二次根式复习课教案

合集下载

中考数学《二次根式》复习教案

中考数学《二次根式》复习教案

二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。

2.会根据公式2)(a=a(a≥0)∣a∣进行计算。

3.熟练进行二次根式的乘除法运算。

4.了解最简二次根式的定义,能运用相关性质化简二次根式。

复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。

复习难点:正确依据二次根式相关性质计算和化简。

复习过程:一.知识结构:三个概念:二次根式最简二次根式同类二次根式三个性质:二次根式的双重非负性2(a=a(a≥∣a∣)四种运算:加.减.乘.除二.复习过程1.二次根式的概念(1).二次根式的定义:形如a(a≥0)的式子叫做二次根式2.二次根式的识别:(1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质(1).双重非负性:a ≥0(a ≥0) (2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x -3有意义。

(2).求下列二次根式中字母的取值范围x 315x --+ 说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除 (1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2( 例2.计算 721)1(⋅ 15253)2(⋅)521(154)3(-⋅-xyx 11010)4(-⋅(2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。

621)6())(()5(75.0)4()3()2(50)1(2222b a b a y x bc a -++6.化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因式分解,然后利用积的算术平方根的性质,将式子化简。

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

二次根式复习课教案

二次根式复习课教案

二次根式复习课教案教学目标1.进一步加深对二次根式的意义和基本性质的理解,能够娴熟的对二次根式进行化简。

2.能够精确娴熟的对二次根式进行运算。

重点:二次根式的基本概念、性质及其相关运算。

难点:综合运用二次根式的性质和法则进行运算。

教学过程:一、复习概念情境设置1:2,39,42,27,15,13,-a2-1,a2①请找出上述式子中的二次根式。

②①中的二次根式都是最简二次根式吗?最简二次根式需要满意哪些条件?③有同类二次根式吗?怎么找同类二次根式?④-a2-1为什么不是二次根式?复习二次根式的基本概念:形如a〔a≥0〕的式子叫做二次根式。

最简二次根式判别方法:根号内不含分母,分母中不含根号,被开放数不含完全平方的因数〔因式〕。

同类二次根式:几个二次根式化成最简二次根式后,假如被开方数相同,这几个二次根式叫做同类二次根式。

情境设置2:已知:△ABC中,∠C=90°,∠B=30°,AC=5师:你能求出线段AC、AB的长吗?生:可以,依据30°的直角三角形的三边之间的关系可知:BC=3AC=3×5=3×5=15AB=2AC=25也可以依据勾股定理得:AB=AC2+BC2=52+152=20=25师:已知直角三角形三边的边长你还能得到哪些结论?生:我们还可以求出直角三角形的周长和面积。

CΔABC=AB+BC+AC=25+5+15=35+15SΔABC=12AC·BC=12×5×15=12×5×15=523师:能够求出AB边上的高吗?生:可以,利用面积法:SΔABC=12AB·hh=2SAB=52325=5435=154师:在上述解题过程中,我们用到了二次根式的哪些性质和法则?生:分别用到了:a·b=a·bab=ab〔要留意被开方数为非负数〕a2=a〔a≥0〕师:特别留意a2和a2两个式子的取值范围。

二次根式的复习教案

二次根式的复习教案

第16章 二次根式的复习一、教学内容与学情分析1.本课在教材、新课标中的地位与作用本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册所有内容的一个总结复习。

