第二章有理数及其运算单元测试卷
第二章有理数及其运算测试题
1第二章有理数及其运算单元测试班级 姓名一、填空题:(每空1分,共30分)1、在地图上,某市的气温表明为“2~-3°C ”表示该市的最高温度是 ,最低温度是 。
2、-3的相反数是 ,-3倒数是 ,-3的绝对值是 。
3、从数轴上看,一个数的绝对值就是表示这个数的点离开原点的______;4、若7=x ,则x =______;若,a a = 则a _____0;若=-=m m m 那么,______;5、比较大小:32- 43-。
6、最大的负整数是 ,最小的正整数是 。
7、在数轴上,与表示-2的点的距离为3的数为 。
8、一个数的平方是9,则这个数是 。
9、14-表示______与______的和;10、=--21 ,223-= ,2(23)-= ,223--= 。
11、和它的立方相等的数有 、 、 。
12、A 地海拔高度为53-米,B 地比A 地高30米,B 地的海拔高度是 。
13、点a, b 的位置如图,则a + b 0,-a + b 0 ;(填“<”或“>”)14、绝对值大于2而小于5的所有数是______________。
15、若1a a =,则a = 。
16、若1||a a =-,则a 0(填“<”或“>”) 17、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a*b = b a 23-。
小明计算出2*5=-4,请你帮小刚计算2*(-5)= 。
二、选择题(每小题2,共20分)1、在下列说法中,正确的个数是( )⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、42、下列说法正确的是( )A 、正数与负数统称为有理数B 、带负号的数是负数C 、正数一定大于0D 、最大的负数是-13、在数轴上,原点两旁与原点等距离的两点所表示的数的关系是( )A 、相等B 、互为相反数C 、互为倒数D 、不能确定4、如果一个数的相反数比它本身大,那么这个数为( )A 、正数B 、负数C 、整数D 、不等于零的有理数2 5、在有理数中,倒数等于本身的数有( )A 、1个B 、2个C 、3个D 、无数个6、关于“0”下面说法正确的个数是( )(1)是整数,也是有理数。
北师大版(2024版)七年级上册数学 第2章 有理数及其运算单元测试卷 ( 含答案)
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(带答案)
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(带答案)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. −7步C. +12步D. −2步2.小亮去帮爸爸超市买面粉,他发现一种面粉的质量标识为“(25±0.25)千克”,则下列面粉中合格的是( )A. 24.70千克B. 24.80千克C. 25.30千克D. 25.51千克3.北京与巴黎的时差为7小时,小丽和小红分别在北京和巴黎,她们相约在各自当地时间7:00~17:00之间选择一个时刻开始通话,这个时刻可以选择巴黎时间( )A. 14:00B. 15:30C. 9:00D. 10:304.在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2023次,蚂蚁最后在数轴上对应的数是( )A. 1012B. −1012C. 2023D. −20235.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=−2,那么,原点应是点( )A. PB. QC. SD. T6.在数轴上与—2的距离等于4的点表示的数是( )A. 2B. —6C. 2或—6D. 无数个7.如图,四个有理数m、n、p、q在数轴上对应的点分别为M、N、P、Q,若n+q=0,则m、n、p、q四个数中负数有个.( )A. 1B. 2C. 3D. 48.若|a−3|+|2−b|=0,则a2+b2的值为( )A. 12B. 13C. 14D. 159.下列说法中正确的( )A. 有理数的绝对值一定是正数B. 如果|a|=|b|,那么a=bC. 如果a>0,那么|a|=aD. 如果|a|=a,那么a>010.如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a,b,c分别表示其中的一个数,则a−b+c的值为( )A. −1B. 0C. 1D. 311.计算(−2)100+(−2)99的结果是( )A. 2B. −2C. −299D. 29912.地球绕太阳公转的轨道半径约是149000000千米,用科学记数法表示这个数为( )A. 149×106B. 1.49×108C. 0.149×109D. 1.49×109二、填空题(本大题共8小题,共24分)13.某种零件,标明要求是φ:(10±0.03)mm(φ表示直径,单位:mm),经检查,一个零件的直径是9.98mm,该零件______ (填“合格”或“不合格”).14.数轴上点A表示的数是3,若将点A向右移动2单位,再向左移动8个单位到点B,则点B表示的数是________。
第二章 有理数及其运算(单元测试)(考试版)
第2章有理数及其运算(单元重点综合测试)时间:120分分数:120分一、单项选择题(每题3分,共12题,共计36分)1.(2022•怀化)﹣的相反数是( )A.B.2C.﹣2D.﹣2.(2022秋•礼县月考)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A.5×109千克B.50×109千克C.5×1010千克D.0.5×1011千克3.(2022秋•江都区校级月考)如果|a|=﹣a,下列成立的是( )A.a>0B.a<0C.a≥0D.a≤04.(2022秋•思明区校级月考)若x的相反数是3,|y|=5,则x+y的值为( )A.﹣8B.2C.8或﹣2D.﹣8或25.(2022秋•忠县校级月考)有理数a、b在数轴上的对应的位置如图所示,则( )A.a+b<0B.a+b>0C.a﹣b=0D.a﹣b>06.(2022秋•港闸区校级月考)下列各组数中,互为相反数的是( )A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|7.(2022秋•景县校级月考)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A.0.8kg B.0.6kg C.0.5kg D.0.4kg8.(2021秋•砚山县期末)若|m﹣3|+(n+2)2=0,则m+2n的值为( )A.﹣4B.﹣1C.0D.49.(2022秋•临沭县校级月考)把﹣6﹣(+7)+(﹣2)﹣(﹣9)写成省略加号和括号的形式后的式子是( )A.﹣6﹣7+2﹣9B.﹣6+7﹣2﹣9C.﹣6﹣7﹣2+9D.﹣6+7﹣2+910.(2022秋•平潭县校级期中)若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为( )A.B.99!C.9900D.2!11.(2021秋•荔城区期末)若a<0,则2a+5|a|等于( )A.3a B.﹣3a C.7a D.﹣7a12.(2022秋•启东市校级月考)把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是( )A.﹣7B.﹣1C.5D.11二、填空题(每题2分,共6题,共计12分)13.(2021秋•丹棱县期末)用“>”或“<”符号填空:﹣7 ﹣9.14.(2022秋•临沭县校级月考)若0<a<1,则a,a2,的大小关系是 .15.(2022秋•沭阳县校级月考)在数轴上与﹣3的距离等于4的点表示的数是 .16.(2022秋•九龙坡区校级月考)定义a※b=a2﹣b,则(1※2)※3= .17.(2022秋•北仑区期中)喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如图所示,这样捏合到第 次后可拉出128根面条.18.(2022秋•肥东县校级月考)若三个非零有理数a,b,c满足++=1,则= .三、综合题(共8题,共计72分)19.(8分)(2022秋•紫金县期中)把下列各数分类,并填在表示相应集合的大括号内:﹣11,,﹣9,0,+12,﹣6.4,﹣π,﹣4%.(1)整数集合:{ …};(2)分数集合:{ …};(3)非负整数集合:{ …};(4)负有理数集合:{ …}.20.(8分)(2022秋•常宁市期末)计算:(1)﹣21+17﹣(﹣13)(2)﹣14﹣6÷(﹣2)×(﹣)221.(8分)(2022秋•临沭县校级月考)把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,1,﹣3,﹣(﹣0.5),﹣|﹣|,+(﹣4).22.(8分)(2022秋•岳阳楼区月考)宜宾叙州区水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+50、﹣45、﹣33、+48、﹣49、﹣36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.23.(10分)(2022秋•麒麟区校级期末)以48.0千克为标准体重测量7名学生的体重,把超过标准体重的千克数记为正数,不足的千克数记为负数,将其体重记录如下表:学生1234567与标准体重之差(千克)﹣2.8+1.7+0.8﹣0.5﹣0.2+1.2+0.5(1)最接近标准体重的是 学生(填序号).(2)最大体重与最小体重相差 千克.(3)求7名学生的平均体重.24.(10分)(2022秋•旌阳区校级月考)观察下列三行数并按规律填空:﹣1,2,﹣3,4,﹣5, , ,…;1,4,9,16,25, , ,…;0,3,8,15,24, , ,…(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3)取每行数的第10个数,计算这三个数的和.25.(10分)(2022秋•德城区校级月考)如图,某快递员要从公司点A出发,前往B、C、D 等地派发包裹,规定:向上向右走为正,向下向左走为负,并且行走方向顺序为先左右再上下.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,请根据如图完成如下问题:(1)A→C( , ),B→D( , ),C→D(+1, );(2)若快递员的行走路线为A→B→C→D,请计算该快递员走过的路程;(3)若快递员从A处去某P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.26.(10分)(2022秋•南海区校级月考)(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离= ;B,C两点间距离= ;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离= ;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问:①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?。
