小学奥数教师版-4-4-3 圆与扇形(三)
小学奥数——圆与扇形
小学奥数——圆与扇形1.如图,阴影部分的面积是多少平方厘米?
2.如图,阴影部分的面积是多少平方厘米?
3.如图正方形的面积是15平方分米,则圆的面积是多少平方分米?
4.如图,是一个圆心角45°的扇形,其中等腰直角三角形的直角边
为6厘米,则阴影部分的面积是多少平方厘米?
5.如图,其中四个圆的直径均为2厘米;那么阴影部分的面积是多
少平方厘米?
6.如图,阴影部分的面积是多少平方厘米?
7.如图,等边三角形的边长为20厘米,求阴影部分的面积?
8.如图,正方形的边长为10厘米,求阴影部分的面积?
练习题1.如图,阴影部分的面积是多少平方厘米?
2.如图,正方形ABCD,等腰直角三角形ADE,及半圆CAE,若AB=2厘米,则阴影部分的面积是多少平方厘米?
3.如图,正方形的面积是24平方分米,则圆的面积是多少平方分米?
4.如图,是一个圆心角45°的扇形,其中直角三角形的直角边为5厘米,则阴影部分的面积与空白部分的面积之差为多少平方厘米?
5.如图,其中四个圆的直径均为2厘米,那么阴影部分的面积是多少平方厘米?
6.如图,阴影部分的面积是多少平方厘米?
7.如图,圆直径均为1厘米,求阴影部分的面积?
8.如图,等腰直角三角形的直角边为8厘米,求阴影部分的面积?。
奥数班六年级第3讲 圆和扇形
ro第六讲 圆和扇形(1)【知识点拨】圆的面积2πr = 扇形的面积2π360nr =⨯; 圆的周长2πr = 扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n. 比如:扇形的面积=所在圆的面积360n⨯; 扇形中的弧长部分=所在圆的周长360n ⨯ 扇形的周长=所在圆的周长360n⨯+2⨯半径 (易错点是把扇形的周长等同于扇形的弧长)②弓形:(如右图)弓形一般不要求周长,主要求面积. 一般来说,弓形面积=扇形面积-三角形面积。
③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的)②等积变形(割补、平移、旋转等)③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)【典型例题】模块一周长和弧长例1:如图是个半圆(单位:厘米),其阴影部分的周长是多少?例2:直径均为1米的四根管子被一根金属带紧紧地捆在一起如图,试求金属带的长度和阴影部分的面积。
例3:草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
问:这只羊能够活动的范围有多大?10m20mDBA 模块二 面积例4:如图,圆O 1、圆O 2、圆O 3的半径都是2厘米,则阴影部分的面积是多少平方厘米?例5:求下面各个图形中阴影部分的面积(单位:厘米)。
例6:如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)【课堂精练】1.下图中每个小圆的半径是1厘米,阴影部分的周长和面积分别是多少?6cm2.如图所示,以B、C为圆心的两个半圆的直径都是2厘米,则阴影部分的周长是多少厘米?3.求下面各个图形中阴影部分的面积(单位:厘米)。
六年级奥数第8次课:圆与扇形(教师版)
【我生命中最最最重要的朋友们,请你们仔细听老师讲而且随着老师的思想走。
学业的成功重在于考点的不停过滤,相信我赠予你们的是你们学业成功的过滤器。
感谢使用!!!】圆与扇形一、考点、热门回首五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的有关问题,这一讲学习与圆有关的周长、面积等问题。
圆的周长、面积计算公式:c d 或 c 2 r s r 2半圆的周长、面积计算公式:c rd s 1 r 22扇形的周长、面积:c ad 2r s a r 2360 360如无特别说明,圆周率都取π=3.14 。
二、典型例题:例 1、以下列图所示,200 米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽 1.22 米,那么外道的起点在内道起点前方多少米?(精准到0.01 米)剖析与解:半径越大,周长越长,因此外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
固然弯道的各个半径都不知道,但是两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r ,则两个弯道的长度之差为πR- π r =π( R-r )= 3.14 ×1.22 ≈ 3.83 (米)。
即外道的起点在内道起点前方 3.83 米。
例 2、有七根直径 5 厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下列图),此时橡皮筋的长度是多少厘米?剖析与解:由右上图知,绳长等于 6 个线段 AB 与 6 个 BC弧长之和。
