个系统依据汽轮机背压(出塔水温)来控制运行, 可分为: 夏季运行模式…… 冬季运行模式……
2.电站空冷系统的工作原理
2.2表面式间接空冷系统
2.2.1间接空冷系统的工作原理
2.电站空冷系统的工作原理
2.2.2表面式间冷特点
系统 主 要 特 表面式空冷系统 注 释
①换热效率较低
②电厂整体占地面积大 ③冬季防冻要求高 ④初投资较大 ⑤真空系统小 ⑥汽轮机背压变幅大 ⑦受自然风影响相对较小 点 ⑧背压较低,热耗相对小 ⑨布置不受夏季主导风向制约 ⑩端差相对较大
两次换热、与直冷换热效果差。
自然通风冷却塔的占地大 百叶窗调节+退段运行 与直接空冷相比 与湿冷相同 全年理想的运行背压在7~ 28kPa。 与直接空冷相比
全年平均运行与直接空冷相比
与混凝式间接空冷相比
2.电站空冷系统的工作原理
2.2.3表面式间冷的组成
序号
1 2 3
表面式空冷系统
凝汽器 循环水系统部分 冷却扇段部分 表面式凝汽器
电站空冷系统介绍.
内
容
循环水泵、泵进出阀门、温度表、压力表、塔 内外循环水管道 冷却三角(钢或铝)及其支座、百叶窗及其执 行机构、扇段进出水阀门、紧急放水阀、管道、 伸缩节、各种支吊架。
4
5 6
充水系统
补水系统 地下贮水箱
充水泵、高位膨胀水箱、管道、阀门等。
补水泵、管道、管件、阀门。 钢制水箱、水位控制设施。
7
8 9 10
④初投资较省 ⑤真空系统庞大 Nhomakorabea平台架设在A列的电气设备之上
与间接空冷相比 主排汽管道、换热器等容积较大
③冬季防冻措施比较灵活可靠 变频调速风机+电动真空隔离阀
特
点
⑥汽轮机背压变幅大
⑦对自然风比较敏感
全年理想的运行背压在9~32kPa。
影响风机吸风能力、热回流现象
⑧平均运行背压较高,热耗大 与间接空冷相比
清洗系统
喷雾系统 充氮保护系统(钢制) 自然通风冷却塔
清洗泵、喷嘴、管道、阀门、各种支吊架。
喷雾泵、喷嘴、管道、阀门、各种支吊架 氮瓶组、减压阀、管道、阀门、各种支吊架 一般为双曲线混凝土塔
2.电站空冷系统的工作原理
2.2.4表面式间冷的运行
同样是一个将汽轮机的乏汽冷凝成水的过程,与直冷
2.电站空冷系统的工作原理
2.1.4直接空冷系统的运行
直接空冷系统冷却原理是:用大直径的钢制管道将汽 轮机排出的乏汽引入空冷散热器后,通过与由动力风机组 送出的环境空气进行表面换热,直接将乏汽冷却为冷凝成 水。 系统的控制主要是依据汽轮机排汽压力(或凝结水温 )控制器的指令调节风机的转速,风机转速的提升/降低 根据风机转速级配置图执行,同时每个蒸汽隔离阀依据指 令开启/关闭。 控制的内容主要包括(冬季、正常)启动、运行、停 机(冬季、正常)、冬季防冻保护运行。
空冷系统
•
•
空冷系统防冻逻辑
1)环境温度持续低于-3℃五分钟时,启动防冻保护。当环境温度持续高于+3℃五分钟时,防冻保护 关闭。 2)当冷凝水温度之一低于25℃,汽机背压设定值增加3kPa。30分钟后如果冷凝水温度仍旧低于 25℃,再随后增加3kPa。 3)逆流风机(每排的3,6单元)依次间隔地停止运行5分钟。 4)空冷启动期间当环境温度低于-10℃时,3、4、5、6排的逆流风机(3,6单元)以20HZ反转,当某列抽 汽温度高于30℃时,该列反转结束。 注:在空冷运行过程中,抽气温度低时,可以在手动模式下,反转逆流风机(反转仅限于逆流风机), 风机反转前必须确证所要反转的风机已停转。
• • • • • • • • • • 1)轴流风机风筒与风机桥架的连接螺栓应无松动。 2)轴流风机轮毂与减速箱输出轴的锁紧螺栓应锁紧。 3)检查轴流风机轮毂轴套与风机轮毂支板的连接螺栓应锁紧。 4)检查风机叶片安装角度应一致。 5)检查现场清洁无杂物。 6)检查电动机和启动设备的接地装置应完整良好,接线良好。 7)检查齿轮箱油位、油温正常(否则启动电加热器)。 8)启动齿轮油泵,油压正常。 9)初次或大修后启动时先点动变频器开关,使风机转动(时间不超过30秒),检查风 机旋转方向是否正确,迎气流看风机叶轮应顺时针方向旋转。 10)试转测定风机的振动值,风机允许振动值小于6.3mm/s,否则应停机检查,查明原 因,排除故障后方可重新启动运转。