二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。

本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。

2.在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。

本节教学内容的新知并不是真正的“新的知识点、新的知识技能、新的知识能力”,而是一种对已学知识的一种重新加工处理的能力,从已学的 知识上提炼出更精粹的东西来。

这也正是学生在这方面的缺憾,需要教师的有效引导与分析。

这更是学生的主要难点。

二.教学目标【知识与技能】(1)二次根式的性质;(2)二次根式的计算与化简;【过程方法】经历例题的讲解让学生理解和掌握二次根式的性质和计算,从此提高学生的计算正确率【情感态度与价值观】通过课堂学习,熏陶学生乐于探究、善于总结的数学学习品质.一.教学重难点教学重点:二次根式的化简和计算教学难点:二次根式的性质,特别突破()2b a -二.教学用具PPT三.教学过程例题讲解例1(1) 3131232-+; (2)()()()1313132-+--. 先引导学生观察是否是最简二次根式,不是最简二次根式要先化简,然后找同类二次根式,最后合并同类二次根式练习1 计算:(1)33162421-+⨯; (2)()()()2525252-+++(3)821212+- (4)226-3628+⨯练习2 当1313-=+=y x ,时,求代数式xy y x +-22的值重点强调格式的书写1.一般地,形如________(a ≥0)的式子叫做二次根式.注意:判断二次根式有意义的条件:被开方数是非负数,即a ≥0.练习1 (1)要使()2b a -在实数范围内有意义,x 的值可以是( ).A.4B.2C.0D.1-(2)若12-m 有意义,则m 的取值范围是 .【补充习题】1. 如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A .2B .2C .22D .62. 正方形的边长是a ,它的面积与长为4,宽为3的矩形面积相等.则a = .3. 若1728+<-<n n ,n 为正整数,则n 的值为 .4. 已知113-=x ,则代数式222++x x 的值为 .5. 已知n 为正整数,若n 12为正整数,则n 的最小值为 .【课堂小测】: 1.计算:_____)2(2=- ; ()_______52=; 612÷=____________.2.若实数a ,b 满足042=-++b a ,则b a =____________. 3.若()x x -=-552,则x 的取值范围是_____________.4. 已知101=+a a ,则aa 1-=___________. 5. 计算: (1)483316122+-; (2)()32748÷- 6. 先化简再求值:当a =9时,求221a a a +-+的值.甲、乙两人的解答如下:甲:原式=()1112=-+=-+a a a a 乙:原式=()1712112=-=-+=-+a a a a a .其中, 的解答是错误的,错误的原因是 课堂小结:()2222yxy x y x ++=+()()22y x y x y x -=-+。

二次根式教案(通用8篇)

二次根式教案(通用8篇)

二次根式教案(通用8篇)二次根式教案(通用8篇)作为一位兢兢业业的人民教师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。

那么什么样的教案才是好的呢?以下是小编整理的二次根式教案8篇,希望能够帮助到大家。

二次根式教案篇1教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点最简二次根式的定义。

教学难点一个二次根式化成最简二次根式的方法。

教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。

第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1 把下列各式化成最简二次根式:例2 把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

二次根式复习教学案

二次根式复习教学案

二次根式复习教学案教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的混合运算。

教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子. 复习过程:一、复习引入:第五章《二次根式》主要掌握哪些重点知识?1、二次根式的概念及性质;2、二次根式的化简;3、二次根式的运算与计算。

二、快乐自学:阅读教材小结与回顾,了解下列知识点:1、二次根式的概念及其性质:(1)两个重要公式:(a )2= a (a ≥0) 2a =|a|=()()⎩⎨⎧-≥00 a a a a(2)两条重要性质:积的算术平方根性质b a ⨯=b a ⨯(a ≥0,b ≥0) 商的算术平方根性质a b =a b(a ≥0,b>0) 要注意满足的条件。

(3)两条重要法则:二次根式的乘法法则: a ·b =ab .(a ≥0,b ≥0)二次根式的除法法则: a b =a b (a ≥0,b>0) 2、二次根式的化简与运算:(1)同类二次公式的概念(2)最简二次根式的概念(3)分母有理化的概念。

3、二次根式的混合运算顺序与实数的运算顺序相同,先算乘方、开方,再算乘除、最后算加减,如果有括号的就先算括号内。

三、合作探究1、若x 54+有意义,则x 的取值范围是 .2、下列各式一定是二次根式的是: 1-x 、52+x 、 2x - x 33、若12-=aa ,则a 的取值范围是 . 4、x <-2时,2)2(+x =( )A .x+2B .-x-2C .-x+2D .x-25、()()的值,则mb a m b a +=-+-++,021232 6、下列二次根式中,和32是同类二次根式的是( ) A.12 B.50 C.27 D. 247、)(2223)32(-⨯+的计算结果是 . 8、已知m 、n 为实数,且满足m=349922-+-+-n n n ,求6m-3n 的值。

