初三数学期中考试试题及答案
初三数学期中考试试卷及答案

初三数学期中考试试卷及答案第一卷:选择题(共80分)一、选择题(每小题1分,共40分)1. 下列各组函数中,相等的是()a) y = x^2 - 2x + 1,y = (x - 1)^2b) y = |2x - 1|,y = -(2x - 1)c) y = |2x - 1|,y = 2|x| - 1d) y = 2|x + 1|,y = -2|x + 1|2. 单项式 2x^3 y z^2 的次数是()a) 2 b) 3 c) 4 d) 53. 若 a:b = 7:5,b:c = 4:3,求 a:b:c =a) 7:5:3 b) 7:4:5 c) 7:10:12 d) 28:20:154. 圆心坐标为 (-4, 2),半径为 5 的圆方程是()a) (x + 4)^2 + (y - 2)^2 = 5^2b) (x - 4)^2 + (y + 2)^2 = 5^2c) (x + 4)^2 + (y + 2)^2 = 5^2d) (x - 4)^2 + (y - 2)^2 = 5^2...第二卷:非选择题(共70分)五、计算题(共30分)1. 化简:(3a^2b)^3 / (6a^5b^2) =2. 解方程:4x - 5 = 3x + 73. 已知图中三角形 ABC,其中∠B = 90°,AC = 8cm,BC = 6cm。
求 sin A 和 cos C 的值。
...八、解答题(共20分)1. 某商店购进一批相同的商品,第一天卖出了商品总数的 1/4,第二天又卖出了剩余商品总数的1/3 ,已知最后剩下的商品总数是60 件,求原先购进的商品总数。
2. 一辆汽车从 A 地开往 B 地,全程 300 km,开了 4 个小时到达终点。
第二天,汽车原路返回,回到 A 地用了 6 个小时。
求汽车在去程和返程时的平均速度。
...第三卷:答题卡(共10分)请将你的答案填写在答题卡上。
注意事项:1. 请认真核对试卷上的题号和试卷形式,确保填涂无误。
初三期中数学试题及答案

初三期中数学试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的,请将正确选项的字母填入题后的括号内。
)1. 下列哪个数是无理数?A. 0.33333...(循环)B. πC. √4D. 3.14答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1答案:A3. 如果a和b互为倒数,那么ab的值是:A. 0B. 1C. -1D. 无法确定答案:B4. 一个等腰三角形的底边长为6,腰长为5,那么它的周长是:A. 16B. 17C. 18D. 20答案:C5. 下列哪个方程是一元二次方程?A. 3x + 2 = 0B. x² - 4x + 4 = 0C. 2x - 3y = 5D. x³ - 2x² + 1 = 0答案:B6. 函数y = 2x + 3的图象是:A. 一条直线B. 一条双曲线C. 一个圆D. 一个抛物线答案:A7. 如果一个角的补角是120°,那么这个角的度数是:A. 60°B. 30°C. 45°D. 90°答案:B8. 一个数的立方根是2,那么这个数是:A. 2B. 4C. 8D. 6答案:C9. 下列哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 正方形D. 圆答案:D10. 如果一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C二、填空题(本题共5小题,每小题4分,共20分。
)11. 一个数的平方是36,这个数是______。
答案:±612. 一个数的绝对值是它本身,这个数是非负数,即这个数可以是______。
答案:0或正数13. 两个角的和是180°,这两个角互为______。
答案:补角14. 一个数的立方是-8,这个数是______。
答案:-215. 一个等腰三角形的底角相等,如果一个底角是40°,那么顶角是______。
黑龙江省绥化市望奎县第五中学(五四学制)2024-2025学年九年级上学期期中数学试卷(含答案)

2024-2025学年度初三上学期期中考试数学试题考生注意:考试时间90分钟;本题共计五道大题,满分120分.一、填空题(每题3分,共30分)1.等腰三角形中,有一个角是,则另外两个角分别为__________.2.两边长分别为的等腰三角形的周长是__________.3.如图,在中,,则的长为__________.4.如图.,那么,__________,__________.假设.那么__________.5.如图,相交于点,请你补充一个条件,使得.你补充的条件是__________.6.点关于轴对称的点的坐标是__________,直线与轴的位置关系是__________.7.已知中,,则__________.8.如图,直线,点在上,假设的面积为16,那么的面积为__________.70 6cm 10cm 、ABC 90,60,4A C BC ∠=∠== AC ABC ADE ≌AB =E ∠=∠12040BAE BAD ∠=∠= BAC ∠=,AB CD ,O AD CB =AOD COB ≌()2,1M -x N MN x ABC ()23B C A ∠+∠=∠A ∠=AE ∥BD C BD 4,8,AE BD ABD == ACE9.如图,在中,是的垂直平分线,的周长为的周长为,则的长为__________.10.如图,在中,平分交于点,点分别是线段上一动点且,则的最小值为__________.二、选择题(每小题3分,计30分)11.2023年全国民航工作会议介绍了2023年民航业发展目标:民航业将按照安全第一、市场主导、保障先行的原则,在做好运行保障能力评估的基础上,把握好行业恢复发展的节奏,下列航空图标,其文字上方的图案是轴对称图形的是( ).A. B.C. D.12.下列长度的三条线段,能组成三角形的是()A. B. C. D.13.一个边形的每个外角都是,则这个n 边形的内角和是().A.1080B.540C.2700D.216014.过一个多边形的一个顶点的所有对角线把多边形分成4个三角形,则这个多边形的边数为( )A.3B.4C.5D.6ABC DE AC ABC 19cm,ABD 13cm AE ABC BD ABC ∠AC D ,M N BD BC 、AB BD >10,5S ABC AB == CM MN +2,4,66,8,157,5,116,7,14n 4515.某公路急转弯处设立了一面圆形大镜子,车内乘客从镜子中看到汽车前车牌的部分号码如图所示,则该车牌的部分号码为( )A. B.C. D.16.如图,某同学把一块三角形的玻璃打碎成了四块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带③去 C.带②去 D.带④去17.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,则的面积是( )A.15B.30C.40D.4518.如图,在中,为线段的垂直平分线与直线的交点,连结,则( )A. B. C. D.19.如图,已知是等边三角形,点在同一直线上,且,则( )E9362E9365E6395E6392Rt ABC 90C ∠= A AC AB 、M N 、M N 、12MN P AP BC D 5,18CD AB ==ABD ABC 50,20,ABC BAC D ∠=∠= AB BC AD CAD ∠=40 30 20 10ABC ,B C D E 、、,CG CD DF DE ==E ∠=A.35B.20C.15D.1020.如图,已知,直角的顶点是的中点,两边分别交于点.给出以下四个结论:①;②;③是等腰直角三角形;④,上述结论始终正确的有( )A.①②③ B.①③ C.①② D.①③④三、作图题(共18分)21.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如下图).医疗站必需知足以下条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信点的位置.(不写作法,要保留作图痕迹)(8分)22.如图是由边长为1的若干个小正方形拼成的方格图,的顶点均在小正方形的顶点上.(10分)(1)在图中建立恰当的平面直角坐标系,且使点的坐标为,并写出两点的坐标;(4分)(2)在(1)中建立的平面直角坐标系内画出关于y 轴对称的;(3分)(3)求的面积.(3分)四、解答题(满分42分)23.如图,是的中线,的周长比的周长多.若的周长为,且,求和的长.(8分),,90ABC AB AC A =∠= EPF ∠P BC ,PE PF ,AB AC E F 、AE CF =BE CF EF +=EPF 12ABC AEPF S S = 四边形P ABC ,,A B C A ()4,2-,B C ABC A B C ''' ABC BD ABC ABD BCD 2cm ABC 18cm 4cm AC =AB BC24.如图,为上一点,.求证:.(6分)25.如图,中,于,且分别是的中点,延长至点,使.(8分)(1)的度数.(4分)(2)求证:.(4分)26.如图,在中,边的垂直平分线与的外角平分线交于点,过点作于点于点.若.求的长度(8分)27.(12分)(1)问题发现:如图①,和都是等边三角形,点在同一条直线上,连接.E BC AC ∥,,BD AC BE ABD CED =∠=∠AB ED =ABC ,AB AC BE AC =⊥E D E 、AB AC 、BCF CF CE =ABC ∠BE FE =ABC AB PQ ABC P P PD BC ⊥,D PE AC ⊥E 8,4BD AC ==CE ABC EDC B D E 、、AE①的度数为__________.