《第2章 有理数及其运算》单元测试卷
《第2章 有理数及其运算》一、选择题.(每题3分)1.(3分)算式2+5﹣8等于( ) A .﹣1 B . 1C . ﹣5 D . 52.(3分)把6﹣(+3)﹣(﹣7)+(﹣2)写成省略括号的形式应是( )A .﹣6﹣3+7﹣2B . 6﹣3﹣7﹣2C . 6﹣3+7﹣2D .6+3﹣7﹣23.下列算式和为4的是( ) A .(﹣2)+(﹣1)B .(﹣)﹣(﹣)+2C .0.125+(﹣)﹣(﹣4)D . ﹣ 4.﹣6的相反数与比4的相反数小1的数的和是( ) A .11B .1C .2D . ﹣115.﹣6的绝对值减去4的相反数再加上﹣7,结果为( ) A . 3 B . ﹣3 C . ﹣5 D . 56.若a 是有理数,则|a|+a 必定是( ) A . 非负数 B . 非正数 C . 正数 D . 负数7.计算(2﹣3)+(﹣1)的结果是( ) A . ﹣2 B . 0 C . 1 D . 2二、填空题(每题3分)8.﹣15﹣6可以看成是﹣15减去6,也可以看成 _________ 的和.9.一飞机飞行表演,先上升3.2km ,又下降2.5km ,最后上升1.5km ,此时,飞机比最初点高了 __km .10.某银行柜台一段时间内受理了7项业务:支出9.5万元,存入5万元,支出8万元,存入12万元,支出25万元,支出0.5万元,存入1.5万元.这时银行现金情况是 ______ 万元.11.今年元月份小靓的爸爸到建设银行开户,存入了2000元钱,以后的每月根据家里的收支情况存入一根据记录可知,从二月份到七月份中 月份存入的钱最多; 月份存入的钱最少;截止到七月份,存折上共有 元. 三、解答题12.计算:(1);(2).(3)请用折线统计图表示该周5天的气温变化情况.14.钟表上有1,2,3,…,12,共12个数字,在某些数前面添上“一”,使它们的和为0.《第2章有理数及其运算》答案一、1、A;2、C;3、C;4、B;5、A;6、A;7、A;二、8.﹣15与﹣6.9. 2.210.支出24.511.5,312750.三、解答题12.解:(1)原式=(﹣1﹣8﹣3﹣﹣﹣)+11=﹣13+11=﹣2;(2)原式=﹣2﹣3+1+(﹣﹣﹣+)=﹣4﹣﹣=﹣4.13.解:(1)5月22日最高气温是26+2﹣3+6=31(℃);(2)∵20日的最高气温为:26+2=28,21日的最高气温为:28﹣3=25,22日的最高气温为:31,23日的最高气温为:31﹣5=26,24日的最高气温为:26﹣4=22,∴22日的气温最高是31℃;(3)以19日的最高气温为零点,如图所示:14.钟表上有1,2,3,…,12,共12个数字,在某些数前面添上“一”,使它们的和为0.。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.若海平面以上500米,记作+500米,则海平面以下100米可记作( )A .100米B .-100米C .500米D .-500米2.已知x y ,为有理数,如果规定一种运算“*”,*1x y xy =+则()()2*5*3-的值是( )A .30-B .29-C .33-D .32-3.下列各组数中,互为相反数的是( )A .3与13-B .()2--与2C .25-与()25-D .7与7-4.据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442 × 107B .0.1442 × 107C .1.442 × 108D .1442 × 1045.下列说法:①若a b =﹣1,则a 、b 互为相反数;①若a+b <0,且b a>0,则|a+2b|=﹣a ﹣2b ;①一个数的立方是它本身,则这个数为0或1;①若﹣1<a <0,则a 2>﹣1a;①若a+b+c <0,ab >0,c >0,则|﹣a|=﹣a ,其中正确的个数是( )A .2个B .3个C .4个D .5个 6.平面展开图按虚线折叠成正方体后,相对两个面上的数互为相反数,则x 、y 的值为( )A .2,3B .-2,-3C .-1,-3D .-1,-27.下列各组数中,运算结果相等的是( )A .22()3与223 B .﹣22与(﹣2)2C .﹣(﹣5)3与(﹣5)3D .﹣(﹣1)2015与(﹣1)2016 8.下列说法中正确的是( )A .两个有理数,绝对值大的反而小B .两个有理数的和为正数,则至少有一个加数为正数C .三个负数相乘,积为正数D .1的倒数是1,0的倒数是09.第十四届中国(合肥)国际园林博览会在合肥骆岗中央公园举办,该公园占地面积12.7平方公里,是世界最大的城市中央公园.2023年中秋、国庆八天假期,接待总游客突破225万人,创造了历史记录.其中225万用科学记数法表示为( )A .62.2510⨯B .72.2510⨯C .52.2510⨯D .422510⨯10.下列说法正确的是( )A .如果0x =,那么x 一定是0B .如果3x =,那么x 一定是3C .3和8之间有4个正数D .1-和0之间没有负数了11.用四舍五入法按要求把2.05446取近似值,其中错误的是 ( )A .2.1(精确到0.1)B .2.05(精确到百分位)C .2.05(保留2个有效数字)D .2.054(精确到0.001)12.比1小2的数是( )A .2B .﹣2C .﹣1D .﹣2二、填空题13.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为 . 14.79-的绝对值是 .15.已知|x+2|=1,则x=16.在247⎛⎫- ⎪⎝⎭中,底数是 ,指数是 ,乘方的结果为 . 17.下列7个数:47-,1.01001001与4333,0,-π,-6.9,0.12,其中分数有 个.三、解答题18.已知算式“()1825--⨯-”.(1)聪聪将数字“5”抄错了,所得结果为24-,则聪聪把“5”错写成了______;(2)慧慧不小心把运算符号“×”错看成了“+”,求慧慧的计算结果比原题的正确结果大多少?19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣22,2,﹣1.5,0,|﹣3|和132.20.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况: 星期一 二 三 四 五 六 日 苹果销售超过或不足计划量情况(单位:千克) 4+ 6- 4- 10+ 8- 12+ 6+(1)小王第一周实际销售苹果超过或不足多少千克?实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为0.06升/千米,油价为7.5元/升,这天下午共需支付多少油钱?22.小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,+-+-+--++-+他这天下午行车里程(单位:千米)如下:14,3,7,3,11,4,3,11,6,7,9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b 且a 、b 满足240a b +-=,现同时将点A 、B 分别向右平移2个单位,再向上平移3个单位,得到点A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)请直接写出以下各点的坐标:A (____,____);B (____,____);C (____,____);D (____,____);(2)若点M 在x 轴上,且三角形ACM 的面积是平行四边形ABDC 面积的13,求M 点的坐标; (3)点Q 在线段CD 上,点P 是线段BD 上的一个动点,连接PQ 、PQ ,当点P 在线段BD 上移动时(不与点D 、B 重合),请找出AOP ∠、OPQ ∠和PQC ∠的数量关系,并证明你的结论.24.两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“1+1 ”.如633=+,1257=+等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= + ,或者42= + . 你是否有更大的发现:把42写成4个奇素数之和?42= + + + .参考答案1.B2.D3.C4.A5.B6.C7.D8.B9.A10.A11.C12.C13.71.15810⨯14.7915.-1或-316. - 472 1649 17.5/五18.(1)6(2)慧慧的计算结果比原题的正确结果大1119.212 1.502332-<-<<<-< 20.(1)超过14千克,实际销售苹果的总量为714千克;(2)利润一共为2142元.21.(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费38.25元22.(1)在下午出车点的东边38千米(2)78千米;(3)7.8升23.(1)2- ;0 ;4;0;0;3;6;3(2)()6,0-或()2,0(3)360PQC AOP OPQ +∠+∠=︒∠24.5,37;11,31;5,5,13,19。