二次根式教案(实用7篇)

二次根式教案(实用7篇)

二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。

二次根式复习教案

二次根式复习教案

二次根式复习课教学目标1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.教学重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.教学过程设计一、复习1.请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式.2.二次根式的乘法及除法的法则是什么?用式子表示出来.指出:二次根式的乘、除法则也是在一定条件下成立的.把两个二次根式相除,计算结果要把分母有理化.3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.x≥-2且x≠0.解因为n2-9≥0,9-n2≥0,且n-3≠0,所以n2=9且n≠3,所以例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解因为1-a>0,3-a≥0,所以a<1,|a-2|=2-a.(a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)≥0.这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算.解注意:所以在化简过程中,例6分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2 B.a≥2C.a≠2 D.a<2A.x+2 B.-x-2C.-x+2 D.x-2A.2x B.2aC.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:。

《二次根式复习》教学设计

《二次根式复习》教学设计
6.当时听课的老师或者专家对你这节课有什么评价?对你有什么启发?
复习本章知识框架,做PPT课件上6道判断题用时10分钟。做课前小测及讲评用时约8分钟,做典型题组及讲评用时约22分钟(主要针对中下生)。所有练习均为学生先做后学(难题、易错题老师讲评)。多数同学能在堂上完成到题组训练部分。
总的来说本课能完成既定的目标,但细节上个别题目的安排可能要作修改,如小测题第3小题“不改变根式的大小把根式外的因式移到根号内”难度跨度大,在此处可暂时不做此类题,改为做分母有理化的题,如 等化简是学生的难点,要重点解决,保证基本题过关。这样也使到在做问题2(2)小题时可顺利一些。另外在复习知识框架时穿插问题1的练习,可避免概念复习的抽象化,也节约了时间。对问题1的第(3)题在重点班可去掉“最简二次根式”的条件,要求会写出求a值的过程,且不限一个解答。训练中三个层次:最基本题组、基本题组、变式题组的难度相应为A组、B组、C组,可在卷上注明,或老师堂上说明,学生可按自己水平选做相应的题组,重点班要求全做。
针对不同的学生,不同的问题进行不同的检测
堂清检测
实现面向全体教学的目标
七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)
根据不同学生掌握新知的程度不同,对作业的完成也有不同的要求。为此,对于A类学生应能运用新知解决相关程度的问题(巩固提高第1、2、3、4、5题);而B类学生要求解决相关的基础性问题(巩固提高第1、2题),对与新知相关程度的问题应积极尝试;
八、板书设计(本节课的主板书)
1.二次根式:式子 ( ≥0)叫做二次根式。(当 ≥0时, ≥0;当 ≥0时, 在实数范围内有意义。)
2.最简二次根式:必须同时满足下列条件:

二次根式教案三篇

二次根式教案三篇

二次根式教案三篇二次根式教案三篇二次根式教案篇1 一、内容解析本节教材是在学生学习二次根式概念的根底上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和考虑得到二次根式的两个根本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个详细问题,让学生学生根据算术平方根的意义,就详细数字进展分析^p 得出结果,再分析^p 这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析^p ,确定本节课的教学重点为:理解二次根式的性质.二、目的和目的解析1.教学目的〔1〕经历探究二次根式的性质的过程,并理解其意义;〔2〕会运用二次根式的性质进展二次根式的化简;〔3〕理解代数式的概念.2.目的解析〔1〕学生能根据详细数字分析^p 和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;〔2〕学生能灵敏运用二次根式的性质进展二次根式的化简;〔3〕学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析^p二次根式的性质是二次根式化简和运算的重要根底.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵敏运用二次根式的性质进展二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的.灵敏运用存在一定的困难,打破这一难点需要老师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵敏运用的才能.本节课的教学难点为:二次根式性质的灵敏运用.四、教学过程设计1.探究性质1问题1 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕.【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的才能.例2 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质1,学会灵敏运用.2.探究性质2问题4 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的才能.例3 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质2,学会灵敏运用.3.归纳代数式的概念问题7 回忆我们学过的式子,如 ___________〔≥0〕,这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括才能.4.综合运用〔1〕算一算:【设计意图】设计有一定综合性的题目,考察学生的灵敏运用的才能,第〔2〕、〔3〕、〔4〕小题要特别注意结果的符号.〔2〕想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.〔3〕谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思〔1〕你知道了二次根式的哪些性质?〔2〕运用二次根式性质进展化简需要注意什么?〔3〕请谈谈发现二次根式性质的考虑过程?〔4〕想一想,到如今为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2 活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。