②线段之间的数量关系为__________.(2)拓展探究:如图②,和都是等腰直角三角形、,点在同一条直线上,为中边上的高,连接,试求的度数及判断线段之间的数量关系,并说明理由;(3)解决问题:如图③,和都是等腰三角形,,点在同条直线上,请直接写出的度数.AEC ∠AE BD 、ABC EDC 90ACB DCE ∠=∠= B D E 、、CM EDC DE AE AEB ∠CM AE BE 、、ABC EDC 36ACB DCE ∠=∠= B D E 、、EAB ECB ∠+∠参考答案一、填空题(每题3分,共30分)或2.或3.24.,,5.(答案不唯一)6.垂直7.8.89.10.4二、选择题(每小题3分,计30分)11-15DCADC16-20CDBCD三、作图题(共18分)21.如图所示(8分)22.(1);(3分)(2)(3分)(3)(4分)(1)点的坐标表明点在第二象限,横坐标离坐标原点的距离为4,纵坐标离坐标原点的距离为2,由此确定坐标原点的位置,再画坐标轴,结果如下:结合点在方格图中的位置可得它们的坐标为:;(2)点关于y 轴对称:横坐标互为相反数,纵坐标相同则三点的坐标分别为:1.55,55 70,4022cm 26cmAD C ∠80A C ∠=∠(2,1)--723cm()()1,0,3,1B C ---72A ()4,2-A O O OBC 、()()1,0,3,1B C ---,,A B C '''()()()4,2,1,0,3,1A B C ''-'先在平面直角坐标系中描出三点,再连接,画图如下:(3)如图,的面积等于正方形的面积减去三个直角三角形的面积即则.四、解答题(满分42分)23...(8分)由题意知①,点D 为AC 的中点,,,,即②,由①②得24.(6分)在与中,,,A B C '''ABC ABC ADC BCE ABFADEF S S S S S =--- 正方形111373313122391322222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---= 8cm,6cm AB BC ==18cm,4cm,14cm C ABC AC AB BC ==∴+= AD DC ∴=2cm C ABD C BCD -= ()()2cm AB BD AD BC BD DC ∴++-++=2cm AB BC -=8cm,6cmAB BC ==AC ∥BDACB EBD∴∠=∠,,ABD CED ABD ABC EBD CED EBD EDB ∠=∠∠=∠+∠∠=∠+∠ ABC EDB∴∠=∠ABC EDB ABC EDB ACB EBDAC BE ∠=∠⎧⎪∠=∠⎨⎪=⎩.25.(8分)(1);(4分)(2)(4分)(1)于是的中点,是等腰三角形,即,,是等边三角形,;(2),,,,是等边三角形,,,,;26.(8分)连接是的平分线,是线段的垂直平分线在和中27.(12分)解:(1);()ABC EDB AAS ∴ ≌AB ED ∴=60 BE AC ⊥ ,E E AC ABC ∴ AB BC =AB AC = ABC ∴ 60ABC ∴∠= CF CE = F CEF ∴∠=∠60ACB F CEF ∠==∠+∠ 30F ∴∠= ABC BE AC ⊥30EBC ∴∠= F EBC ∴∠=∠BE EF ∴=PA PB、CP BCE ∠,PD BC PE AC ⊥⊥PD PE∴=PQ AB PA PB∴=Rt AEP Rt BDP PE PD=PA PB=()Rt Rt HL AEP BDP ∴ ≌AE BD∴=4CE BD AC ∴=-=4CE ∴=1120(2).;(2),理由如下:是等腰直角三角形,由(1)得,,,都是等腰直角三角形,为中边上的高,;(3)AE BD =2CM AE BM +=DCE 45CDE ∴∠=135CDB ∴∠=ECA DCB ≌135,CEA CDB AE BD ∴∠=∠== 45CEB ∠= 90AEB CEA CEB ∴∠=∠-∠=DCE CM DCE DE CM EM MD∴==EM MD BD BE++= 2CM AE BE ∴+=180EAB ECB ∠+∠=。
人教版初三期中考试数学试卷及答案

人教版初三期中考试数学试卷及答案一、选择题(每题3分,共30分)1.下面关于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=;④(a2+a+1)x2-a=0;⑤=x-1.一元二次方程的个数是()【解析】选B.方程①与a的取值有关,当a=0时,不是一元二次方程;方程②经过整理后,二次项系数为2,是一元二次方程;方程③是分式方程;方程④的二次项系数经过配方后可化为+,不管a取何值,都不为0,所以方程④是一元二次方程;方程⑤不是整式方程,故一元二次方程有2个.【知识归纳】判断一元二次方程的几点注意(1)一般形式:ax2+bx+c=0,特别注意a≠0.(2)整理后看是否符合一元二次方程的形式.(3)一元二次方程是整式方程,分式方程不属于一元二次方程.2.假设(x+y)(1-x-y)+6=0,那么x+y的值是()【解析】选C.设x+y=a,原式可化为a(1-a)+6=0,解得a1=3,a2=-2.关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-B.k>-且k≠0C.k0,解得k>-且k≠0.应选B.4.某种商品零售价经过两次降价后的价格为降价前的81%,那么平均每次降价 ()A.10%B.19%C.9.5%D.20%【解析】选A.设平均每次降价x,由题意得,(1-x)2=0.81,所以1-x=±0.9,所以x1=1.9(舍去),x2=0.1,所以平均每次降价10%.5.在平面直角坐标系中,抛物线y=x2-1与x轴的交点的个数是()【解析】选B.把a=1,b=0,c=-1代入b2-4ac得0+4>0,故与x轴有两个交点.6.二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,那么当x取x1+x2时,函数值为()【解析】选D.由题意可知=,又x1≠x2,所以x1=-x2,即x1+x2=0,所以当x取x1+x2时,函数值为c.7.(2022 宜宾中考)假设关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,那么k的取值范围是()wA.k1C.k=1D.k≥0【解析】选A.∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴Δ=b2-4ac=22-4×1×k>0,∴kx2),那么x1+x2=-1,x1-x2=1,解得x1=0,x2=-1.(2)当x=0时,(a+c)×02+2b×0-(c-a)=0,所以c=a.当x=-1时,(a+c)×(-1)2+2b×(-1)-(c-a)=0,即a+c-2b-c+a=0,所以a=b,所以a=b=c,所以△ABC为等边三角形.21.(8分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)假设用10分钟提出概念,学生的接受能力y的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来答复.【解析】(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×100+2.6×10+43=59.(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4,∴用8分钟与用10分钟相比,学生的接受能力减弱了;当x=15时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5,∴用15分钟与用10分钟相比,学生的接受能力增强了.22.(8分)(2022 来宾中考)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价多少元?【解析】(1)由题意,得60(360-280)=4800元.答:降价前商场每月销售该商品的利润是4800元.(2)设要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价x元,由题意,得(360-x-280)(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润到达7200元,且更有利于减少库存,那么每件商品应降价60元.23.(8分)(2022 温州中考)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y 轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,点A的坐标为(-1,0).(1)求抛物线的解析式.(2)求梯形COBD的面积.【解析】(1)把A(-1,0)代入y=a(x-1)2+4,得0=4a+4,∴a=-1,∴y=-(x-1)2+4.(2)令x=0,得y=3,∴OC=3.∵抛物线y=-(x-1)2+4的对称轴是直线x=1,∴CD=1.∵A(-1,0),∴B(3,0),∴OB=3,∴S梯形COBD==6.24.(9分)有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依次类推,即每多买一台,那么所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购置一批图形计算器:(1)假设此单位需购置6台图形计算器,应去哪家公司购置花费较少?(2)假设此单位恰好花费7500元,在同一家公司购置了一定数量的图形计算器,请问是在哪家公司购置的,数量是多少?【解析】(1)在甲公司购置6台图形计算器需要用6×(800-20×6)=4080(元);在乙公司购置需要用75%×800×6=3600(元)440,符合题意.当x=25时,每台单价为800-20×25=300人教版初三期中考试数学试卷及答案.。