单元模块
低压饱和乏汽
排出的不凝气体含20公斤/时 空气和48公/时的蒸汽
蒸汽含量99.999%和20公斤/时空气进入空冷
蒸汽
冷却用风
逆流管束.蒸汽和冷 却水的方向相反
顺流管束.蒸汽和冷 却水的方向一直
冷却水
未被冷却的蒸汽和不凝气体 进入逆流管束
汽车引擎冷却系统水冷和空冷的比较
汽车引擎冷却系统水冷和空冷的比较引言:汽车引擎冷却系统是确保发动机正常运转的关键部件之一。
目前市场上主要采用的冷却方式包括水冷和空冷两种。
本文将对水冷和空冷两种冷却方式进行比较,以帮助读者更好地了解它们的特点和优劣势。
一、水冷冷却系统水冷是目前大部分汽车使用的冷却方式。
水冷冷却系统由水泵、散热器、水箱和风扇等组成,其工作原理是通过水泵将冷却液循环流动,经过散热器释放热量,进而达到降低发动机温度的目的。
1. 优势:a. 散热效果好:水冷系统利用冷却液吸收热量后经过散热器散发,可以更快速地降低发动机温度,保证发动机在适宜的工作温度范围内运转。
b. 散热稳定:水冷系统在高负荷工况下能够保持相对稳定的散热性能,不易受外部环境温度的影响。
c. 适用广泛:由于其散热效果好,水冷冷却系统适用于大多数汽车引擎,包括高功率和高性能发动机。
2. 劣势:a. 复杂安装:水冷冷却系统需要安装冷却液管道、散热器等复杂部件,相对空冷系统来说安装起来更加繁琐。
b. 维护困难:水冷冷却系统存在着冷却液定期更换和防冻液加注等维护工作,需要更多的维护成本和时间。
二、空冷冷却系统空冷冷却系统是较早期使用的一种冷却方式,其通过大量的风扇供应冷却气流来帮助散热。
空冷系统相对于水冷系统而言,结构更为简单。
1. 优势:a. 结构简单:空冷系统不需要额外的冷却液系统和散热器,解决了水冷冷却系统的复杂安装问题。
b. 维护成本低:相对于水冷冷却系统,空冷冷却系统更简便,不需要定期更换冷却液和加注防冻液,维护成本较低。
2. 劣势:a. 散热效果差:相对于水冷系统,空冷系统在高温环境下,散热效果较差,无法有效降低发动机温度,容易导致发动机过热。
b. 适用范围窄:空冷冷却系统适用于低功率发动机,并不适用于高功率和高性能发动机。
结论:综上所述,水冷冷却系统和空冷冷却系统各有优劣。
水冷系统散热效果好,适用范围广,但安装和维护较为复杂;而空冷系统结构简单、维护成本低,但散热效果差,适用范围较窄。
空冷系统讲义
验结论。 ❖ 空冷系统气密性试验历时24小时压降不应大于50mbar。此结果应为对环境
温度进行修正之后的数据。 ❖ 完成气密性试验后,打开临时放气阀将系统泄压。
TS 2.5.3空冷凝汽器清洗
质要求高。另外一个特点是,经冷却塔冷却后的水仍有较大的余压,在送入
凝汽器以前,先用小型水轮发电机口收能量。
TS
直接空冷系统的组成
直接空冷系统主要由蒸汽分配管、空冷凝汽器,空冷风机组、 凝结水回收管、抽真空管、空冷清洗装置等组成。 •空冷凝汽器( Air Cooled Condenser 简称ACC ):直接空冷系 统中的空冷装置,将汽轮机的排汽直接排到该装置中冷凝成凝 结水,故称为空冷凝汽器。 •管束(bundles)::组成空冷凝汽器工厂供货的基本元件。
TS 2.5.1空冷风机单体试运
试运前应具备的条件 ❖ 清除风筒防护网和风机的杂物,保持风机和冷却单元内清洁。 ❖ 就地和远传监视设备完好。 ❖ 电机以及变频器接线正确、可靠。接地装置完好。 ❖ 各风机的变频电机经过单体试运,转向正确。 ❖ 叶片安装角度调整完毕、合格;方向一致。 ❖ 同一风机内叶片高低差调整完毕、合格。 ❖ 叶片叶尖与风筒内壁的间隙调整完毕、合格。 ❖ 减速箱内润滑油加注到位 ❖ 手转动叶轮,应灵活无卡涩现象。