北师大版七年级数学上册《第二章有理数及其运算》单元检测卷-附答案
北师大版七年级数学上册《第二章有理数及其运算》单元检测卷-附答案时间:90分钟 满分:120分学校:___________班级:___________姓名:___________考号:___________一、选择题(每题3分,共30分)1.若零下2摄氏度记为-2 ℃,则零上2摄氏度记为( )A .-2 ℃B .0 ℃C .+2 ℃D .+4 ℃2.[2023淄博]-|-3|的运算结果等于( )A .3B .-3C .13D .-133. [2023遂宁]已知算式5□(-5)的值为0,则“□”内应填入的运算符号为( )A .+B .-C .×D .÷4.[真实情境题 航天科技]2024年5月3日,在文昌航天发射场,我国用长征五号遥八运载火箭成功发射了嫦娥六号探测器.已知月球与地球之间的平均距离约为384 400 km ,数据384 400用科学记数法表示为( ) A .3.844×106B .3.844×105C .3.844×105D .3.844×1065.[2024天津一中模拟]计算314+(-235)+534+(-825)时,运用运算律最为恰当的是( )A .[314+(-235)]+[534+(-825)] B .(314+534)+[(-235)+(-825)] C .[314+(-825)]+[(-235)+534]D .以上都不对6.在数轴上,位于-2.9和2.1之间的点表示的整数有( )A .5个B .4个C .3个D .无数个7.下列说法正确的是( )A .近似数4.0精确到十分位B .近似数2.68×105精确到百分位C .近似数3.1万精确到十分位D .近似数7900精确到百位8.[新视角 新定义题]a 为有理数,定义运算符号“※”:当a >-2时,※a =-a ;当a <-2时,※a =a ;当a =-2时,※a =0,根据这种运算,则※[4+※(2-5)]的值为( ) A .1B .-1C .7D .-79.[新趋势 跨学科 2024 济宁期末]计算机利用的是二进制数,它共有两个数码0,1.将一个十进制数转化为二进制,只需把该数写成若干个2n 数的和,依次写出1或0即可.如19(10)=16+2+1=1×24+0×23+0×22+1×21+1=10011(2)为二进制下的5位数,则十进制数1025是二进制下的( ) A .10位数B .11位数C .12位数D .13位数10.[新视角 规律探究题 教材P62习题T8变式]一根100 m 长的绳子,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14,…如此下去,直到截去剩下的1100,则剩下的绳子长为( ) A .12 mB .1 mC .2 mD .4 m二、填空题(每题3分,共24分)11.把(-1)-(-3)+(-5)-(+6)改写成省略括号和加号的形式为 . 12.[2023永州]-0.5,3,-2三个数中,最小的数为 .13.[新视角 结论开放题]“24点”的游戏规则是:任抽四个数,用加、减、乘、除四则运算列一个算式,使得计算结果为24.小明抽到的四个数分别是3,4,5,-8,请列出符合要求的算式: .14.[教材P 29例4变式]如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是 .15.[2024苏州吴中区二模]若x 的相反数是-3,|y |=5,则x +y 的值为 .16.[新考法 程序计算法]如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为 .17.[新视角 新定义题]定义:如果2m =n (m ,n 为正数),那么我们把m 叫作n 的D 数,记作m =D (n ).根据所学知识,试计算:D (16)= .18.[情境题 生活应用]若一杯拿铁成本是7元,卖17元,某顾客买了一杯拿铁,给了售货员一张50元纸币,售货员没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后售货员又赔了邻居50元,则售货员一共亏了 元.三、解答题(19,24题每题12分,20题16分,21题8分,其余每题9分,共66分) 19.(1)[教材P 25随堂练习T 2变式]把下列各数填入相应的集合中: -(-2.5),(-1)2,-|-2|,-22,0,-12.整数集合:{ …}; 分数集合:{…};正有理数集合:{ …}; 负有理数集合:{…}.(2)[教材P 30随堂练习T 1变式]把表示上面各数的点标在数轴上,再按从小到大的顺序,用“<”把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|; (2)-49-(-118)+(-18)-59;(3)23×(1-14-16)×1.5; (4)-42÷(-2)3-(-1)2 025-49÷23.21.[2024宁波东海实验学校模拟]为了参加校级航模比赛,某班航模兴趣小组周末在学校操场进行训练,其中一次飞机模型离地面高度达到0.5米后,记录了连续四次升降情况如下表:高度变化上升5.5米下降2.8米上升1.5米下降1.7米记作+5.5米-2.8米米米(1)完成上表.(2)飞机模型连续完成上述四个升降动作后,离地面的高度是多少米?22.如图,数轴上点A,B到表示-2的点的距离都为6,C,D两点分别从原点、B点同时向A点移动,且点C移动速度为每秒2个单位长度,点D移动速度为每秒3个单位长度.(1)直接写出点A,B表示的数;(2)当移动1秒时,求点C与点D之间的距离.23.[情境题生产监督教材P46习题T16变式]某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差/g -6 -2 0 1 3 4 袋数 1 4 3 4 5 3(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该食品的合格标准为450 g±5 g,求该食品抽样检测的合格率.24.[新视角动点探究题]如图,已知数轴上有A,B,C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.若用PA,PB,PC分别表示点P与点A、点B、点C之间的距离,试回答以下问题.(1)当点P运动10秒时,PA=,PB=,PC=;(2)当点P运动了t秒时,PA=,PB=,PC=;(用含t的代数式表示)(3)经过几秒后,点P到点A、点C的距离相等?此时点P表示的数是多少?(4)当点P运动到点B时,点Q从点A出发,以每秒3个单位长度的速度向点C运动,点Q到达点C后,再立即以同样速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为4个单位长度?如果能,请写出点P表示的数;如果不能,请说明理由.参考答案一、1. C2. B3. A4. B5. B6. A7. A8. B9. B10. B二、11.-1+3-5-612.-213.(3+5)×4-8=24(答案不唯一)14.315.8或-216.-217.418.40三、19.解:(1)整数集合:{(-1)2,-|-2|,-22,0,…};,…};分数集合:{-(-2.5),-12正有理数集合:{-(-2.5),(-1)2,…};负有理数集合:{-|-2|,-22,-1,…}.2(2)在数轴上标数略.<0<(-1)2<-(-2.5).-22<-|-2|<-1220.(1)10(2)0(3)7(4)7321.解:(1)+1.5;-1.7(2)0.5+5.5-2.8+1.5-1.7=3(米).所以飞机模型连续完成上述四个升降动作后,离地面的高度是3米.22.解:(1)点A表示的数为-8,点B表示的数为4.(2)当移动1秒时,点C运动到表示-2的点处,点D运动到表示1的点处此时点C与点D之间的距离为3.23.解:(1)450×20+(-6)+(-2)×4+1×4+3×5+4×3=9 017(g).所以抽样检测的20袋食品的总质量为9 017 g.×100%=95%.(2)4+3+4+5+320所以该食品抽样检测的合格率为95%.24.解:(1)10;4;24(2)t;|-14+t|;|-34+t|(3)由题易得t=|-34+t|,解得t=17此时-24+17=-7.所以经过17秒后,点P到点A,点C的距离相等,此时点P表示的数为-7.(4)能.设经过x秒后P,Q两点之间的距离为4个单位长度,点P运动到点C需要[10-(-10)]÷1=20(秒).①当点Q未到达点C时,如图.此时AQ=3x,BP=x则点Q表示的数为-24+3x,点P表示的数为-10+x则PQ=|-10+x-(-24+3x)|=|14-2x|=4即14-2x=4或14-2x=-4解得x=5或x=9所以点P表示的数为-5或-1.②当点Q从点C返回时,如图.此时AQ=AC-QC=|34-(3x-34)|=|68-3x|,BP=x则点Q表示的数为-24+68-3x=-3x+44,点P表示的数为-10+x则PQ=|-10+x-(-3x+44)|=|4x-54|=4即4x-54=4或4x-54=-4解得x=14.5或x=12.5所以点P表示的数为4.5或12.5.综上所述,点P表示的数为-5,-1,2.5或4.5.。
第二章有理数及其运算单元测试卷