2024-2025学年北京北师大附中初三上学期期中数学试题及答案

2024北京北师大附中初三(上)期中数 学考生须知1.本试卷有三道大题,共10页.考试时长120分钟,满分100分. 2.考生务必将答案填写在答题纸上,在试卷上作答无效. 3.考试结束后,考生应将答题纸交回. 一、选择题(共8小题,共16分)1. 2023年5月30日神舟十六号载人飞船发射取得圆满成功,此次任务是我国载人航天工程进入空间站应用与发展阶段的首次载人飞行任务.下列有关航天的4个图标图案中是中心对称图形的是( )A. B. C. D .2. 把抛物线2y x =−向上平移3个单位长度,则乎移后抛物线的解析式为( ) A. ()23y x =−+ B. ()23y x =−− C. 23y x =−+D. 23=−−y x3. 将一元二次方程2810x x −+=通过配方转化为()2x a b +=的形式,下列结果中正确的是( ) A. ()2826x −= B. ()286x −= C. ()246x −=− D. ()246x −=4. 如图,在ABC 中,80B ∠=︒,65C =︒∠,将ABC 绕点A 逆时针旋转得到AB C ''△.当AB '落在AC 上时,BAC '∠的度数为( )A. 65︒B. 70︒C. 80︒D. 85︒5. 如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则该正六边形的边心距是( )A. 1cmB. 2cm6. 如图所示,用10米的铁丝网围成一个面积为15的矩形菜地,菜地的一边靠墙(不使用铁丝),如果设平行于围墙的一边为x 米,那么可列方程( )A. ()1015xx −=B.()10152xx −= C. 110152x x ⎛⎫−= ⎪⎝⎭D.()102152xx −= 7. 下面是“作ABC 的外接圆”的尺规作图方法.ABC 的外接圆O .上述方法由,得到OA OB OC ==,从而知O 经过A ,,三点.其中获得OA OB =的依据是( )A. 线段垂直平分线上的点与这条线段两个端点的距离相等B. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上C. 角平分线上的点到角的两边的距离相等D. 角的内部到角的两边距离相等的点在角的平分线上8. 二次函数()20y ax bx c a =++≠的对称轴是2x =−,该抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,其部分图象如图所示,下列结论:①40a b −=,②0a b c ++<,③2324b b ac +>,④若点()5,n −在二次函数的图像上,则关于x 的不等式20ax bx c n ++−>的解集是51x −<<,其中正确的是( )A. ①③B. ③④C. ①③④D. ①②③④二、填空题(共8小题,共16分)9. 若关于x 的一元二次方程220x x m +−=有一个根为1,则m 的值为_______. 10. 如图,点A ,B ,C 在O 上,55BAC ∠=︒,则BOC ∠的度数为_______︒.11. 若点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,则a _______b .(填<,=或>). 12. 请你写出一个二次函数,其图象满足条件:①开口向下,②顶点在y 轴上.此二次函数的解析式可以是_______.13. 如图,PA PB ,是O 的两条切线,切点分别为A ,B ,连接OA AB ,,若35OAB ∠=︒,则P ∠=________︒.14. 如图,抛物线2y ax bx =+与直线y mx n =+相交于点(3,6)A −−,(1,2)B −,则关于x 的方程2ax bx mx n +=+的解为_______________ .15. 无论非零实数m 取何值,抛物线()2211y mx m x =++−一定经过的定点的坐标是________.16. 如图,AB 是O 的直径,C 为O 上一点,AB OC ⊥,P 为圆上一动点,M 为AP 的中点,连接CM ,若O 的半径为4,则CM 长的最大值是________.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 解方程:(1)210x x +−=. (2)()()3121x x x +=+18. 如图,AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =(1)BD =________. (2)若D 为OC 中点,求O 的半径.19. 已知关于x 的一元二次方程()22210x m x m m −+++=. (1)求证:该方程总有两个不相等的实数根; (2)当该方程的两个实数根的和为0时,求m 的值. 20. 已知二次函数 2=23y x x −−.(1)求该二次函数的顶点坐标;(2)在平面直角坐标系 xOy 中,画出二次函数 2=23y x x −−的图象; (3)结合函数图象:直接写出当12x −<<时,y 的取值范围.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点0A ,B ,C 均为格点(每个小正方形的顶点叫做格点).(1)作点()01,1A −−关于原点O 的对称点A ; (2)连接AC ,AB 得ABC ,将ABC 绕点A 逆时针旋转90°得11AB C △.画出旋转后的11AB C △;(3)在(2)的条件下,点1B 的坐标是________,边AC 扫过区域的面积为________. 22. 下面是小于同学设计的“过直线外一点作这条直线的平行线”的尺规作图过程.(1)使用直尺和圆规,完成作图;(保留作图痕迹)(2)完成下面的证明,并在括号中填推理的依据: 证明:连接DP , ∵CP DQ = ∴________DQ = ∴PDC________.∴PQ l ∥(________).23. 如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.当拱门上的点到O 点的水平距离为x (单位:m )时,它距地面的竖直高度为y (单位:m ).(1)经过对拱门进行测量,发现x 与y 的几组数据如下:离),并求y 与x 满足的函数关系式.(2)在一段时间后,公园重新维修拱门.在同样的坐标系下,新拱门上的点距地面的竖直高度y (单位:m )与它到O 点的水平距离x (单位:m )近似满足函数关系()20.187.30y x h =−−+,若记原拱门的跨度为1d ,新拱门的跨度为2d ,则1d ______2d (填“>”,“=”或“<”). 24. 如图,AB 为O 的直径,点C 在O 上,ACB ∠的平分线CD 交O 于点D ,过点D 作DE AB ∥,交CB 的延长线于点E .(1)求证:DE 是O 的切线;(2)若60ADC ∠=︒,4BC =,求CD 的长. 25. 【项目式学习】 项目主题:车轮的形状项目背景:在学习完圆的相关知识后,九年级某班同学通过小组合作方式开展项目式学习,深入探究车轮制作成圆形的相关原理. 【合作探究】(1)探究A 组:车轮做成圆形的优点是:车轮滚动过程中轴心到地面的距离始终保持不变.另外圆形车轮在滚动过程中,最高点到地面的距离也是不变的.如图1,圆形车轮半径为4cm ,其车轮最高点到地面的距离始终为______cm ;(2)探究B 组:正方形车轮在滚动过程中轴心到地面的距离不断变化.如图2,正方形车轮的轴心为O ,若正方形的边长为6cm ,车轮轴心O 距离地面的最高点与最低点的高度差为______cm ;(3)探究C 组:如图3,有一个正三角形车轮,边长为6cm ,车轮轴心为O (三边垂直平分线的交点),车轮在地面上无滑动地滚动一周,求点O 经过的路径长.探究发现:车辆的平稳关键看车轮轴心是否稳定,即车轮的轴心是否在一条水平线上运动.【拓展延伸】如图4,分别以正三角形的三个顶点A ,B ,C 为圆心,以正三角形的边长为半径作60︒圆弧,这样形成的曲线图形叫做“莱洛三角形”.“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心O 并不稳定.(4)探究D 组:使“莱洛三角形”以图4为初始位置沿水平方向向右滚动.在滚动过程中,其“最高点”和“车轮轴心O ”均在不断移动位置,那么在“莱洛三角形”滚动一周的过程中,其“最高点”和“车轮轴心O ”所形成的图形按上、下放置,应大致为______.26. 在平面直角坐标系xOy 中,点()1,m −,()3n ,在抛物线()2<0y ax bx c a =++上,设抛物线的对称轴为x t =.(1)当5c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点()()00,3x n x ≠在抛物线上,若m n c <<,求t 的取值范围及0x 的取值范围.27. 如图,在Rt ABC △中,90ABC ∠=︒,()030BAC a α∠=︒<<︒.将射线AC 绕点A 逆时针旋转2α得到射线l ,射线l 与射线BC 的交点为M .