TS 2、调试流程
系统和相关设备资料的收集 调试文件的编写 系统的检查 设备的传动 空冷风机的试运 空冷系统气密性试验 空冷系统冷态冲洗 空冷系统热态冲洗 验评表及调试报告的编写
TS 2.1 系统和相关设备资料的收集
PI图、系统图 空冷风机运行维护说明书 空冷逻辑说明
空冷系统概述
1.•直接空冷是干空冷系统概述式冷却(空冷)系统的一种方式,区别于间接空冷。
汽轮机排汽经过排汽管道直接送入散热器(空冷凝汽器)冷却后凝结成水,散热器的热量由管外流过的空气带走,这种系统叫直接空冷系统。
众所周知,我区以丰富的煤炭资源、广阔的土地资源,邻近北京及京、津、唐电网等诸多优势,被国家列为能源、电力生产基地。
但是由于我区水资源相对匮乏,以及国家要求建设内蒙古绿色生态防线的要求,走可持续发展的道路,节约用水、提高水资源利用率已成为新世纪内蒙电力工业发展的重大课题。
最近几年,国家审批的电场项目反复强调优先批准空冷机组,现在我区在建和准备建设的工程项目几乎全部为直接空冷机组,(国家政策导向)所以大力推广、应运空冷直接空冷技术迫在眉睫,也是大势所趋。
直接空冷机组特点:1.节水:全厂性耗水量可节约65%以上,即由1m3/GWh降到0。
3~0。
35 2.建厂条件:从已建成厂来看,不受限制,纬度高、低,气候干燥、湿润,厂址选择自由度大。
3.环抱性能:无冷却塔汽水蒸发,电厂周围无飘滴,废水排放可以达到0排放的要求。
4.维护费用:一空冷机组的维护费用低一些,为其30%。
单排管优点哈蒙公司生产的单排管散热器性能先进,防冻性好,由特殊工艺将蛇型铝翅片与钢管表面渗透致密结合,使散热性能大大提高,且比热镀锌钢翅片抗腐蚀性能好,结构强度高,用高压水冲洗,压差小,清洗效果好,不会对散热器产生损坏。
另外从环保考虑,由于不采用锌材料,不对土壤或周围环境产生污染。
国外应用发展情况电站使用直接空冷技术已有60多年的历史,期间经历了容量由小到大、技术逐渐成熟、应用地区逐步扩大的过程。
1938年,世界上第一台直接空冷机组安装于德国一个坑口电站,1.5W;1958年,意大利的Citta di Roma 电站2×36MW机组投运;1968年,西班牙Utrillas 燃煤电站160MW空冷机组投运;到目前为止,直接空冷机组超过800多台。
空冷岛概述
空冷岛平台紧靠主厂房A排外,以单元群形式成矩阵布置,
每台机组共30个单元划分为5行、6列,全钢结构。砼柱顶标
高33.8m,平台顶部标高为35.00m,蒸汽分配管中心标高
47.53m,平面尺寸,73.5m X 62.81m, 安装在9根混凝土柱
子上,平台钢桁架连接而成,采用大六角高强螺栓连接。
公司等。
空冷系统主要设计参数:
❖
❖
❖
❖
❖
❖
❖
❖
❖
❖
❖
最低及最高环境温度:—28.9℃至43.2℃
平均环境温度: +10℃
夏季平均温度:+26.6℃
冬季平均温度:—10.4℃
平均环境大气压力:930.0hPa
平均相对湿度为:44%
平均降雨量:38.6mm
平均风速2.0m/s
最大设计风速:31m/s
全年盛行风向:东北
气膜具有更高的传热热阻。此外,随着不凝结气体和蒸汽的
混合汽体的过冷和不凝结气体比例的增大,凝汽器逆流单元
的传热热阻增大。
3、不凝气体的焓值较低,当气温下降到一定极限时,极易造成
空气冷 凝器管束内冻结现象的发生。
4、漏真空后,空气进入凝汽器产生气阻,导致汽轮机背压升高,
(汽轮机排气背压设计为15kPa(TMCR/THA工况))汽轮机有
离设备中,气体从下往上流动。当气体的流
速增大至某一数值,液体被气体阻拦不能向
下流动,愈积愈多,最后从塔顶溢出,称为
液泛。产生液泛时的气体速度或连续相速度
称为液泛速度。
对于空冷凝汽器来说,当液泛现象出现时,
流动压降显著增加,且不利于凝结水的排除。
空冷系统简介
1空冷系统简介空冷技术方案介绍在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。