第二章《有理数及其运算》单元测试题(必答题100 分)一、选择题(每题 3 分,共 30 分)1、以下说法正确的选项是 ()A 、一个数前方加上“-”号这个数就是负数;B、非负数就是正数;C、正数和负数统称为有理数D、 0 既不是正数也不是负数;2.以下计算正确的选项是 ()A、(-4)2=-16B、(-3)4=-34C、(- 1)31D、(-1)4-4 5125333、假如两个数的绝对值相等,那么这两个数是 ()A、互为相反数B、相等C、积为 0D、互为相反数或相等、若0<a<1,则 a,1a2从小到大摆列正确的选项是()aA、a2<a< 1B、a <1< a2C、1<a< a2D、 a < a2 <1a a a a5、在数轴上距 2.5 有 3.5 个单位长度的点所表示的数是 ()A、6B、-6C、-1D、-1 或 66、以下图, A、B 两点所对的数分别为a、b,则 AB的距离为()A、 a-bB、 a+bC、b-aD、-a-b A Ba0b7、数 6,-1 , 15,-3 中,任取三个不一样的数相加,此中和最小的是()A、-3B、-1C、3D、28. 以下各组数中,相互反数的是( )A.2和1B .-2和-1C.-2和|-2| D.2 和-(-2) 229,.A 为数轴上表示- 1 的点,将 A 点沿数轴向左挪动 2 个单位长度到 B 点,则 B 点所表示的数为()A. 3B.1C.-3D.1 或- 310、一个数的倒数是它自己的数是()A、1B、-1C、± 1D、0二、填空题(每题 3 分,共 30 分)1、假如盈利 15 万元记作 +15 万元,那么损失 6 万元记作;2、某地某天的最高气温为5℃,最低气温为 -3 ℃,这日的温差是℃。
3、在数轴上与表示 -1 的点相距 4 个单位长度的点表示的数是。
4、察看以下数: -2 ,-1 , 2,1,-2 ,-1 ,从左侧第一个数算起,第99 个数是。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。
第二章 有理数及其运算 单元测试题
第二章有理数及其运算单元测试题一、选择题(共10 小题,每小题 3 分,共30 分)1.规定电梯上升为“+”,那么电梯上升米表示()A.电梯下降米B.电梯上升米C.电梯上升米D.电梯没有动2.计算的结果是()A. B.C. D.3.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()4.在数轴上与的距离等于个单位的点表示的数是()A.和B.C.D.5. 下列说法正确的是()A.正负号相反的两个数互为相反数B.数轴上原点两侧的两个点所表示的数是互为相反数C.相反数和我们以前学过的倒数是一样的D.只有正负号不同的两个数称互为相反数,零的相反数是零10.若一个数的绝对值的相反数是,则这个数是()A. B. C. D.或二、填空题(共5 小题,每小题 3 分,共15 分)11.比较大小:________填写或.12.已知,则________.13.如果、互为倒数,、互为相反数,则________.15.规定新运算:a※b=2a+3b﹣1,则3※(2※1)=.一、选择题答案二、填空题答案11.__________ 12.______________ 13.___________ 14.______________ 15.___________)()()(51-5-13⨯÷)()()()(4-3-52.1-2⨯⨯⨯)()())((4-23-132-1+++++213-三、解答题(共55 分 ) 16.计算(15分)17.(5分)把数3,-1.5,,0,2.5,-4.在数轴上表示出来,然后用“<”把它们连接起来.18.(8分)一种游戏规则如下: ①每人每次取张卡片,如果抽到的卡片形如那么加上卡片上的数字;如果抽到的卡片形如那么减去卡片上的数字;②若规定从开始,比较两人所抽张卡片的计算结果,结果大的为胜者. 小明抽到如图①所示的张卡片,小丽抽到如图②所示的张卡片,请你通过计算(要求有具体的计算过程),指出本次游戏的获胜者.19.(8分) 一辆汽车沿着一条南北方向的公路来回行驶。
七年级(上)第二章有理数及其运算单元测试
第二章 有理数及其运算单元测试一、选择题(本大题共10小题,共30分):1、在–1,–2,1,2四个数中,最大的一个数是( )(A )–1 (B )–2 (C )1 (D )22、有理数31的相反数是( ) (A )31 (B )31- (C )3 (D ) –3 3、计算|2|-的值是( )(A )–2 (D )21- (C ) 21 (D )2 4、有理数–3的倒数是( )(A )–3 (B )31- (C )3 (D )31 5、计算:(+1)+(–2)等于( )(A )–l (B ) 1 (C )–3 (D )36、我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是( )(A )4101678⨯千瓦(B )61078.16⨯千瓦(C )710678.1⨯千瓦(D )8101678.0⨯千瓦7.下列各数中互为相反数的是( )A .12-与0.2B .13与-0.33C .-2.25与124D .5与-(-5) 8、一个数的平方等于16,则这个数为( )A 、8B 、-8C 、256D 、8±9.下列计算正确的是( )A 、-34=81B 、-(-6)2=36C 、43232-=- D 、1251)51(3=- 10、在-(-5),-(-5)2,-|-5|,(-5)3中负数有( )A 、0个B 、1个C 、2个D 、3个二、填空题:(本大题共10小题,共30分)11、如果向银行存入人民币20元记作+20元,那么从银行取出人民币32.2元记作________。
12、比较大小(填=,>,<号):-2_____0;98- _____109- ;–π________–3.14 13、一个数的倒数等于它的本身,这个数是_____________。
14、 在数轴上,若点A 与表示-2的点相距5个单位, 则点A 表示的数是15、某地某天的最高气温为5℃,最低气温为-3℃,这天的温差是 。
北师大版七年级上册数学《第2章有理数及其运算》单元测试卷【含答案】
北师大版七年级上册数学《第2章有理数及其运算》单元测试卷一.选择题1.已知上周五(周末不开市)股市指数以1700点报收,本周内股市的涨跌情况如下(正数表示比前一天上涨数,负数表示比前一天下跌数),则本周三股市指数是( )星期一二三四五股指变化情况/点+50﹣30+100﹣20+30A.120点B.100点C.1720点D.1820点2.如果向东走2km记作﹣2km,那么+3km表示( )A.向东走3km B.向南走3km C.向西走3km D.向北走3km 3.最小的正有理数是( )A.0B.1C.﹣1D.不存在4.|﹣3|的相反数是( )A.﹣3B.3C.D.﹣5.﹣3的相反数是( )A.±3B.3C.﹣3D.6.下列说法正确的是( )A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大7.在一条数轴上有A,B两点,其中点A表示的数是2x+2,点B表示的数是﹣x2,则这两点在数轴上的位置是( )A.A在B的左边B.A在B的右边C.A,B重合D.它们的位置关系与x的值有关8.一袋面粉的质量标识为“100±0.25千克”,则下列面粉质量中合格的是( )A.100.30千克B.99.51千克C.99.80千克D.100.70千克9.如图,若数轴上不重合的A、B两点到原点的距离相等,则点B所表示的数为( )A.3B.2C.1D.010.设m为一个有理数,则|m|﹣m一定是( )A.负数B.正数C.非负数D.非正数二.填空题11.如果数a与2互为相反数,那么a= .12.有理数a,b,c在数轴上的位置如图所示:试化简:|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|= .13.如果收入500元记作+500元,那么支出200元应记作 元.14.如果零上2℃记作+2℃,那么零下3℃记作 .15.某校举行“生活中的科学”知识竞赛,如将加20分记为+20分,则扣10分记为 分.16.在0.6,﹣0.4,,﹣0.25,0,2,﹣中,整数有 ,分数有 .17.在纸上画一个数轴,将纸对折后,若表示4的点与表示﹣3的点恰好重合,则此时数轴上折痕经过的点所表示的数是 .18.化简:﹣[+(﹣6)]= .19.若|x﹣2|+|y+3|=0,则x﹣y= .20.数轴上与表示﹣3的点的距离等于4的点表示的有理数是 .三.解答题21.某登山队3名队员,以1号位置为基地,开始向海拔距基地300m的顶峰冲击,设他们向上走为正,行程记录如下(单位:m):+150,﹣35,﹣42,﹣35,+128,﹣26,﹣5,+30,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,3名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?22.一辆出租车一天上午以某商场为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:km)如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.(1)将最后一名乘客送到目的地.相对于商场出租车的位置在哪里? .(2)这天上午出租车总共行驶了 km.(3)已知出租车每行驶1km耗油0.08L,每升汽油的售价为6.5元.如果不计其它成本,出租车司机每km收费2.5元,那么这半天出租车盈利(或亏损)了多少元?23.在互联网技术的影响下,幸福新村的村民小刘在网上销售苹果,原计划每天卖100千克,但实际每天的销量与计划销量相比有出入,如表是某周的销售情况(超额记为正,不足记为负.单位:千克):星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据表中的数据可知前三天共卖出 千克;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少千克?(3)若每千克按5元出售,每千克苹果的运费为1元,那么小刘本周一共收入多少元?24.