在射线BC 上截取MD AC =(点D 在点M 左侧),(1)如图1,当点D 与点C 重合时,此时α=_________°,ACB ∠的度数为_________°.(2)当点D 与点C 不重合时,在线段MA 上截取2ME BC =,连接DE .依题意补全图2,用等式表示EDM ∠与BAC ∠的数量关系,并证明.28. 在平面直角坐标系xOy 中,给定图形W 和点P ,若图形W 上存在两个不同的点S ,T 满足2ST PM =.其中点M 为线段ST 的中点,则称点P 是图形W 的相关点.(1)已知点(2A ,0)①在点1234113(,),(,(2,1)2222P P P P −−中,线段OA 的相关点是_______; ②若直线y x b =+上存在线段OA 的相关点,求b 的取值范围.(2)已知点(3Q −,0),线段的长度为d ,当线段CD 在直线2x =−上运动时,如果总能在线段CD 上找到一点K ,使得在y 轴上存在以QK 为直径的圆的相关点,直接写出d 的取值范围.参考答案一、选择题(共8小题,共16分)1. 【答案】C【分析】本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:选项A 、B 、D 不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项C 能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形. 故选:C . 2. 【答案】C【分析】本题考查了二次函数图象的平移,掌握平移规律是解题的关键.根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线2y x =−向上平移3个单位,则平移后抛物线的解析式为23y x =−+ 故选:C . 3. 【答案】D【分析】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.先把常数项移到方程右边,再把方程两边加上16 【详解】解:移项得2810x x −=−,配方得22284104x x −+=−+,即2(4)6x −=. 故选:D . 4. 【答案】B【分析】本题主要考查了旋转的性质,三角形内角和定理,由旋转的性质可得B AC BAC ''∠=∠, 由三角形内角和定理可得出35B AC BAC ∠=∠=''︒,最后根据角的和差关系即可得出答案. 【详解】解:由旋转的性质可得出B AC BAC ''∠=∠, ∵180BAC B C ∠+∠+∠=︒, ∴180806535BAC ∠=︒−︒−︒=︒, ∴35B AC BAC ∠=∠=''︒,∴70BAC BAC B AC ∠=∠+''∠='︒, 故选:B . 5. 【答案】D【分析】该题主要考查了正多边形与圆,构建直角三角形,利用直角三角形的边角关系求解是解题的关键.连接OA ,作OM AB ⊥,构造出直角OAM △,且根据正六边形的性质可知30AOM ∠=︒,即可解答; 【详解】解:连接,OA OB ,作OM AB ⊥于点M , ∵正六边形ABCDEF 的外接圆半径为2cm , ∴正六边形的半径为2cm , 即2cm OA =,在正六边形ABCDEF 中,360660AOB ∠=︒÷=︒, ∴30AOM ∠=︒,∴正六边形的边心距是)cos302cm 2OM OA =︒⨯=⨯=, 故选:D .6. 【答案】B【分析】平行于围墙的一边为x 米,则垂直于围墙的一边为()1102x −米,再根据矩形的面积公式列方程即可.()10152xx −=. 故选:B .【点睛】本题主要考查一元二次方程的应用,正确列出方程是解题的关键. 7. 【答案】A【分析】本题考查作图-复杂作图,线段的垂直平分线,解题的关键熟练掌握基本知识,属于中考常考题型.【详解】解:由作图可知直线1l 是线段AB 的垂直平分线,则OA OB =的依据是线段垂直平分线上的点与这条线段两个端点的距离相等, 故选:A . 8. 【答案】D【分析】本题考查了二次函数的图像与性质,熟练掌握对称轴,最值,相应方程的根是解题关键.根据抛物线的对称轴可判断①对错;根据图像利用抛物线的顶点坐标,得到2434ac b a−=,即可判断③对错;抛物线的对称性可知,当0x =时,0y <,得到0c <,即可判断②对错;根据二次函数2(0)y ax bx c a =++≠和直线y n =的交点,即可判断④对错.【详解】解:∵抛物线的对称轴为直线22b x a=−=−, 4b a ∴=,∴40a b −=,①正确;∵抛物线的顶线坐标为(2,3)−,2434ac b a−∴=, 2124b a ac ∴+=,4b a =,234b b ac ∴+=,0a <,40b a ∴=<,∴2b 2>b ,∴2b 2+b 2+2b >b +b 2+2b ,∴3b 2+2b >b 2+3b ,∴3b 2+2b >b 2+3b =4ac ,成立,故③正确;∵抛物线与x 轴的一个交点在点(4,0)−和点(3,0)−之间,∴由抛物线的对称性可知,另一个交点在(1,0)−和(0,0)之间,0x ∴=时,0y <,0c ∴<,0a <,40b a ∴=<,∴0a b c ++<,②正确;∵抛物线的顶线坐标为(2,3)−,点()5,n −在二次函数的图像,∴抛物线与直线y n =有两个交点,∴交点的横坐标即为方程2ax bx c n ++=的两个实数根,∵点()5,n −在二次函数的图像,∴5−为其中一个实数根,根据函数图像对称性,对称轴2x =−,∴另一个实数根是1,∴关于x 的不等式20ax bx c n ++−>的解集是51x −<<,∴④正确,故选:D .二、填空题(共8小题,共16分)9. 【答案】3【分析】本题考查了方程根的定义即使方程左右两边相等的未知数的值,转化求解是解题的关键. 把1x =代入220x x m +−=,转化为m 的方程求解即可.【详解】解:把1x =代入220x x m +−=,得210m +−=,解得:3m =,故答案为:3.10. 【答案】110【分析】本题考查的知识点是圆周角定理,熟记定理内容是解题的关键.根据同圆中同弧所对的圆周角等于圆心角的一半解答即可.【详解】解:∵点A 、B 、C 在O 上,55BAC ∠=︒,2110BOC A ∴∠=∠=︒,故答案为:110.11. 【答案】<【分析】本题考查了二次函数2()y a x h k =−+图象的性质,掌握二次函数2()y a x h k =−+图象的性质是解题的关键.根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断,a b 的大小关系.【详解】解:∵二次函数2(,1011)y x a =−=>−,开口向上,对称轴为1x =,当x >1时,y 随x 增大而增大,又点()2,a ,()3,b 都在二次函数y =(x −1)2−1的图象上,211,312−=−=,a b ∴<,故答案为:<.12. 【答案】23y x =−+(答案不唯一)【分析】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出0a <,0b =是解题的关键.根据二次函数的性质可得出0a <,利用二次函数图象顶点在y 轴上的特征可得出0b =,取取1a =−,0b =,c 为任何数即可得出结论.【详解】解:设二次函数的解析式为2y ax bx c =++.∵抛物线开口向下,∴0a <.∵抛物线顶点在y 轴上,∴0b =,c 为任何数,则取1a =−,0b =,3c =时,二次函数的解析式为23y x =−+.故答案为:23y x =−+(答案不唯一).13. 【答案】70【分析】先根据等边对等角和三角形内角和定理求出110AOB ∠=︒,再根据切线的性质得到90OAP OBP ∠=∠=︒,再根据四边形内角和定理求出P ∠的度数即可.【详解】解:∵OA OB =,∴35OAB OBA ∠=∠=︒,∴180110AOB OAB OBA ∠=︒−∠−∠=︒,∵PA PB ,是O 的两条切线,∴90OAP OBP ∠=∠=︒,∴36070P AOB OAP OBP =︒−−−=︒∠∠∠∠,故答案为:70.【点睛】本题主要考查了切线的性质,等边对等角,三角形内角和定理,四边形内角和定理,熟知切线的性质是解题的关键.14. 【答案】x 1=﹣3,x 2=1【分析】关于x 的方程ax 2+bx =mx +n 的解为抛物线y =ax 2+bx 与直线y =mx +n 交点的横坐标,由此即可得到答案.【详解】∵抛物线y =ax 2+bx 与直线y =mx +n 相交于点A (﹣3,﹣6),B (1,﹣2),∴关于x 的方程ax 2+bx =mx +n 的解为x 1=﹣3,x 2=1.故答案为x 1=﹣3,x 2=1.【点睛】本题考查了抛物线与直线的交点问题:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 15. 【答案】(2,3)−−,()01−,【分析】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.把含m 的项合并,只有当m 的系数为0时,不管m 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【详解】解:∵()2211y mx m x =++−, ()222121y mx mx x m x x x ∴=++−=++−,∴当220x x +=时,与m 的取值无关,即0x =或2x =−时,不管m 取何值时都通过定点,当2x =−时,()422113y m m =−+−=−,当x =0时,1y =−,故不管m 取何值时都通过定点(2,3)−−或()01−,. 故答案为:(2,3)−−,()01−,.16. 