直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。
混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。
表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。
1.1.1 直接空冷系统直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。
空冷凝汽器布置在汽机房A列外的高架空冷平台上。
直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。
其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。
1.1.2 表凝式间接空冷系统表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。
该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。
表凝式间接空冷与直接空冷相比,其特点是:冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。
空冷系统简介
奋发图强,做成就未来的品牌员工
国内大型空冷机组应用于80年代末期, 1987年、1988年在山西大同第二发电厂投产两 台200MW国产空冷机组,引进匈牙利海勒式间 接空冷系统;1993年内蒙丰镇电厂投产 4×200MW空冷机组,采用海勒式间接空冷系 统;1993年、1994年在山西太原第二热电厂投 产两台200MW国产空冷机组,采用哈蒙间接空 冷系统,拉开了我国大容量级空冷系统国产化 的序幕。
托克托电厂 5#、6#、7#、8#机组是国内较 早投产的600MW亚临界直接空冷机组, 5#、6# 机组分别于2005 年9 月28日和11 月22 日投产, 7#、8#机组分别于2006 年6月19 日和8 月22 日 投产。其凝结水精处理均采用阳、阴分床离子 交换除盐系统,没有前置过滤器。 从该厂的经验看,亚临界直接空冷机组的凝 结水处理采用阳、阴分床系统也是可行的。
空冷系统简介
化学室 刘军梅
奋发图强,做成就未来的品牌员工
1 概述 众所周知,在火力发电厂中耗水量最大的 部分是循环冷却水,约占全厂用水量的60%~ 70%。因此发展电站空冷技术、节约循环冷却 水是解决上述矛盾的有效措施之一,并成为解 决在水资源严重短缺地区和坑口地区建设火电 的一种有效途径。空冷技术在国内外都已得到 成功应用,并显现出卓越的节水成效。根据国 内外空冷机组用水量统计,其耗水量一般为同 容量湿冷机组的1/3~1/4,节水效果十分显著。
奋发图强,做成就未来的品牌员工
进入21世纪,我国迎来了采用空冷系统的 新高潮。我公司设计的国内首台600MW直接空 冷机组于2005年在山西大同二电厂投产发电, 国内首台600MW间接空冷机组于2007年在山西 阳城电厂投产发电。 由于受凝结水温度高的限制,直接空冷凝 结水精处理工艺主要为粉末树脂覆盖过滤器和 阳、阴分床离子交换除盐系统。
空冷及水冷、间冷
、概述空冷系统主要指汽轮机的排汽通过一定的装置被空气冷却为凝结水的系统,它与常规湿式冷却方式(简称湿冷系统)的主要区别是避免了循环冷却水在湿塔中直接与空气接触所带来的蒸发、风吹损失以及开式循环的排污损失,消除了蒸发热、水雾及排污水等对环境造成的污染。
由于空冷方式用空气直接冷却汽轮机排汽或用空气冷却循环水再间接冷却汽轮机排汽构成了密闭的系统,所以在理论上它没有循环冷却水的上述各种损失,从而使电厂的全厂总耗水量降低80%左右。
用于电厂机组末端冷却的空冷系统主要有直接空冷系统和间接空冷系统,间接空冷系统又分为带表面式凝汽器和带混合式凝汽器的两种系统。