人教八下数学《二次根式》复习教案

人教八下数学《二次根式》复习教案

人教八下数学《二次根式》复习教案【教学目标】1. 复习二次根式的概念和性质;2. 复习二次根式的计算方法;3. 引导学生理解二次根式的实际意义和应用;4. 提高学生解决实际问题的能力。

【教学重难点】1. 二次根式的计算方法;2. 二次根式的意义和应用。

【教学准备】教材、课件、笔记、习题、工具书等。

【教学过程】一、复习导入(10分钟)1. 让学生回顾二次根式的定义;2. 复习二次根式的性质:乘法性质、开方性质等。

二、概念解释与示例演练(20分钟)1. 解释二次根式的概念:如果a>0,那么形如√a的式子就叫做二次根式;2. 给出一些简单的例子,让学生计算并写成简化形式;3. 引导学生观察和总结计算二次根式的方法。

三、题目讲解与练习(30分钟)1. 分析教材中的例题,引导学生理解二次根式的实际意义和应用;2. 讲解解答题的思路和方法,包括合并同类项、化简等;3. 给学生一些练习题,让学生独立解答,并讲解答案。

四、拓展与应用(10分钟)1. 引导学生思考二次根式的实际应用,如计算面积、体积和边长等;2. 提供相关的应用题,让学生思考如何应用二次根式解决问题。

五、总结归纳(5分钟)1. 让学生总结本节课所学的内容及知识点;2. 强调重点和难点,提醒学生进行复习。

【板书设计】二次根式的复习概念:形如√a的式子二次根式计算方法:合并同类项、化简等性质:乘法性质、开方性质等实际应用:计算面积、体积、边长等【课后作业】1. 完成教材习题;2. 思考并解答一道具体的二次根式应用题;3. 复习并总结本节课所学的知识点和解题方法。

二次根式教案(精选10篇)

二次根式教案(精选10篇)

二次根式教案(精选10篇)二次根式教案 1一、教学目标1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。

2、会进行简单的二次根式的乘法运算。

3、使学生能联系几何课中学习的勾股定理解决实际问题。

二、教学重点和难点1、重点:会利用积的算术平方根的性质化简二次根式。

2、难点:二次根式的乘法与积的算术平方根的关系及应用。

重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。

积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。

二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。

本节难点是二次根式的乘法与积的算术平方根的关系及应用。

积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。

要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。

综合应用性质或乘法公式时要注意题目中的条件一定要满足。

三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。

1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。

在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2、积的算术平方根的.性质和__及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。

由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段利用投影仪。

五、教学过程(一)引入新课观察例子得到结果类似地可以得到:由上一节知道一般地,有=(a,b)通过上面的例子,大家会发现=(a,b)也成立(二)新课积的算术平方根。

二次根式教案四篇

二次根式教案四篇

二次根式教案四篇二次根式教案篇11、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

课本第2— 3页一、课前准备(预习学案见附件1)学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、课堂教学(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。

组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。

教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。

(15分钟左右)1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2. 教师对合作学习中存在的.普遍的不能解决的问题进行集体讲解。

3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)三、课后作业(课后作业见附件2)教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计课题:二次根式(1)二次根式概念例题例题二次根式性质反思:二次根式教案篇2一、内容和内容解析1.内容二次根式的除法法则及其逆用,最简二次根式的概念。

2.内容解析二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.二、目标和目标解析1.教学目标(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;(2)会进行简单的二次根式的除法运算;(3) 理解最简二次根式的概念.2.目标解析(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.三、教学问题诊断分析本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的'根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.四、教学过程设计1.复习提问,探究规律问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?师生活动学生回答。