【答案】2+【分析】本题考查圆周角定理,勾股定理,由90OMA ∠=︒得出点M 的移动轨迹,再根据圆外一点到圆上一点最大距离进行计算即可.【详解】解:如图,取OA 中点O ',连接O C ',O M ',OM ,∵M 为AP 的中点,∴90OMA ∠=︒, ∴122O M O A O O OA '''====, ∴当点P 在O 上移动时,AP 的中点M 的轨迹是以OA 为直径的O ',∴'CO 交O '于点M ,此时CM 的值最大,由题意得,4OA OB OC ===,122OO OA O M ''===, 在Rt O OC '中,4OC =,2OO '=,∴O C '==,∴2CM CO O M ''=+=,故答案为:2+.三、解答题(共12小题,共68分.其中第17题8分,第18题4分,第19,21,22,23,25题每小题5分,第20,24,26,27题每小题6分,第28题7分)17. 【答案】(1)112x −=,212x −−= (2)11x =−,223x = 【分析】此题考查了一元二次方程的求解,解题的关键是掌握一元二次方程的求解方法.(1)利用公式法求解即可;(2)移项,利用因式分解法求解即可.【小问1详解】解:∵1,1,1a b c ===−,∴122b x a −−===,则112x −+=,212x −=; 【小问2详解】解:()()3121x x x +=+()()31210x x x +−+=()()1320x x +−=∴10x +=或320x −= 则11x =−,223x =. 18. 【答案】(1)√3 (2)2【分析】本题考查垂径定理,勾股定理.(1)根据垂径定理即可得到12AD BD AB ==即可得出结果; (2)连接OA ,设O 的半径为r ,在Rt AOD 中,利用勾股定理即可求解. 【小问1详解】解:∵AB 是O 的弦,半径OC AB ⊥,垂足为D ,AB =∴12AD BD AB === 【小问2详解】 解:连接OA ,如图所示:设O 的半径为r ,即OA OC r ==, 若D 为OC 中点,1122OD OC r ∴==,由(1)知12AD BD AB ===在Rt AOD 中,由勾股定理可知222AD OA OD =−,即22212r r ⎛⎫=− ⎪⎝⎭, 解得2r =(负值舍去), ∴O 的半径为2.19. 【答案】(1)见详解 (2)12m =− 【分析】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.(1)根据方程的系数结合根的判别式,可得出10∆=>,进而即可证出:方程总有两个不相等的实数根; (2)用根与系数的关系列式求得m 的值即可.【小问1详解】证明:∵[]22(21)41()10m m m ∆=−+−⨯⨯+=>.即0∆>,∴方程总有两个不相等的实数根.【小问2详解】解:设方程的两根为a 、b ,利用根与系数的关系得:210a b m +=+=, 解得:12m =−. 20. 【答案】(1)()1,4−(2)见解析 (3)40y −≤<【分析】本题主要考查了二次函数的图象和性质,做题的关键是通过数形结合去解题.(1)将二次函数表达式化为顶点式,即可进行解答;(2)由五点作图法即可画出二次函数图象;(3)根据图象即可求得y 的范围;【小问1详解】()222314y x x x =−−=−−, ∴该二次函数的顶点坐标为()1,4−;【小问2详解】列表如下,=23y x x 的图象如图,【小问3详解】由图象可知,当1x =−时,y 取得最大值,y 的最大值为0,当1x =时,y 取得最小值,y 的最小值为-4,∴当12x −<<时,y 的范围为40y −≤<.21. 【答案】(1)()1,1A(2)见详解 (3)()12,3B −,94π 【分析】本题主要考查对称性和旋转的性质.(1)根据一点关于原点对称点的性质即可求解;(2)结合旋转的性质即可得到旋转后的图形;(3)结合点A 的坐标和旋转的性质即可求得点1B ,利用旋转的性质和面积公式即可.【小问1详解】解:∵()01,1A −−,∴()1,1A ;【小问2详解】解:如图,【小问3详解】解:根据旋转得,13AC AC ==,12BC B C ==,∵点()1,1A ,∴点()12,3B −,∵将ABC 绕点A 逆时针旋转90°得11AB C △.∴边AC 扫过区域的面积为229019·336044AC πππ⨯=⨯=. 22. 【答案】(1)作图见解析(2)CP ,DPQ ∠,内错角相等,两直线平行【分析】本题考查的作已知直线的平行线,圆周角定理的应用,平行线的判定;(1)根据题干的作图语言逐步作图即可;(2)证明CP DQ =,可得PDC DPQ ∠=∠,结合平行线的判定可得结论.【小问1详解】解:如图,作图如下:.【小问2详解】证明:连接DP ,∵CP DQ =,∴CP DQ =,∴PDC DPQ ∠=∠.∴PQ l ∥(内错角相等,两直线平行).23. 【答案】(1)该拱门的高度为7.2m ,跨度为12m ,()20.267.2y x =−−+(2)<【分析】本题考查了二次函数的实际应用,(1)由表格得当0x =时,0y =,当12x =时,0y =,从而可求对称轴和顶点坐标,进而可求出拱门的高度和跨度,再把解析式设为顶点式利用待定系数法即可求解;(2)先把()0,0代入()20.187.30y x h =−−+中,求出h 的值,则可求出2d ,进行比较即可. 【小问1详解】解:由表格可知抛物线经过()0,0和()12,0,∴抛物线的对称轴为直线6x =,∵当6x =,7.2y =,∴该拱门的高度为7.2m ,∵12012−=,∴跨度为12m ;设抛物线解析式为()267.2y a x =−+,把()2,4代入()267.2y a x =−+中得:()2267.24a −+=, 解得:0.2a =−,∴()20.267.2y x =−−+;【小问2详解】解:把()0,0代入()20.187.30y x h =−−+中得()200.1807.30h =−−+,解得3h =或3h =−(舍去),∴抛物线()20.187.30y x h =−−+与x 轴的另一个交点坐标为,03⎛⎫ ⎪⎝⎭,∴2m 3d =, 由(1)可得110m d =, ∵222114601009d d =>=, ∴21d d >,故答案为:<.24. 【答案】(1)证明见解析(2)【分析】(1)连接OD .根据直径所对的圆周角是直角得90ACB ∠=︒,再根据角平分线得45ACD BCD ∠=∠=︒,进而得45ABD ACD ∠=∠=︒,又由45ODB OBD ∠=∠=︒,从而根据平行线的性质得45BDE OBD ︒∠=∠=,于是90ODE ODB BDE ∠=∠+∠=︒,得OD DE ⊥,根据切线的判定即可证明结论成立;(2)如图2,过点B 作BF CD ⊥于点F ,先证明BF CF =.再根据勾股定理得BF CF ==,根据直角三角形的性质得2BD BF ==【小问1详解】证明,如图1,连接OD .AB 是O 的直径,90ACB ∴∠=︒, CD 平分ACB ∠,45ACD BCD ∴∠=∠=︒45ABD ACD ∴∠=∠=︒OD OB =,45ODB OBD ∴∠=∠=︒, DE AB ∥,45BDE OBD ︒∴∠=∠=,90ODE ODB BDE ︒∴∠=∠+∠=, OD DE ∴⊥ OD 为O 的半径,∴直线DE 是O 的切线.【小问2详解】解:如图2,过点B 作BF CD ⊥于点F ,90BFC BFD ︒∴∠=∠=, ∵AB 为O 的直径,∴90ACB ∠=︒,∵ACB ∠的平分线CD 交O 于点D , ∴45ACD BCD ∠=∠=︒, 45CBF ∴∠=︒,BF CF ∴=.在Rt BFC △中,4BC =,根据勾股定理,得42BF CF ==⨯= ∵60ABC ADC ∠=∠=︒,∴906030BAC ∠=︒−︒=︒, BC BC =,30CDB BAC ︒∴∠=∠=,2BD BF ∴==在Rt BFD 中,根据勾股定理,得DF ==CD CF DF ∴=+=.【点睛】本题主要考查了勾股定理、圆周角角定理、直径所对的圆周角是直角、切线的判定以及平行线的性质,等腰三角形的判定与性质,熟练掌握圆周角角定理、直径所对的圆周角是直角以及切线的判定是解题的关键.25. 【答案】8;3−;;A【分析】本题主要考查圆的综合应用,主要考查了弧长公式,正方形的性质,等边三角形的性质,理解题意并画出图形是解题的关键.(1)利用正方形的性质解答即可;(2)画出图形,找到最高点和最低点即可得到答案; (3)分别求出三部分一定的距离,然后相加即可;(4)由题意知:最高点与水平面距离不变,即可得到结论. 【详解】解:(1)圆形车轮与地面始终相切,∴车轮轴心O 到地面的距离始终等于圆的直径,圆形车轮半径为4cm ,故车轮最高点到地面的距离始终为8cm ,故答案为:8;(2)如图所示,OC 为正方形车轮的轴心O 移动的部分轨迹,点D 为车轮轴心O 的最高点,点C 为车轮轴心O 的最低点,由题意得车轮轴心O 距离地面的最低高度为AD OA ==∴车轮轴心O 距离地面的最高点与最低点的高度差为3)cm ,故答案为:3);(3)点O 的运动轨迹为圆,以点C 为圆心,23=运动距离为2π⨯=故答案为:; (4)由题意知,当“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,故“最高点”和“最低点所形成的图案大致是”A ,故答案为:A .26. 【答案】(1)抛物线与y 轴交点的坐标为()0,5,1t =(2)010x −<<【分析】本题考查了二次函数图像的性质;运用二次函数的增减性按要求列出相应的不等式是解题的关键.