三种空冷方式在国际上都得到广泛的应用,技术均成熟可靠,在国际上三种空冷方式单机容量均已达到600MW。
我国目前己有60OMW直冷机组投运,两种间冷方式在国内运行机组均为200MW。
采用空冷机组大大减少了电厂耗水,为水源的落实和项目的成立提供了便利条件。
特别对缺水地区,有着重要的意义。
内蒙古地区煤资源丰富,近几年投产的机组,基本都采用了空冷系统,而且大部分为直接空冷系统。
二、空冷系统2.1直接空冷系统电厂直接空冷系统是汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。
电厂直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Aircooledcondenser),空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。
蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道间空冷冷凝器分配蒸汽。
目前直接空冷凝汽器大多采用矩形翅片椭圆管芯管的双排、三排管和大口径蛇形翅片的单排管。
空冷凝汽器由顺流管束一和逆流管束两部分组成。
顺流管柬是冷凝蒸汽的主要部分,可冷凝75%一80%的蒸汽,在顺流管束中,蒸汽和凝结水是同方向移动的。
设置逆流管束主要是为了能够比较顺畅地将系统内的空气和不凝结气体排出,避免运行中在空冷凝汽器内的某些部位形成死区、冬季形成冻结的情况,在逆流管束中,气体和凝结水是反方向移动的。
电站空冷系统
电站空冷系统1.1 空冷系统的单机容量目前国内外电站空冷是二大类:一是间接空气冷却系统,二是直接空气冷却系统。
其中间接空气冷却系统又分为混合式空气冷却系统和表面式空气冷却系统。
世界上第一台1500KW直接空冷机组,于1938年在德国一个坑口电站投运,已有60多年的历史,几个典型空冷机组是:1958年意大利空冷电站2X36MW机组投运、1968年西班牙160MW电站空冷机组投运、1978年美国怀俄明州Wodok电站365MW空冷机组投运、1987年南非Matimba电站6X665MW直接空冷机组投运。
当今采用表面式冷凝器间接空冷系统的最大单机容量为南非肯达尔电站6X686MW;采用混合式凝汽器间接空冷系统的最大单机容量为300MW级,目前在伊朗投运的325MW(哈尔滨空调股份有限公司供货)运行良好。
全世界空冷机组的装机容量中,直接空冷机组的装机容量占60%,间接空冷机组约占40%。
1.2 直接空冷系统的特点无论是直接空冷,还是间接空冷电厂,经过几十年的运行实践,证明均是可*的。
但不排除空冷系统在运行中,存在种种原因引发的问题,如严寒、酷暑、大风、系统设计不够合理、运行管理不当等。
这些问题有的已得到解决,从国内已投运的200MW空冷机组运行实践证明了这一点。
从运行电站空冷系统比较,直接空冷系统具有主要特点:(1)背压高;(2)由于强制通风的风机,使电耗大;(3)强制通风的风机产生噪声大;(4)钢平台占地,要比钢筋混凝土塔为小;(5)效益要比间接冷却系统大30%左右,散热面积要比间冷少30%左右;(6)造价相比经济。
2.直接空冷系统的组成和范围2.1 直接空冷系统的热力系统直接空冷系统,即汽轮机排汽直接进入空冷凝汽器,其冷凝水由凝结水泵排入汽轮机组的回热系统。
2.2 直接空冷系统的组成和范围自汽轮机低压缸排汽口至凝结水泵入口范围内的设备和管道,主要包括:(1)汽轮机低压缸排汽管道;(2)空冷凝汽器管束;(3)凝结水系统;(4)抽气系统;(5)疏水系统;(6)通风系统;(7)直接空冷支撑结构;(8)自控系统;(9)清洗装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,空气经过冷却塔后水分含量会不会 改变?