二次根式复习教案

二次根式复习教案

二次根式复习教案教案标题:二次根式复习教案一、教学目标:1. 知识目标:复习二次根式的定义、性质和运算规律。

2. 能力目标:培养学生对二次根式的理解和运用能力,提高解决实际问题的能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维和创新意识。

二、教学重点和难点:1. 重点:二次根式的定义和性质,二次根式的加减乘除运算。

2. 难点:二次根式的运算规律和实际问题的应用。

三、教学内容和安排:1. 复习二次根式的定义和性质:引导学生回顾二次根式的定义,以及二次根式的性质,如同底数、同指数的二次根式可以合并为一个二次根式等。

2. 二次根式的加减运算:通过例题讲解,引导学生掌握二次根式的加减运算规律,特别是要注意化简和合并同类项。

3. 二次根式的乘除运算:通过例题讲解,引导学生掌握二次根式的乘除运算规律,特别是要注意分子分母的有理化和化简。

4. 实际问题的应用:通过实际问题的讨论和解答,引导学生将二次根式的知识应用到实际生活中,培养学生的问题解决能力。

四、教学方法和手段:1. 讲授法:通过讲解和示范,引导学生理解和掌握二次根式的定义、性质和运算规律。

2. 练习法:设计一定数量和难度的练习题,让学生巩固和应用所学知识。

3. 实践法:引导学生通过实际问题的讨论和解答,将二次根式的知识应用到实际生活中。

五、教学评价和反馈:1. 课堂练习:布置一定数量和难度的练习题,让学生在课后进行练习,及时发现和纠正错误。

2. 课堂表现:通过课堂讨论和练习的表现,及时评价和反馈学生的学习情况,鼓励优秀,帮助落后。

六、教学资源准备:1. 教学课件:准备相关的教学课件,包括二次根式的定义、性质和运算规律的示意图和例题。

2. 教学工具:准备黑板、彩色粉笔、教学实物等教学工具。

七、教学反思和改进:1. 教师要及时总结课堂教学的得失,反思教学方法和手段的有效性,不断改进教学内容和安排,提高教学质量。

2. 学生的学习情况要及时反馈给家长,与家长密切合作,共同关注学生的学习进步。

二次根式的复习教案

二次根式的复习教案

二次根式的复习教案二次根式是数学中的一种运算形式,也是中学数学中的重要内容。

学生对于二次根式的理解和掌握程度直接影响到其对于数学整体的理解和应用能力。

因此,本教案将围绕二次根式的概念、性质和运算法则展开,帮助学生对二次根式有一个全面的复习和加深理解。

一、概念回顾1.二次根式的定义:如果a是正实数,那么形如√a的数就叫做二次根式。

其中,√a叫做二次根号,a叫做被开方数。

2.二次根式的简化:一个二次根式,如果被开方数a的因数中有一个是平方数,那么这个二次根式就可以简化。

3.二次根式的分解:一个二次根式,如果可以分解成两个因数的二次根式的乘积形式,那么这个二次根式就可以进行分解。

二、性质回顾1.二次根式的大小比较:如果a和b都是正实数且a<b,那么√a<√b。

2.二次根式的相加减:如果a和b都是非负实数,那么√a±√b=√(a±b)。

3. 二次根式的乘法:如果a和b都是非负实数,那么(√a)(√b)=√(ab)。

4.二次根式的除法:如果a和b都是非负实数,且b≠0,那么(√a)/(√b)=√(a/b)。

三、运算法则复习1.化简二次根式:将一个二次根式化简成最简形式。

2.合并同类项:将含有相同被开方数的二次根式合并为一个二次根式。

3.分解二次根式:将一个二次根式分解成两个因数的二次根式乘积形式。

4.有理化分母:将一个二次根式的分母有理化,即将其分母中的二次根式化简成有理数。

四、练习题设计1.计算以下二次根式的值:(1)√9;(2)√16;(3)√25;(4)√362.简化以下二次根式:(1)√8;(2)√18;(3)√32;(4)√753.计算以下表达式的值:(1)√16+√9;(2)√25-√16;(3)(2√5+√2)(√5-√2);(4)(√3+√2)²。