把下列各数填在相应的括号里:﹣8,0.275,,0,﹣1.04,﹣(﹣3),﹣,|﹣2|正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.25.已知数轴上A,B,C三点分别表示有理数6,﹣8,x.(1)求线段AB的长.(2)求线段AB的中点D在数轴上表示的数.(3)在(2)的条件下,已知CD=8,求x的值.26.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?27.某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).学 生A B C D E F身 高157162159154163165身高与平均身高的差值﹣3+2﹣1a+3b(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)答案与试题解析一.选择题1.解:1700+50﹣30+100=1820(点)故选:D.2.解:∵向东走2km记作﹣2km,∴那么+3km表示向西走3km.故选:C.3.解:没有最小的正有理数,故选:D.4.解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.5.解:﹣3的相反数是3.故选:B.6.解:∵最小的正整数是1,∴选项A正确;∵负数的相反数一定比它本身大,0的相反数等于它本身,∴选项B不正确;∵绝对值等于它本身的数是正数或0,∴选项C不正确;∵一个非零数的绝对值比0大,0的绝对值等于0,∴选项D不正确.故选:A.7.解:∵2x+2﹣(﹣x2)=x2+2x+2=(x+1)2+1>0,∴A在B的右边.故选:B.8.解:“100±0.25千克”的意义为一袋面粉的质量在100﹣0.25=99.75千克与100+0.25=100.25千克之间均为合格的,故选:C.9.解:∵A、B两点到原点的距离相等,A为﹣2,则B为﹣2的相反数,即B表示2.故选:B.10.解:∵m为有理数,∴|m|≥0,当m>0,|m|﹣m=m﹣m=0;当m<0,|m|﹣m=﹣m﹣m=﹣2m>0;当m=0,|m|﹣m=0﹣0=0.综上所述,当m为有理数时,|m|﹣m一定是非负数.故选:C.二.填空题11.解:﹣2的相反数是2,那么a等于2.故答案是:﹣2.12.解:由数轴可知a+b<0,b﹣1<0,a﹣c<0,1﹣c>0,则:|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|=﹣(a+b)+(b﹣1)+(a﹣c)﹣(1﹣c)=﹣a﹣b+b﹣1+a﹣c﹣1+c=﹣2.13.解:“正”和“负”相对,所以,如果收入500元记作+500元,那么支出200元应记作﹣200元.14.解:∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故﹣3℃.15.解:将加20分记为+20分,则扣10分记为﹣10分,故﹣10.16.解:整数集合{0,2、﹣};分数集合{0.6,﹣0.4,,﹣0.25}.17.解:∵表示4的点与表示﹣3的点恰好重合,∴此时数轴上折痕经过的点所表示的数是×[4+(﹣3)]=;故.18.解:﹣[+(﹣6)]=﹣(﹣6)=6.故6.19.解:∵|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,解得:x=2,y=﹣3,故x﹣y=2﹣(﹣3)=5.故5.20.解:数轴上与﹣3距离等于4个单位的点有两个,从表示﹣3的点向左数4个单位是﹣7,从表示﹣3的点向右数4个单位是1.故数轴上与表示﹣3的点的距离等于4的点表示的有理数是1或﹣7.故1或﹣7.三.解答题21.解:(1)根据题意得:+150﹣35﹣42﹣35+128﹣26﹣5+30+75=240(米),300﹣240=60(米).答:他们没能最终登上顶峰,离顶峰还有60米;(2)根据题意得:150+35+42+35+128+26+5+30+75=526(米),526×0.04×3=63.12(升),答:他们共使用了氧气63.12升.22.解:(1)9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+10=0(km),所以将最后一名乘客送到目的地,出租车回到商场;故商场;(2)|+9|+|﹣3|+|﹣5|+|+4|+|﹣8|+|+6|+|﹣3|+|﹣6|+|﹣4|+|+10|=58(km),即这天上午出租车总共行驶了58km.故58;(3)58×2.5﹣58×0.08×6.5=114.84(元),答:这半天出租车盈利了114.84元.23.解:(1)300+4﹣3﹣5=296(千克).故前三天共卖出296千克;(2)21﹣(﹣8)=29(千克).故销售量最多的一天比销售量最少的一天多销售29千克;(3)+4﹣3﹣5+14﹣8+21﹣6=17>0,故本周实际销量达到了计划销量.(17+100×7)×(5﹣1)=717×4=2868(元).答:小刘本周一共收入2868元.故296.24.解:在﹣8,0.275,,0,﹣1.04,﹣(﹣3),﹣,|﹣2|中,正数有:0.275,,﹣(﹣3),|﹣2|;负整数有:﹣8;分数有:0.275,,﹣1.04,﹣;负数有:﹣8,﹣1.04,﹣.故0.275,,﹣(﹣3),|﹣2|;﹣8;0.275,,﹣1.04,﹣;﹣8,﹣1.04,﹣.25.解:(1)AB=6﹣(﹣8)=6+8=14;(2)∵D是AB的中点,∴D在数轴上表示的数为:=﹣1;(3)分两种情况:①点C在点A的右边,x﹣(﹣1)=8,x=7;②点C在点A的左边,﹣1﹣x=8,x=﹣9;所以x=7或﹣9.26.解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.27.解:(1)由题意:a=﹣6,b=+5;(2)由表格得到学生F165厘米最高,学生D154厘米最低;最高与最矮学生的身高相差:165﹣154=11cm,(3)6名学生的平均身高=160+=160cm,∴这6名学生的平均身高与全班学生的平均身高相同.。
第2章 有理数及其运算单元测试卷(解析卷)
中小学教育资源及组卷应用平台○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________第2章 有理数及其运算单元测试卷参考答案与试题解析一、选择题(共12小题,每小题3分,计36分)1.下列四个数中,是正整数的是( )A. ﹣ 1B. 0C.D. 1 解:A 、﹣1是负整数,不符合题意; B 、0是非正整数,不符合题意;C 、 是分数,不是整数,不符合题意;D 、1是正整数,符合题意. 故答案为:D .2.比-1小2的数是( )A. 3B. 1C. -2D. -3 解:比-1小2的数是:-1-2=-3. 故答案为:D.3.某地一天早晨的气温是-5℃,中午上升了10℃,午夜又下降了8℃,则午夜的气温是( ) A. -3℃ B. -5℃ C. 5℃ D. -9℃ 解:(-5)+10-8=5-8=-3(℃).答:午夜的气温是-3℃. 故答案为:A .4.的倒数是( )A.B. C. 5 D.解:∵(-5)×(- )=1,∴-5的倒数是- .故答案为:A .5.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,将这个数用科学记数法表示为( ) A.B.C.D.解: 用科学记数法表示为故答案为:C.6.2018的相反数是( )A. 2018B. ﹣2018C.D.解:因为2018与-2018只有符号不同,2018的相反数是-2018 故答案为:B.7.若数轴上点A 、B 分别表示数2、﹣2,则A 、B 两点之间的距离可表示为( ) A. 2+(﹣2) B. 2﹣(﹣2) C. (﹣2)+2 D. (﹣2)﹣2 解:A 、B 两点之间的距离可表示为:2﹣(﹣2). 故答案为:B .8.实数 , , 在数轴上的对应点的位置如图所示,则正确的结论是( )A. B.C. D.解:∵,∴,故A 不符合题意;数轴上表示 的点在表示 的点的左侧,故B 符合题意; ∵ , ,∴ ,故C 不符合题意; ∵,,,∴,故D 不符合题意.故答案为:B.9.计算-1 ÷(-3)×(-)的值为( )A. -1B. 1C. -D.解:-1÷(-3)×(-)=,故答案为:C10.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,则图中点C 对应的数是( )A. ﹣2B. 0C. 1D. 4解:∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3, 又∵BC=2,点C 在点B 的左边,…○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…○…………内…………○…………装…………○…………订…………○…………线…………○…………∴点C 对应的数是1, 故答案为:C .11.下列各组数中,运算结果相等的是( )A. 34和43B. -32和(-3)2C. -53和(-5)3D.和解:A. 34=81,43 =64,不相等,故不符合题意; B. -32=-9,(-3)2 =9,不相等,故不符合题意; C. -53=-125,(-5)3 =-125,相等,符合题意; D.=,=,不相等,故不符合题意,故答案为:C.12.下列命题是真命题的是( )A. 如果一个数的相反数等于这个数本身,那么这个数一定是0B. 如果一个数的倒数等于这个数本身,那么这个数一定是1C. 如果一个数的平方等于这个数本身,那么这个数一定是0D. 如果一个数的算术平方根等于这个数本身,那么这个数一定是0解:A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题; B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题; C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题; D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故答案为:A .二.填空题(共4小题,每小题3分,计12分)13.从数轴上表示的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是________。