答:水冷却塔是一种混合式换热器。从空气冷却塔来的温 度较高的冷却水(35℃左右),从顶部喷淋向下流动,污氮 气(27℃-左右)自下而上的流动,二者直接接触,既传热又 传质,是一个比较复杂的换热过程。一方面由于水的温度 高于污氮的温度,就有热量直接从水传给污氮,使水得到 冷却;另一方面,由于污氮比较干燥,相对湿度只有30% 左右,所以水的分子能不断蒸发、扩散到污氮中去。而水 蒸发需要吸收汽化潜热,从水中带走热量,就使得水的温 度不断降低。这种现象犹如一杯热开水放在空气中冷却一 样,热开水和空气接触,一方面将热量直接(或通过容器 壁)传给空气,另一方面又在冒汽,将水的分子蒸发扩散 到空气中而带走热量(汽化潜热),使热开水不断降温,得 以冷却。必须指出:污氮吸湿是使水降温的主要因素,因 此污氮的相对湿度是影响冷却效果的关键。这也是为什么 有可能出现冷却水出口温度低于污氮进口温度的原因。
空冷系统流程图
主要技术参数
①空气出空冷塔温度7℃—17℃ ②空冷塔水位正常值1100mm—1200mm。 ③水冷塔水位正常值900mm—1600mm。 ④空气出空冷塔压力>0.42MPa。 >0.42MPa
报警连锁
①空气出空冷塔压力过低(<0.038MPa)或空 冷塔水位过高(>1800mm)会连锁停四个水 泵并开空压机放空阀。 ②水冷塔液位过低(<500mm)连锁停低温水 泵。 ③水泵停转连锁关V1107。
空气预冷系统
空分装置设置空冷系统的原因
在现代空分设备空压机出口端设置空气预 冷系统主要考虑到以下因素: ① 增加节流效应,减小膨胀量,减少产品能 耗。 ② 减少换热器的热负荷。 降低空气温度和含水量。 ④ 除去空气中的大部分水溶性有害物质如 NH₃、HCl、SO₂、NO₂等。
空冷系统的组成
空冷系统主要由空气冷却塔、水冷塔、水泵 三部分组成,系统原理如图
空冷系统工作原理
由箱内的反流污氮除满足分子筛所需外其余均 由水冷塔底部进入,由下至上穿过水冷塔的塔板 或填料,与向下喷淋的常温水利用污氮的不饱和 性进行热质交换,污氮被增湿至近饱和状态排入 大气,同时由顶部进入的常温水被污氮冷却并部 分蒸发,带走大量气化潜热降温从水冷塔底部排 出,由低温泵打入空冷塔上部,经压缩后的高温 空气进入冷却塔下部,由下而上依次与常温水与 冷却水接触进行热质交换,达到冷却的目的,并 除去NH₃、HCl、SO₂、NO₂等水溶性有害物质。
二,水冷却塔中污氮是怎样把水冷 却的?
答:对低压空分装置,从空压机排出的压缩空 气的绝对压力在0.6MPa左右。空气经压缩后, 单位体积内的含水量增加,使其水分含量达到 当时温度对应的饱和含量。空气在流经空气冷 却塔时,随着温度的降低,相应的饱和水分含 量减少,超过部分就会以液体状态从气中析出。 这部分水蒸气凝结成水,同时放出冷凝潜热, 不仅使冷却水量增加,而且水温也会有所升高。 但空气出塔温度是降低的,因此,空气在冷却 塔中,虽然与水直接接触,但水分含量反而会 减少。