(1)将5c =代入()20y ax bx c a =++<中,可得抛物线与y 轴交点的坐标,再根据m n =可得点()1,m −与()3,n 关于抛物线的对称轴对称,即132t −+=计算即可; (2)根据m n c <<,可确定出2a >−b >3a , 结合20a <,可得对称轴的取值范围,再利用对称轴可表示为直线032x x +=,进而可确定0x 的取值范围. 【小问1详解】解:当5c =时,抛物线:25y ax bx =++当0x = 时,5y =;∴ 抛物线与y 轴交点的坐标为:()0,5;∵m n =,∴点()1,m −与()3,n 关于抛物线的对称轴对称, ∴1312x t −+===; 【小问2详解】解:∵m n c <<,∴93a b c a b c c −+<++<,解得23a b a −<<−,∴2a >−b >3a , 而20a <, ∴3122b a <−<,即312t <<, ∵点()3,n ,()()00,3x n x ≠在抛物线上, ∴抛物线的对称轴为直线032x x +=, ∴033122x +<<, 解得:010x −<<,∴0x 的取值范围010x −<<.27. 【答案】(1)18︒,72°(2)补全图形见解析,2EDM BAC ∠=∠,证明见解析【分析】(1)当点D 与点C 重合时,由等腰三角形等边对等角,得到 2AMC CAM α∠=∠=,再根据直角三角形的性质可得590AMC CAM BAC α∠+∠+∠==︒,进而求出18α=︒,可求ACB ∠的度数; (2)根据题意补全图形,在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN , 证明DME ACN ≌可得EDM CAN ∠=∠,即可得到EDM ∠与BAC ∠的等量关系.【小问1详解】解:∵点D 与点C 重合,,2MD AC CAM α=∠=,∴2AMC CAM α∠=∠=,在Rt ABC △中,90ABC ∠=︒,∴90AMC MAB ∠+∠=︒,∵BAC α∠=,∴590AMC CAM BAC α∠+∠+∠==︒,∴18α=︒,∴236MAC AMC α∠=∠==︒,∴22472ACB MAC MAC a αα∠=∠+∠=+==︒;【小问2详解】解:补全图形如图;2EDM BAC ∠=∠,理由如下:如图, 在CB 的延长线上截取BF BC =,连接AF ,在AF 上取点N ,使得CF CN =, 连接CN ,∵,90BF BC ABC =∠=︒,∴AC AF =,∴22CAN BAC α∠=∠=, ∴()1180902AFC ACF CAN α∠=∠=︒−∠=︒−, ∵CF CN =,∴90CNF AFC α∠=∠=︒−,∴1802FCN AFC CNF α∠=︒−∠−∠=,∴903ACN ACF FCN α∠=∠−∠=︒−,∵22MAC BAC α∠=∠=,∴90903AMD MAC BAC α∠=︒−∠−∠=︒−,∴ACN AMD ∠=∠,∵2ME BC =,2CF CN BC ==,∴ME CN =,∵MD AC =,∴()SAS DME ACN ≌,∴22EDM CAN BAC α∠=∠==∠.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,直角三角形的性质.关键是添加辅助线构造全等三角形,找到线段的等量关系.28. 【答案】(1)①1P ,3P ;②1−b ≤≤1(2)d ≥【分析】(1)①根据新定义得出P 点在以OA 为直径的圆上及其内部,以OA 为直径,()1,0为圆心作圆,在圆上或圆内的点即为所求;②根据①可得P 点在以OA 为直径的圆上及其内部,作出图形,进而根据直线y x b =+上存在线段OA 的相关点,求得相切时的临界值,即可求解;(2)设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点,设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,勾股定理求得KB 的值,进而根据对称性可得当K 点在x 轴的下方时,符合题意,即可求解.【小问1详解】解:①∵(2A ,0),∴2OA =,∵P 是线段OA 的相关点,∵2ST PM =,若点,S T 分别与点()()0,0,2,0A 重合,则中点为()1,0,∴P 在以OA 为直径的圆上,∵,S T 是线段OA 上的点,∴P 点在以OA 为直径的圆上及其内部,故答案为: 1P ,3P. ②由题意可得线段OA 的所有相关点都在以OA 为直径的圆上及其内部,如图.设这个圆的圆心是H .(2A ,0),∴ (1H ,0).当直线y x b =+与H 相切,且0b >时,将直线y x b =+与x 轴的交点分别记为B ,则点B 的坐标是(b −,0).∴ 1BH b =+.BH =,∴1b +=1b =.当直线y x b =+与H 相切,且0b <时,同理可求得1b =−.所以b 的取值范围是1−b ≤≤1.【小问2详解】解:设点K 是直线2x =−上一点,且点K ,使得在y 轴上存在以QK 为直径的圆的唯一相关点, 设()2,K k −,则以QK 为直径的圆上两点ST 为直径的圆与y 轴相切于点P ,且ST y ∥轴,如图所示,设以QK 为直径的圆,圆心是C .则5,22k C ⎛⎫− ⎪⎝⎭, ∴52CP = M 是ST 的中点,2ST PM =,∴SP =当ST CP ⊥且ST PC =时,y 轴上存在以QK 为直径的圆的唯一相关点P ,在Rt CSM 中,52224CS CP ===,∴22QK CS ==,∴2KB ===, 根据对称性可得当K 点在x 轴的下方时,也符合题意,∴d ≥.【点睛】本题考查了几何新定义,切线的性质,垂径定理,勾股定理,理解新定义是解题的关键.。
初三数学期中试题及答案

初三数学期中试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333B. πC. 4.5D. 0.5答案:B2. 一个数的平方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1答案:D3. 如果一个三角形的两边长分别为3和4,那么第三边的长度可能是:A. 1B. 2C. 7D. 5答案:D4. 以下哪个图形是轴对称图形?A. 正方形B. 圆C. 正三角形D. 所有选项答案:D5. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 正数或零答案:D6. 以下哪个选项是二次根式?A. √2B. √(-1)C. √(0)D. √(4/9)答案:A7. 一个数的立方等于它本身,这个数可能是:A. 1B. -1C. 0D. 1或-1或0答案:D8. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角是:B. 90度C. 120度D. 30度答案:A9. 以下哪个选项是不等式?A. x + 3 = 7B. x - 5 > 2C. 4x = 16D. 3x ≤ 9答案:B10. 一个数的相反数是它本身,这个数是:A. 1B. -1C. 0D. 任何数答案:C二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是_______。
答案:52. 如果一个数的绝对值是8,那么这个数可能是_______或_______。
答案:8,-83. 一个数的平方根是4,那么这个数是_______。
4. 一个三角形的两边长分别为5和12,根据三角形的三边关系,第三边的长度应该大于_______而小于_______。
答案:7,175. 如果一个数的立方是27,那么这个数是_______。
答案:3三、解答题(每题10分,共50分)1. 已知一个数的平方是25,求这个数。
答案:这个数是±5。
2. 一个直角三角形的两条直角边长分别为6和8,求斜边的长度。
2024-2025学年北京四中初三上学期期中数学试题及答案

数学试卷班级__________ 姓名__________学号__________ 成绩__________一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下面四个标志中是中心对称图形的是( ).A .B .C .D .2.方程220x x -=的根是( ). A .0x =B .2x =C .0x =或2x =D .0x =或2x =-3.若1(3,)A y -,2(2,)B y -,3(3,)C y 为二次函数21y x =+()图象上的三点,则1y ,2y ,3y 的大小关系是( ). A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<4.二次函数(5)(7)y x x =-+的图象的对称轴是(). A .直线1x =- B .直线1x =C .直线2x =D .直线6x =5.如图,AB 为O 直径,点C 、D 在O 上,如果70ABC ∠=︒,那么D ∠的度数为( ).A .20︒B .30︒C .35︒D .70︒6.2024年北京第一季度GDP 约为1.058万亿元,第三季度GDP 约为1.167万亿元,设2024年北京平均每季度GDP 增长率为x ,则可列关于x 的方程为( ). A .21.058(1) 1.167x -= B .1.058(12) 1.167x +=C .21.058(1) 1.167x +=D .21.167(1)1.058x -=7.如图是一个钟表表盘,连接整点2时与整点10时 的B 、D 两点并延长,交过整点8时的切线于点P ,若切线长2PC =,则表盘的半径长为( ).A .3B. C . D.A8.