第二章 有理数及其运算单元测试卷(解析版)
第二章 有理数及其运算单元测试卷一.选择题(共10小题)1.(2023•路桥区二模)2023年第一季度,浙江省全省创造了约1900000000000元的生产总值,排名哲时排名全国第四位.数据1900000000000用科学记数法表示为( )A .111.910´B .121.910´C .111910´D .130.1910´【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:数据1900000000000用科学记数法可以表示为121.910´.故选:B .2.(2023•抚松县模拟)下列各数中,最小的数是( )A .3-B .1-C .0D .3【分析】根据正数大于0,0大于负数,以及两个负数比较大小方法判断即可.【解答】解:3103-<-<<Q ,\最小的数为3-.故选:A .3.(2023•滨城区二模)2(2)3--的结果是( )A .7-B .1C .2-D .6【分析】先算乘方,再算减法.【解答】解:2(2)3--43=-1=.故选:B .4.(2023•新昌县模拟)|2023|(-= )A .2023B .2023-C .12023-D .12023【分析】根据负数的绝对值等于它的相反数,即可求解.【解答】解:|2023|(2023)2023-=--=.故选:A.5.(2023•乾县三模)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.6B.6-C.0D.1 6【分析】根据数轴表示和相反数的定义进行求解.【解答】解:6-Q的相反数是6,\点B表示的数为6,故选:A.6.(2023•兰溪市模拟)一条数轴上有点A、B,点C在线段AB上,其中点A、B表示的数分别是8-,6,现以点C为折点,将数轴向右对折,若点A¢落在射线CB上,并且4A B¢=,则C点表示的数是( )A.1B.1-C.1或2-D.1或3-【分析】设点C表示的数为x,分两种情况:A¢在线段CB的延长线上或线段CB上分别计算即可.【解答】解:设点C表示的数为x,当A¢在线段CB的延长线上时,4A B¢=Q,\点A¢表示的数为6410+=,AC A C=¢Q,(8)10x x\--=-,解得:1x=;当A¢在线段CB上时,4A B¢=Q,\点A¢表示的数为642-=,AC A C=¢Q,(8)2x x\--=-,解得:3x=-;故选:D.7.(2023•河北模拟)将122135222555´´´´´´´{{L L 个个的计算结果用科学记数法可表示为( )A .12510´B .13110´C .12210´D .13210´【分析】先计算出结果,再根据科学记数法的表示形式进行解答即可.【解答】解:Q 1212213512251522255525255510´´´´´´´´=´´¼´´´=´{{{{L L 个个个个,故选:A .8.(2023•南关区校级四模)中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作“50+元”,那么亏损30元,记作( )A .30+元B .20-元C .30-元D .20+元【分析】根据正负数来表示相反意义,盈利50元,记作“50+元”,亏损30元,则记作“30-元”即可求解.【解答】解:Q 盈利50元,记作“50+元”,\亏损30元,记作“30-元”.故选:C .9.(2023•河东区二模)如图,数轴上A ,C 位于B 的两侧,且2AB BC =,若点B 表示的数是1,点C 表示的数是3,则点A 表示的数是( )A .0B .2-C .3-D .1-【分析】求出AB 线段的长度,因为点A 表示的数小于点B ,点B 表示1,推理出点A 表示的数.【解答】解:Q 点B 表示的数是1,点C 表示的数是3,2BC \=,2AB BC =Q ,4AB \=,有数轴可知:点A 表示的数小于点B 表示的数,143\-=-,即点A 表示的数为3-,故选:C .10.(2023春•武昌区期末)将1,2,3,4,5,6,7,8,9,10这个10个自然数填到图中的10个格子里,每个格子中只填一个数,使得田字形的4个格子中所填数字之和都等于m .则m 的最大值是( )A .23B .24C .25D .26【分析】图形中有3个“田”字形,其中重叠的有两个小格,设对应的数为a ,b ,则与a 与b 均被加了两次,根据“田“字形的4个格子中所填数字之和都等于m ,其总和为3m 根据3个“田”字形所填数的总和为1234567891055a h a b +++++++++++=++,列出不等式,求整数解即可.【解答】解:设每个“田”字格四个数的和为m ,共12个数的和为3m ,有两数重复,设这两数分别为a ,b ,所以3个“田”字形所填数的总和为:1234567891055a b a b +++++++++++=++.则有355m a b =++,要m 最大,必须a 、b 最大,而a b +最大值为91019+=,则355910m ++…,则2243m <,则m 最大整数值为24,故选:B .二.填空题(共6小题)11.(2023春•芝罘区期中)如图,数轴上有A 、B 、C 三点,A 、B 两点表示的有理数是分别是2-和8,若将该数轴从点C 处折叠后,点A 和点B 恰好重合,那么点C 表示的有理数是 3 .??【分析】由题意得点C 是线段AB 的中点,再进行求解.【解答】解:由题意得点C 是线段AB 的中点,\点C 表示的有理数是:(28)2-+¸62=¸3=,故答案为:3.12.(2023春•秦淮区期中)若44222a +=,5553333b ++=,则a b -的值为 1- .【分析】根据乘方的定义(求几个相同因数或因式的积的一种运算)解决此题.【解答】解:44222a +=Q ,5553333b ++=,452222a \=´=,563333b =´=.5a \=,6b =.561a b \-=-=-.故答案为:1-.13.(2023春•平谷区期末)某校要举办秋季运动会,初一(2)班有四名同学分别想参与100m ,200m ,400m ,和800m 的比赛,其中甲同学擅长跑100m 和200m ,乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,丁同学最擅长跑100m .为了让班级取得好成绩,也让他们每个人都可以参加比赛,并且每人只能参加一项比赛,那么只能派 丙 参加400m 比赛.【分析】根据四名同学最擅长的项目分析即可得出答案.【解答】解:Q 甲同学擅长跑100m 和200m ,丁同学最擅长跑100m ,\让丁同学跑100m ,甲同学跑200m ,Q 乙同学擅长跑400m 和800m ,丙同学擅长跑100m 、200m 和400m ,\让乙同学跑800m ,丙同学跑400m ,故答案为:丙.14.(2023•甘州区校级模拟)ABC D 的三边长a ,b ,c 满足2|4|(2)0a b c +-+-=,则ABC D 的周长为 6 .【分析】直接利用非负数的性质得出a b +,c 的值,进而得出答案.【解答】解:2|4|(2)0a b c +-+-=Q ,40a b \+-=,20c -=,解得:4a b +=,2c =,ABC \D 的周长为:426a b c ++=+=.故答案为:6.15.(2023春•浦东新区期末)若|1|1a a -=-,则a 的取值范围是 1a … .【分析】根据||a a =-时,0a …,因此|3|3a a -=-,则30a -…,即可求得a 的取值范围.【解答】解:|1|1a a -=-Q ,10a \-…,解得:1a ….故答案为:1a ….16.(2023•随州)计算:2(2)(2)2-+-´= 0 .【分析】根据有理数的混合运算顺序,先计算乘方,再计算乘法,后计算加法即可.【解答】解:2(2)(2)2-+-´4(4)=+-0=.故答案为:0.三.解答题(共8小题)17.(2022秋•宝山区校级期末)计算:212.75136++.【分析】首先把小数化为分数,然后再通分,计算即可.【解答】解:原式32121436=++,98221121212=++,7412=.18.(2022秋•和平区校级期末)计算①111()24386-+´;②42211(2)(25(0.25326-¸-+´--.【分析】①根据乘法分配律计算即可;②先算乘方,再算乘除法,最后算加减法即可.【解答】解:①111(24386-+´111242424386=´-´+´834=-+9=;②42211(2)(25(0.25326-¸-+´--64111116()9264=¸+´--911116(64124=´+--27113()121212=+--1312=.19.(2023春•明水县期末)计算下面各题,能简便运算的要用简便方法算(1);(2);(3).【分析】(1)先算括号里的除法,然后括号外的乘法即可;(2)先变形,然后根据乘法分配律计算即可;(3)根据乘法分配律计算即可.【解答】解:(1)=×()=×=1×=;(2)=×88+×88=()×88=1×88=88;(3)=(27×+27×)×39=(+5)×39=×39+5×39=54+195=249.20.(2023春•海沧区期末)对有序数对(,)x y 定义“f 运算”: 11(,)(,)22f x y x a y b =-+,其中a ,b 为常数.(1)若(2f ,4)(1-=-,3),求a ,b 的值;(2)当4a =,3b =-时,有序数对(,)m n 经过“f 运算”后结果是(,)n c .若4m n …,求c 的最大值.