4.将以下二次根式分解为两个因数的乘积形式:(1)√40;(2)√98;(3)√252;(4)√725.有理化以下二次根式的分母:(1)1/√3;(2)2/(√2+√5);(3)(3+√2)/(√2-1);(4)1/(√2-√3)。

二次根式复习课教案

二次根式复习课教案

第三关:尊贵铂金 非负性的应用.
已 知 : x 4 y 13 0 , 求
x y 的值.
第四关:永恒钻石 二次根式加减乘除混合运算
(1)
12 1 32 3
2
(2) 2 3 1 2 2 2 2 2 2
的完成情况,并
适时进行指导; 进行闯关 启发学生灵活 挑战,完 应用一题多解 成后 的思想解决问 与同伴交 题,培养学生 流 学生的逻辑思
情感、态度与价值观目标:
培养学生勇于探索的精神,激发学生的学习兴趣和学习积极性.
二、教学重难点
教学重点:熟练掌握二次根式的性质及运算法则,提高运算的准确性.
教学难点:熟练应用二次根式的性质解决相关问题.
三、教学方法
游戏驱动,讲练结合. 四、教学过程
教学过程
教师活动
学生活 动
设计意图
知识点回顾
教师以提问的方式 通过回答进 引导学生复习二次 一步熟悉知 根式的相关知识点 识点
课题
二次根式
科目
数学
教者
日期
2019.11.20
授课类型
复习课
一、教学目标
知识与技能目标:
(1)进一步理解二次根式的概念,二次根式的性质及运算法则.
(2)熟练运用二次根式的性质及运算法则.
过程与方法目标:
(1)夯实二次根式的性质、运算法则.
(2)在解决问题的过程中,让学生学会聆听、学会思考,同时发展学生归纳和概括能力.
复习旧知,为接下来 的环节做准备
勇者闯关:
第一关:秩序白银
把下列各式化为最简二次根式:
1
18
0.5
8
第二关:荣耀黄金 确定二次根式中被开方数所含字母 的取值范围.

二次根式的复习教案

二次根式的复习教案

二次根式的复习教案教案标题:二次根式的复习教案教学目标:1. 复习二次根式的基本概念和性质。

2. 强化学生对二次根式计算和简化的能力。

3. 提高学生对二次根式在实际问题中的应用能力。

教学步骤:引入活动:1. 引入二次根式的概念:将一个非负实数a开平方得到的结果称为二次根式,通常用√a表示。

知识讲解:2. 回顾二次根式的性质:a. √a * √b = √(a * b)b. √(a / b) = √a / √b,其中b ≠ 0c. (a ± b)² = a² ± 2ab + b²d. (√a ± √b)² = a ± 2√(ab) + b示例分析与练习:3. 通过示例,解释和计算二次根式的加减乘除运算。

a. 如√2 + √3 = √(2 + 2√6 + 3) = √(5 + 2√6)b. 如√5 - √2 = √(5 - 2√10 + 2) = √(7 - 2√10)c. 如(√2 + √3)(√2 - √3) = 2 - 3 = -1d. 如(√5 + 2)(√5 - 2) = 5 - 4 = 1应用拓展:4. 将二次根式应用到实际问题中,如:问题1:甲班有10个学生,乙班有12个学生,那么两个班一共有多少学生?问题2:一个正方形的边长为√5 cm,求正方形的面积。

综合练习:5. 给学生一些综合练习题,帮助学生巩固对二次根式的计算、简化和应用能力。

概念复习与总结:6. 复习和总结二次根式的基本概念和运算规则,强调学生需要多做练习来提高能力。

扩展活动:7. 鼓励学生寻找更多关于二次根式的实际应用例子,并与同学分享。

课堂作业:8. 布置一些二次根式的作业题,要求学生综合运用所学知识解决问题。

教学资源:- 黑板/白板和书写工具- 二次根式的示例题和练习题- 教材和参考书籍这个教案的撰写目的是为了引导学生对二次根式进行复习和巩固,以提高他们的理解和应用能力。