某农场用篱笆围成饲养室,一面靠现有墙(墙足够长),已知计划中的篱笆(不包括门)总长为12m ,现有四种方案(如图)中面积最大的方案为( ). A 方案为一个封闭的矩形B 方案为一个等边三角形,并留一处1m 宽的门C 方案为一个矩形,中间用一道垂直于墙的篱笆隔开,并在如图所示的三处各留1m 宽的门D 方案为一个矩形,中间用一道平行于墙的篱笆隔开,并在如图所示的四处各留1m 宽的门A. B.C. D.二、填空题(共16分,每题2分)9.在平面直角坐标系xOy 中,将抛物线23y x =向上平移1个单位,得到的抛物线表达式为 .10.如图,四边形ABCD 内接于O ,E 为BC 延长线上一点,50A ∠=︒,则DCE ∠的度数为 .11.抛物线256y x x =-+与y 轴的交点的坐标是 .12.如图,PA 、PB 分别切O 于A 、B 两点,点C 为AB 上一点,过点C 作O 的切线分别交PA 、PB 于M 、N 两点,若△PMN 的周长为10,则切线长PA 等于 .第10题图 第12题图13.已知22310a a -+=,则代数式2(3)(3)a a a -++的值为 .14.“青山绿水,畅享生活”,人们经常将圆柱形竹筒改造成生活用具,图1所示是一个竹筒水容器,图2为该竹筒水容器的截面.已知截面的半径为10cm ,开口AB 宽为12cm ,这个水容器所能装水的最大深度....是 cm .图1 图2 第15题图15.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-, 对称轴为直线2x =,抛物线与y 轴交点在(0,1)A 和(0,2)B 之间(不与A 、B 重合).下列结论:①0abc >; ②93a c b +>; ③40a b +=; ④当0y >时,15x -<<; ⑤a 的取值范围为2155a -<<-. 其中正确结论有 .(填序号)16.如图,在直角三角形ABC 中,∠A =90°,D 是AC 上一点,BD =10, AB =CD ,则BC 的最大值为 .三、解答题(共68分,第17题8分,第18、21、25题每题4分,第19、23、24题每题5分,第20、26题6分,第22、27、28题每题7分)17.解下列方程:(1)23610x x -+=; (2)2(3)3x x x -=-.18.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为(1,1)A -,(3,1)B -,(1,4)C -.将△ABC 绕着点B 顺时针旋转90︒后得到△11A BC , (1)请在图中画出△11A BC ; (2)线段BC 旋转过程中所扫过的面积是 (结果保留π).19.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE . (1)求证:△AEB ≌△ADC ; (2)连接DE ,若96ADC ∠=︒,求BED ∠的度数. 20.已知关于x 的一元二次方程22(8)40x k x k +--=.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于3,求k 的取值范围. 21.已知:如图O 及O 外一点P .求作:直线PB ,使PB 与O 相切于点B .李华同学经过探索,想出了两种作法.具体如下(已知点B 是直线OP 上方一点):A ,A 交O 于点B ,则直线PB 是O 的切O 于点M ;②以点的长为半径作弧,交直线,交O 于点B PB 是O 的切线. 证明:如图1,连接OB , A 直径,90PBO =︒.( OB . OB 是O 的半径,∴直线PB 是O 的切线.请仔细阅读,并完成相应的任务.(1)“作法一”中的“依据”是指 ; (2)请写出“作法二”的证明过程.NQ M P22.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(0,2)A -,(2,0)B 两点.(1)求这个二次函数的解析式;(2)填写表格并在给出的平面直角坐标系中画出这个函数的图象;(3)若一次函数y mx n =+的图象也 经过A ,B 两点,结合图象,直接写出 不等式2x bx c mx n ++<+的解集.23.如图,在Rt △ABC 中,90C ∠=︒,BE 平分ABC ∠交AC于点E ,点D 在AB 上,DE EB ⊥. (1)求证:AC 是△BDE 的外接圆的切线;(2)若2AD =,AE =,求EC 的长.24.如图1所示的某种发石车是古代一种远程攻击的武器.将发石车置于山坡底部O 处,以点O 为原点,水平方向为x 轴方向,建立如图2所示的平面直角坐标系,将发射出去的石块当作一个点看,其飞行路线可以近似看作抛物线2(20)y a x k =-+的一部分,山坡OA 上有一堵防御墙,其竖直截面为ABCD ,墙宽2BC =米,BC 与x 轴平行,点B 与点O 的水平距离为28米,竖直距离为6米.若发射石块在空中飞行的最大高度为10米. (1)求抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙.25.如图1,线段AB 及一定点C ,P 是线段AB 上一动点,作直线CP ,过点A 作AQ CP ⊥于点Q ,已知7AB =cm ,设A 、P 两点间的距离为x cm ,A 、Q 两点间的距离为1y cm ,P 、Q 两点间的距离为2y cm .小明根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程:第一步:按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y 、2y 与x 的几组对应值.1(,)x y ,2(,)x y ,并画出函数1y 、2y 的图象. 解决问题:(1)在给出的平面直角坐标系中(图2)补全函数2y 的图象;(2)结合函数图象,解决问题:当△APQ 中有一个角为30︒时,AP 的长度约为 cm .图1图226.在平面直角坐标系xOy 中,已知抛物线224(0)y ax a x a =-≠. (1)当1a =时,求抛物线的顶点坐标;(2)已知1(M x ,1)y 和2(N x ,2)y 是抛物线上的两点.若对于15x a =,256x ,都有12y y <,求a 的取值范围.27.已知,如图,在△ABC 中,∠ACB =90°,∠ABC =45°,点D 在BC 的延长线上,点E 在CB 的延长线上,DC =BE ,连接AE ,过C 作CF ⊥AE 于F ,CF 交AB 于G ,连接DG . (1)求证:∠AEB =∠ACF ;(2)用等式表示CG ,DG 和AE 的数量关系,并证明.28. 对于平面直角坐标系xOy 内的直线l 和点P ,若点A 关于l 作轴对称变换得到点1A ,点1A 关于点P 作中心对称变换得到点2A ,我们则称点2A 为点A 关于直线l 和点P 的“正对称点”. 已知B (-1,0),C (2,0),(1)写出B 关于y 轴和点C 的“正对称点”的坐标________;(2)已知点1C (2,m )(102m ),存在过原点O 的直线1l ,使得点B 关于直线1l 和点1C 的“正对称点”在直线2l :y =x+b 上,求b 的取值范围;(3)已知点H 是直线x =1上的一点,且点H 的纵坐标小于0,C (3,0),E 点在以C 为圆心1为半径的圆上,对于直线x =6上的点F (6,h ),以F 为圆心,1为直径作圆F ,若圆F 上存在点B 关于直线OH 和点E 的“正对称点”,直接写出h 的取值范围.备用图数学参考答案一、选择题1.D 2.C 3.B 4.A 5.A 6.C 7.B 8.C二、填空题9. 231y x =+ 10. 50° 11.(0,6) 12.5 13.8 14.18 15.③④⑤16. 5+ 补充说明:T15只有一个正确答案得1分,有错误答案不得分。
人教版初三上册《数学》期中考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在平面直角坐标系中,点A(3,2),点B(3,2),那么线段AB的中点坐标是()。
A.(0,0)B.(0,1)C.(0,1)D.(1,0)二、判断题(每题1分,共5分)1. 直角三角形的两个锐角互余。
()2. 在同一平面内,垂直于同一直线的两条直线互相平行。
()3. 一元二次方程的根一定是实数。
()4. 圆的周长与半径成正比。
()5. 一组数据的方差越大,说明这组数据的波动越小。
()三、填空题(每题1分,共5分)1. 在等腰三角形中,若底边长为10,腰长为13,则这个等腰三角形的周长是______。
2. 在平面直角坐标系中,点P(m,n)关于原点的对称点坐标是______。
3. 已知一元二次方程ax^2+bx+c=0(a≠0),若方程有两个相等的实数根,则判别式△=______。
4. 在等差数列{an}中,若a1=3,d=2,则第10项a10=______。
5. 在平面直角坐标系中,点A(m,n),点B(m,n),则线段AB的长度是______。
四、简答题(每题2分,共10分)1. 请简述一元二次方程的根的判别式。
2. 请简述圆的性质。
3. 请简述等差数列的性质。
4. 请简述三角形的内角和定理。
5. 请简述平行线的性质。
五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为8,腰长为5,求这个等腰三角形的周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新试卷word 电子文档-可编辑
九年级上册数学期中试题附参考答案
(满分120分 考试时间90分钟)
一、填空题(每空3分,共30分)
1.方程022
=x 的解是_____________.