【分析】(1)根据新定义“f 运算”,将(2f ,4)(1-=-,3)代入,解一元一次方程即可;(2)当4a =,3b =-,序数对(,)m n 代入“f 运算”得28m n =+,4m n …得c 的取值范围,进而作答.【解答】解:(1)Q 11(,)(,)22f x y x a y b =-+,(2f ,4)(1-=-,3),(2f \,14)(22a -=´-,14)2b -´+,11a \-=-,23b -+=,解得:2a =,5b =;(2)当4a =,3b =-时,(,)1(42x y f x =-,11)2y -,(,)1(42m n f m \=-,11)2n -,\142132m n n c ì-=ïïíï-=ïî①②,由①得:28m n =+,4m n Q …,284n n \+…,解得:4n …,\1312n --…,1c \-…,c \的最大值为1-.21.(2022秋•寻乌县期末)卓越中学为提高中学生身体素质,积极倡导“阳光体育”运动,开展一分钟跳绳比赛.七年级某班10名参赛代表成绩以160次为标准,超过的次数记为正数,不足的次数记为负数,成绩记录如下(单位:次):18+,1-,22+,2-,5-,12+,8-,1,8+,15+.(1)求该班参赛代表最好成绩与最差成绩相差多少?(2)求该班参赛代表一分钟平均每人跳绳多少次?(3)规定:每分钟跳绳次数为标准数量,不加分;超过标准数量,每多跳1个加1分;未达到标准数量,每少跳1个,扣0.5分,若班级跳绳总积分超过60分,便可得到学校的奖励,请通过计算说明该班能否得到学校奖励?【分析】(1)用记录中的最大数减去最小数即可;(2)根据平均数的意义,可得答案;(3)根据题意列式计算求出该班的总积分,再与60比较即可.【解答】解:(1)22(8)22830+--=+=(次),答:该班参赛代表最好成绩与最差成绩相差30次;(2)160(18122251281815)10+-+--+-+++¸1606010=+¸1606=+166=(次),答:该班参赛代表一分钟平均每人跳绳166次;(3)(1822121815)1(1258)0.5+++++´-+++´768=-68=(分),6860>,答:该班能得到学校奖励.22.(2022秋•徐闻县期末)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):5+,4-,3+,10-,3+,9-.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少千米;(2)若汽车耗油量为0.4升/千米,则这天上午小王的汽车共耗油多少升?【分析】(1)把记录的数字相加得到结果,即可做出判断;(2)求出各数绝对值之和,乘以0.4即可得到结果.【解答】解:(1)根据题意得:543103912+-+-+-=-(千米),则后一名老师送到目的时,小王距出租车出发点的距离是12千米;(2)根据题意得:0.4(5431039)13.6´+++++=(升),则这天上午小王的汽车共耗油13.6升.23.(2023春•长宁区期末)小明表演魔术,从一副除去大小王的扑克中请观众随机选择了4张牌,并让观众每次取其中三张牌,将牌面数字相加,牌面数字之和分别为18,24,25,26.小明立刻说出了观众随机选择的4张扑克牌面的数字.这4张牌牌面的数字都是几呢?你能尝试用数学原理去揭秘这个魔术吗?(A 表示1,J表示11,Q表示12,K表示13)【分析】设这4张牌牌面的数字分别为a,b,c,d,根据题意可得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,从而可得333318242526a b c d+++=+++,进而可得31a b c d+++=,然后分别进行计算,即可解答.【解答】解:设这4张牌牌面的数字分别为a,b,c,d,由题意得:18a b c++=,24a b d++=,25a c d++=,26b c d++=,333318242526a b c d\+++=+++,31a b c d\+++=,31()311813d a b c\=-++=-=,31()31247c a b d=-++=-=,31()31256b ac d=-++=-=,31()31265a b c d=-++=-=,\这4张牌牌面的数字分别为5,6,7,13.24.(2023春•南岗区期中)阅读下面材料,然后回答问题.计算12112 ()() 3031065 -¸-+-解法一:原式12111112 ()()()(3033010306305 =-¸--¸+-¸--¸1111203512 =-+-+16=.解法二:原式12112 ()[()()]3036105 =-¸-+-113()()30210 =-¸-1530=-´16=-.解法三:原式的倒数为21121 ()() 3106530-+-¸-2112()(30)31065=-+-´-2112(30)(30(30)(30) 31065=´--´-+´--´-203512=-+-+10=-故原式110=-.(1)上述得出的结果各不同,肯定有错误的解法,但是三种解法中有一种解法是正确的,请问:正确的解法是解法 解法三 ;(2)根据材料所给的正确方法,计算:11322 ((4261437-¸-+-.【分析】(1)上述得出的结果不同,肯定有错误的解法,我认为解法一和解法二是错误的.在正确的解法中,我认为解法三最简捷;(2)利用乘法分配律求出原式倒数的值,即可求出原式的值.【解答】解:(1)根据除法没有分配律可知解法一错误;根据加法的交换律可知,交换加数的位置时应连同符号一起交换,故解法二也错误;(2)Q13221 (() 6143742-+-¸-1322()(42)61437=-+-´-1322(42)(42)(42)(42) 61437=´--´-+´--´-792812 =-+-+14=-,\113221 ((426143714-¸-+-=-.。
2024年七年级数学上册《有理数及其运算》单元测试及答案解析
第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。
第二章《有理数及其运算》单元测试卷(含答案)
第二章有理数及其运算单元测试卷一、选择题(每小题3分,共30分) 1.-13的倒数的绝对值是( )A .-3B .13C .-13 D .32.检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是( )A .-2B .-3C .3D .5 3.在-12,0,-2,13,1这五个数中,最小的数为( )A .0B .-12C .-2D .134.下列说法中,正确的个数有( ) ①-3.14既是负数,又是小数,也是有理数; ②-25既是负数,又是整数,但不是自然数; ③0既不是正数也不是负数,但是整数; ④0是非负数.A .1个B .2个C .3个D .4个 5.下列运算结果正确的是( )A .-87×(-83)=7 221B .-2.68-7.42=-10C .3.77-7.11=-4.66D .-101102<-1021036.据中国电子商务研究中心监测数据显示,2018年第一季度中国轻纺城市场群的商品成交额达27 800 000 000元.将27 800 000 000用科学记数法表示为( )A .2.78×1010B .2.78×1011C .27.8×1010D .0.278×1011 7.一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是( )A .150元B .120元C .100元D .80元 8.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB =B C .如果|a |>|c |>|b |,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 9.式子⎝⎛⎭⎫12-310+25×4×25=⎝⎛⎭⎫12-310+25×100=50-30+40中运用的运算律是( ) A .乘法交换律及乘法结合律; B .乘法交换律及乘法对加法的分配律; C .加法结合律及乘法对加法的分配律; D .乘法结合律及乘法对加法的分配律 10.有理数a ,b 在数轴上的位置如图所示,下面结论正确的是( )A .b -a <0B .ab >0C .a +b >0D .|a |>|b | 二、填空题(每小题4分,共16分)11.-23的相反数是________,绝对值是________,倒数是________.12.在-1,0,-2这三个数中,最小的数是________.13.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价________万元.14.某程序如图所示,当输入x =5时,输出的值为 ________.输入x →平方→减去x →除以2→取相反数→输出三、解答题(本大题共6小题,共54分)15.(8分)画数轴,在数轴上表示下列各数,并用“<”把这些数的相反数连接起来:3,0,-|-2|,-52,1.5,-22.16.(8分)(1)13的相反数加上-27的绝对值,再加上-31的和是多少?(2)从-3中减去-712与-16的和,所得的差是多少?17.(10分)计算:(1)(-121.3)+(-78.5)-⎝⎛⎭⎫-812-(-121.3); (2)-12-[2-(-3)2]×⎪⎪⎪⎪15-13÷⎝⎛⎭⎫-110.18.(8分)一辆货车从超市出发送货,先向南行驶30 km 到达A 单位,继续向南行驶20 km 到达B 单位.回到超市后,又给向北15 km 处的C 单位送了3次货,然后回到超市休息.(1)C 单位离A 单位有多远? (2)该货车一共行驶了多少千米?19.(10分)已知a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,试求(a +b )÷108-e 2÷[(-cd )2 017-2]的值.20.(10分)2017年“十一”国庆假期间,万彬和温权听到各自的父母都将带他们去黄山旅游,他们听到后立即上网查资料,资料显示:高山气温一般每上升100 m,气温就下降0.8 ℃.10月2日上午10点,万彬在黄山顶,温权在黄山脚下.