二次根式教案优秀6篇

二次根式教案优秀6篇

二次根式教案优秀6篇次根式教案篇一【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。

【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。

三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。

四、课堂练习:(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242.(二).P673计算(2)(4)补充练习:1.(x0,y0)2.拓展与提高:化简:1).(a0,b0)2).(y2.若,求m的取值范围。

☆3.已知:,求的值。

五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题次根式教案篇二教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。

本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。

通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。

另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

学生分析:本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式复习课
崇礼初中初三数学备课组
复习内容
本节课是对二次根式进行系统的复习,巩固所学知识,提升应用方法。

复习目标
1.知识与技能:会理解二次根式的意义,会化简二次根式,会进行二次根式的乘除、加减混合运算
2.过程与方法:经历探究二次根式概念及运算的过程,体会二次根式的解题方法
3.情感、态度与价值观:培养学生良好的运算习惯和不懈的探索精神。

复习重点、难点、关键
重点:二次根式的化简以及运算。

难点:二次根式的性质及运算法则的正确使用。

关键:充分理解二次根式的概念,运用知识迁移的手法,休会二次根式的混合运算的算法。

复习过程设计 一、复习 1.请同学回忆:
(1) 二次根式:a (a ≥0)的式子:()
a a ;a a ==2
2||(a ≥0)
(2) 运算法则:二次根式的计算有二次根式的乘法、除法及加减法。

乘法:b a ab ⋅=(a ≥0,b ≥0) 除法:
b
a
b a =
(a ≥0,b>0) 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时要考虑字母的取值范围,运算结果化成最简二次根式
2.二次根式的运算主要研究二次根式的乘除和加减,对于二次根式的加减,
关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并。

注意:二次根式运用算结果应尽可能化简
(1).二次根式的化简必须满足:A.被开方数不含分母;B.被开方数中不含能开得尽方的因数或因式.
(2).二次根式的加减:即合并同类二次根式.同类二次根式必须满足:A.都是最简二次根式,B.它们的被开方数必须完全相同.
二、例题
例1 x取什么值时,下列各式在实数范围内有意义:
分析:
(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;
(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.
x ≥-2且x ≠0. 练习一: 1).使1
13-+
-x x 有意义的x 的取值范围是( )
A 1≤x ≤3
B 1< x ≤3
C x ≥ 1
D x < 3 2).x 时,式子
4
||35-+x x
有意义.
解因为n 2-9≥0,9-n 2≥0,且n-3≠0,所以n 2=9且n ≠3,所以
练习二:
已知x 、y 是实数,且的值求y x x x x y 65,3
2
9922++--+-=
例3:计算()(
)(
)
2
3212324818--
-+
答案:5612-
教师评析:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,使运算过程简便,此题利用根式乘法将32183218⨯=⨯也能算出结果,但这样计算量较大,不如将各根式化简后再乘方便,还要特别注意不要出现
(
)()()2
2
2
323
2-=-此类常见的错误,另外,根式的分数必须写
成假分数或真分数, 不能写成带分数,例如
22
1
82217不能写成. 练习三: 1)、计算:63
1
205315÷⨯
2)、计算: (
)
2
232
1
4
1
2218----+
3)、计算:
a
b
b a ab b 3123233÷
⎪⎭⎫ ⎝⎛- 例四:化简a
a 1
-= 2.若0<x 则||2x x -等于 ( ) 练习四:
若化简得则b a ,b a 300-><( )
A ab a --
B ab a -
C ab -
D ab a 三、小结
1.本节课复习的四个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.
2.在二次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.
单元小测试(30分钟)1.选择题(4*5=20分):
A.a≤2 B.a≥2
C.a≠2 D.a<2
A.x+2 B.-x-2
C.-x+2 D.x-2
A.2x B.2a
C.-2x D.-2a
2.填空题:(4*9=36分)
3.计算:(2*10=20分)
(2)
a a a a a a 1083
4333273123++-
4.已知化简并求值,,y x 483==:(12分)
()
()222
222+++-+-+-+++-+xy
y x x y y
x y x xy y x y
x x
y y x 5、(12分)

y
x y x ,y x y x ,y x 等于多少呢那么
且都是实数、+-=+-++-2204232|12|。

相关文档
最新文档