2.要使□ABCD 成为菱形,需添加的条件是_____________________(写一个即可).
3.若关于x 的一元二次方程0122
=--x kx 有两个不相等的实数根,则k 的取值范围是 .
4.用反证法证明“一个三角形中,必有一个内角小于或等于︒60”时,首先应假设__________.
5.如图在ABC ∆中,PDE ∆的周长为5,CP BP ,分别是
ABC ∠和ACB ∠的角平分线,且AC PE AB PD //,//,
则BC 的长为_________.
6.如图在矩形ABCD 中,3,600
==∠AB AOB , 则=BC _________.
7.如图,在□ABCD 中,对角线AC 、BD 相交于点O , E 是CD 的中点,DOE ∆的周长为8cm ,则ABD ∆的
周长为________.
8.已知:直角三角形斜边上的中线长是2.5,两直角边的和为7,则三角形面积为_______. 9.在周长为1的111C B A ∆中,取各边中点得222C B A ∆,再取
222C B A ∆各边中点得333C B A ∆,依次类推……,则n n n C B A ∆
的周长为________.
10.如图,边长为1的两个正方形互相重合,按住其
中一个不动,将另一个绕顶点A 顺时针旋转0
45, 则这两个正方形重叠部分的面积为_________. 二、选择题(每小题3分,共24分)
11.关于x 的一元二次方程05252
2
=+-+-p p x x 的一个根为1,则实数P 的值是( )
A .4
B .0或2
C .-1
D . 1
12.顺次连接对角线相等的四边形各边中点所得的四边形为( ).
A .平行四边形
B .矩形
C .菱形
D .正方形
13.绛县“大自然服装城”在国庆期间为了促销,下调部分服装价格,男式衬衫经过两次降价
由每件100元降到每件81元,则平均每次降低率为( ). A .8﹪ B .9﹪ C .10﹪ D .11﹪
14.在矩形ABCD 中,E 为CD 中点,连接AE 并延长交BC 的
延长线于点F ,则图中全等的直角三角形有( ) A .3对 B .4对 C .5对 D .6对
15.用两块能完全重合的含0
30角的三角板,能拼成下列五种图形:①矩形 ②菱形 ③等腰三
角形(腰与底不等) ④等边三角形 ⑤平行四边形(不含矩形、菱形)中的( ) A .①②③ B .②③④ C .①③④⑤ D .①②③④⑤
16.某次会议上,每两人相互握一次手,有人统计一共握了66次手,如参加这次会议的有x 人,
则由题意列方程整理后得( )
A B
C
D
E
P
B
C
D 1
1
2
A B
C
D
C '
D '
B '
最新试卷word 电子文档-可编辑
……………………………答……………………………………………………题…………………………………………线………………………
……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………
A .01322=--x x
B .01322
=-+x x C .01322
=+-x x D .01322
=++x x
17.在□ABCD 中,E 是BC 中点,且DCE AEC ∠=∠,
则下列结论不正确的是( ) A .DF BF 2
1
=
B .EFB AFD S S ∆∆=2
C .四边形AEC
D 是等腰梯形 D .ADC AEB ∠=∠
18.如图,,90..20
=∠===BAD CD CB AD AB 点E
是AB 边上的中点,点F 是AC 上一动点,连接EF 、BF ,则 EF+BF 的最小值是( )
A .2
B .5
C .22
D .21+
三、解答题(共66分)
19.解方程(每题6分,共24分)
⑴0652
=+-x x ⑵4252
=+x x
⑶ ()()2
2
322+=-x x ⑷()()041512
=+---y y
20.已知:如图,在ABC ∆中,AB=AC, BC AD ⊥垂足为D ,AN 是ABC ∆外角CAM ∠的平
分线,AN CE ⊥垂足为点E. (10分)
⑴ 求证:四边形ADCE 为矩形
⑵当BC 与AD 在数量上满足什么关系时,四边形ADCE 是 正方形?并给出证明.
21.作图题,如图在线段BC 的两侧分别是正方形BEFC 和矩形ABCD ,请作出线段BC
的
A
B
C
D E
F
A B
D
最新试卷word 电子文档-可编辑
垂直平分线 (8分)
(只能用直尺,保留作图痕迹,不写作法)
22.应用题 (10分)
在直角梯形ABCD 中,,26,24,90,//0
===∠BC AD A BC AD 动点p 从A 开始沿AD 边以s cm /1速度运动,动点Q 从C 开始沿CB 边以s cm /3的速度运动,P 、Q 同时出发,当其中一点到端点,另一点也随之停止。
设运动时间为t s .
⑴当t 为何值时,四边形PQCD 为平行四边形? ⑵当t 为何值时,四边形PQCD 为等腰梯形?
23.ABC ∆是等边三角形,点D 是射线BC 上一个动点(点D 不与点B 、C 重合)ADE ∆是以
AD 为边的等边三角形,过点E 作EG//BC ,分别交AB 、AC 于点F 、G ,连接BE.(14分) ⑴如右图,当D 在线段BC 上时,
①求证:AEB ∆≌ADC ∆(4分)
②探究四边形BCGE 是怎样特殊四边形.说明理由(4分)
⑵如右图,当点D 在BC 的延长线上时,直接写出⑴中 的两个结论是否成立?(2分)
⑶在⑵情况下,当点D 运动到什么位置时,四边形BCGE 为菱形?并说明理由.(4分)
A
B
C
D
P
Q
A
B
C
D
E
F G
A
B C
D E
F
G
最新试卷word 电子文档-可编辑
……………………………答……………………………………………………题…………………………………………线………………………
……………………………答……………………………………………………题…………………………………………线……………………… ……………………………密……………………………………………………封…………………………………………线………………………
九年级数学参考答案
一、填空题:
1、120x x ==
2、AC BD ⊥或AB =BC
3、1k >-且0k ≠
4、没有一个内角小于或等于0
60或每个内角都大于0
60 5、5 6
、 7、16cm 8、6 9、
1
1
2
n - 10
1 二、选择题:
11-15 DCCBC 16-18 ABB 三、解答题:
19、⑴21=x 32=x
⑵1x =
2x = ⑶121
5,3
x x =-=-
⑷122,5y y == 20、⑴证明:∵,AB AC AD BC =⊥
∴1
2
DAC BAC ∠=
∠ 又∵AN 平分MAC ∠
∴1
2
EAC MAC ∠=∠
又∵0
180BAC MAC ∠+∠=
∴0
01
180902
DAE DAC EAC ∠=∠+∠=⨯= 又∵AD BC ⊥,CE AN ⊥ ∴0
90ADC AEC ∠=∠=
∴四边形ADCE 为矩形
21、连接AC 、BD 相交于P
连接BF 、EC 相交于Q 过点P 、Q 作直线MN ∴直线MN 即为所求
22、⑴当PD =CQ 时,四边形PQCD 为平行四边形
由题意得 24-t =3t 解得 t=6
答:当t=6时,四边形PQCD 为平行四边形 ⑵四边形PQCD 为等腰梯形时
过P 、D 向BC 作垂线,垂足为E 、F , 则QE=FC=26-24=2 EF=PD=24-t CQ=3t 由题意得: 24-t+2+2=3t 解得 t=7
答:当t=7时,四边形PQCD 为等腰梯形
23、⑴
①证明:∵ABC 、ADE 是等边三角形
∴,AB AC AE AD ==
0132360∠+∠=∠+∠=
∴12∠=∠ 在AEB ADC 和中
12AE AD AB AC =⎧⎪
∠=∠⎨⎪=⎩
∴AEB ≌ADC (SAS )
⑵①成立 ②成立
⑶当点D 运动到BC=DC 时,四边形BCGE 是菱形 理由:∵AEB ≌ADC
∴BE CD = 又∵BC DC = ∴BE BC =
又∵四边形BCGE 为平行四边形∴ ∴四边形BCGE 是菱形
②四边形BCGE 是平行四边形
∵AEB ≌ADC
60ABE ACB ∠=∠=又∵ABC 为等边三角形0
60ABC ∠= 0120EBC ∠= ACB ∠+∠//EB CG。