他们用手机通话,同时测出他们所在位置气温,分别是13.2 ℃和28.2 ℃,因而,他们就推算出这时候彼此所在地的海拔差.你知道他们是怎么算出的吗?他们的海拔差是多少?B卷(共50分)四、填空题(本大题共5个小题,每小题4分,共20分)21.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1 011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5,(1 011)2=1×23+0×22+1×21+1×20=11.按此方式,将二进制(1 001)2换算成十进制数的结果是_______.22.绝对值小于3的整数为__________,绝对值大于 3.2且小于7.5的负整数为________________.23.若|x|=4,|y|=5,则x-y的值为____________.24.将从1开始的连续自然数按以下规律排列:…则2 018在第_______行.25.若|m-2|+(n-2)2=0,则m n的值是______.五、解答题(本大题共3个小题,共30分)26.(10分)在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如: |6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7; 根据上面的规律,把下列各式写成去掉绝对值符号的形式: (1)|7-21|=_________; (2)⎪⎪⎪⎪-12+0.8=____________; (3)⎪⎪⎪⎪717-718=__________;(4)用合理的方法计算:⎪⎪⎪⎪15-12 018+|12 018-12|-12×⎪⎪⎪⎪-12+11 009.27.(10分)现定义两种运算:“⊕”“⊗”,对于任意两个整数a ,b ,a ⊕b =a +b -1,a ⊗b =a ×b -1,求4⊗[(6⊕8)⊕(3⊗5)]的值.28.(10分)下面是按一定规律排列的一列数: 第1个数:1-⎝⎛⎭⎫1+-12;第2个数:2-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤1+(-1)34;第3个数:3-⎝⎛⎭⎫1+-12⎝⎛⎭⎫1+(-1)23⎝⎛⎭⎫1+(-1)34⎝⎛⎭⎫1+(-1)45⎣⎡⎦⎤1+(-1)56. …(1)分别计算这三个数的结果(直接写答案);(2)写出第2 017个数的形式(中间部分用省略号,两端部分必须写详细),然后推测出结果.参考答案1. D2. A3. C4. D5. A6. A7. B8. C9. D 10. A 11.2323-3212. -2 13.9.9 14. -10 15. 解:如答图.它们的相反数分别为-3,0,2,52,-1.5,4,2分答图16. 解:(1)根据题意,得-13+||-27+(-31)=-17.(2)根据题意,得-3-⎣⎡⎦⎤-712+⎝⎛⎭⎫-16=-214. 17. 解:(1)原式=-121.3-78.5+8.5+121.3=(-121.3+121.3)+(-78.5+8.5) =-70(2)原式=-12-(2-9)×⎪⎪⎪⎪315-515÷⎝⎛⎭⎫-110 =-1-(-7)×215÷⎝⎛⎭⎫-110 =-1-1415×10=-1-283=-31318. 解:(1)规定超市为原点,向南为正,向北为负,1分依题意,得C 单位离A 单位有30+||-15=45(km),3分 ∴C 单位离A 单位45 km.4分(2)该货车一共行驶了(30+20)×2+||-15×6=190(km).7分答:该货车一共行驶了190 km.8分19. 解:因为a ,b 互为相反数,c ,d 互为倒数,e 的绝对值为3,所以a +b =0,cd =1,e =±3.4分所以原式=0÷108-(±3)2÷[(-1)2 017-2] =(-9)÷(-1-2)=(-9)÷(-3)=3. 20. 解:根据题意,得(28.2-13.2)÷0.8×100 =15×1.25×100 =1 875(m).答:他们的海拔差是1 875 m . 21.922. 0,±1,±2 -4,-5,-6,-7 23. ±1,±9【解析】∵|x |=4,∴x =±4.∵|y |=5,∴y =±5.当x =4,y =5时,x -y =-1; 当x =4,y =-5时,x -y =9; 当x =-4,y =5时,x -y =-9; 当x =-4,y =-5时,x -y =1.24.45【解析】∵442=1 936,452=2 025,∴2 018在第45行. 25.426.(1) 21-7 (2) 0.8-12 (3)717-718 (4) 920解:(4)原式=15-12 018+12-12 018-14+11 009=920.27. 解:根据新运算的定义,(6⊕8)=6+8-1=13,(3⊗5)=3×5-1=14,则(6⊕8)⊕(3⊗5)=13⊕14=13+14-1=26, 则4⊗[(6⊕8)⊕(3⊗5)]=4⊗26=4×26-1=103.28. 解:(1)第1个数:12;第2个数:32;第3个数:52.(2)第2 017个数:2 017-⎝⎛⎭⎫1+-12⎣⎡⎦⎤1+(-1)23⎣⎡⎦⎤(1+(-1)34…⎣⎡⎦⎤1+(-1)4 0334 034=4 0332.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 有理数及其运算检测题
【本试卷满分150分,测试时间90分钟】 姓名 得分 一、选择题(每小题4分,共40分) 1 2 3
4 5 6
7
8
9
10
1.下面每组中的两个数互为相反数的是( ) A.-
1
5
和5 B.-2. 5和2
1
2
C.8和-(-8)
D.
1
3
和0.333 2.有理数
在数轴上表示的点如图所示,则b b a --,,,a 的大小关系是( )
A.b a a b >->>-
B.b b a a ->>->
C.a b a b ->->>
D.b a a b <-<<-
3.下列运算正确的是 ( ) A.1624
=-
B.4)2(2
-=--
C .1)3
1(3-=- D.8)2(3
=-
4.计算2
265
1251⨯+⨯-的值是( )
A.0
B.
5
32
C.
54 D.5
4- 5.如果a 和b 2互为相反数,且0≠b ,那么a 的倒数是( ) A.b 21-
B.b 21
C.b
2
- D.b 2 6.下列说法中正确的有( ) ①同号两数相乘,符号不变; ②异号两数相乘,积取负号;
③互为相反数的两数相乘,积一定为负;
④两个有理数的积的绝对值,等于这两个有理数的绝对值的积. A.1个 B.2个 C.3个 D.4个
7.气象部门测定发现:高度每增加1 km ,气温约下降5 ℃.现在地面气温是
15 ℃,那么4 km 高空的气温是( )
A.5 ℃
B.0 ℃
C.-5 ℃
D.-15 ℃
8.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A.1 B.2 C.3 D.无数个 9.计算20082007
)4()
25.0(-⨯-等于( )
A.-1
B.1
C.-4
D.4 10.若规定“!”是一种数学运算
符
号
,
且
,,241234!4,6123!3,212!2,1!1⋅⋅⋅=⨯⨯⨯==⨯⨯==⨯==则
!
98!
100的值为( )
A.
49
50
B.99!
C.9900
D.2! 二、填空题(每小题5分,共20分)
11.若规定125-+=*b a b a ,则6)4(*-的值为 .
12.绝对值小于4的所有整数的和是 .
13.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示两只手上约有 个细菌. 14.如图是一个数值转换机的示意图,若输入x 的值为3,y 的值为-2,则输出的结果为 .
三、解答题(共46分) 15.(24分)计算: (1))75.2()412(21152--+--- (2))4
1(])21(52[2-÷-⨯-
(3)5
2
1)21(212)75(75211÷-+⨯--⨯ (4)12-16-112-120-130-1
42
16.(8分)已知:2,3==b a ,且b a <,求2
)(b a +的值.
17.(8分)有四个有理数3,4,-6,10,运用“二十四点”游戏规则,写出两种不同的方法的运算式,使其结果等于24.
18.(10分)观察下列各式:
,12421,1221,121321-=++-=+-=……
猜想:(1)=+⋅⋅⋅++++63
3
2
2
2221 ;
(2)如果n 为正整数,那么=+⋅⋅⋅++++n
222213
2
19.(15分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):
星期一二三四五六日
增减-5+7-3+4+10-9-25
(2)本周总生产量与计划生产量相比,是增加还是减少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
20.(10分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m3以内的,小户(家庭人口3人及3人以下者)每月用水10 m3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m3,则这户本月应交水费多少元? 21.(15分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情
星期一二三四五六日
收入+15+180+160+25+24
支出10 14 13 8 10 14 15 (2)照这个情况估计,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?
如有侵权请联系告知删除,感谢你们的配合!。