将图中与BC弧近似的6 个弧所对的圆心角平移拼补,获得 6 个角的和是 360°,因此 BC弧所对的圆心角是 60°,6 个 BC弧等于直径 5 厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5× 6+ 5×3.14 = 45.7 (厘米)。
例 3 、左下列图中四个圆的半径都是 5 厘米,求暗影部分的面积。
4-4-3-圆与扇形(三).教师版
、研究圆、扇形、弓形与三角形、矩形、平行四边形.梯形等图形组合而成的不规则图形,通过变动图形的位爲或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.S1的面积=nr;扇形的面积=TO-- X ;360®的周长=2耐;扇形的弧长=2兀『>< 上-•360踉曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形扇形是®的一部分.我们经常说的尹廿圆、評精其实都^形両这个几分次表示的其实磁个扇形的團心角占这个釀角的几分之几•那么一般的求法是什么呢?关键是£ ■3D U比如:扇形的面积二所在圆的面积X丄;360扇形中的弧长部分=所在圆的周长X—360扇形的周长=所在團的周长X昙+2X半径(易错点是把扇形的周长等同于扇形的弧长)360②弓形:弓形一般不要求周长,主要求面积.一般来说弓形面积=扇形面积-三角形面积.(除了半圆)③"弯角":如图:卜〜弯角的面积=正方形-扇形④"谷子":如图:"谷子"的面积=弓形面积x2 二、常用的思想方法:①转化思増(复杂转化为简单,不熟悉的转化为熟悉的)②等积变形(割补、平移、旋转等)③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入芙看与要求的部分之间的"关系")板块、曲线型旋转问题【例1]正三角形的边长是6厘米,在一条直线上将它《滾几次,使A点再次落在这条直线上,那么A 点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是15平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留兀)【考点] [解析3如图所示.A 点在翻滚过程中经过的路线为两段123的圆弧所以路线的总长度为:1202兀X 6 X x2 = 8兀厘米;360三角形在滚动过程中扫过的图形的为两个120。
六年级奥林匹克数学基础教程 11 圆与扇形
小学数学奥数基础教程圆与扇形五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=πr2,圆的周长=2πr,本书中如无特殊说明,圆周率都取π=3.14。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为πR-πr=π(R-r)=3.14×1.22≈3.83(米)。
即外道的起点在内道起点前面3.83米。
例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。
将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360°,所以BC弧所对的圆心角是60°,6个BC弧等于直径5厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5×6+5×3.14=45.7(厘米)。
例3左下图中四个圆的半径都是5厘米,求阴影部分的面积。
分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。
容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。
右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+πr2×2=102+3.14×50≈257(厘米2)。
例4 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
小学高级奥数第3讲-圆与扇形之包含与排除和旋转对称
课后作业
<作业3> 求图中阴影部分的面积。(π取3)
课后作业
课后作业
<作业4>
如图,一条直线上放着一个长和宽分别为4厘米和3厘米的长方形Ⅰ.它的对 角线长恰好是5厘米.让这个长方形绕顶点B顺时针旋转90度后到达长方形Ⅱ 的位置,这样连续做三次,点A到达点E的位置.求点A走过的路程的长.(用 π的式子表示)
3
课后作业
<作业1>
在下图中,阴影部分的面积是5平方厘米,以OA为直径的半圆的面积是多少? (用π的式子表示)
课后作业
<作业1>
如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积 是多少?(圆周率取3.14)(用π的式子表示)
D
E
A
F
B
C
<作业2> 求图中阴影部分的面积.(用π的式子表示)
•已知半圆所在的圆的面积为62.6平方厘米,求阴影部分的面积.( 3.14)
A
D CO
B
一个正方形的边长为2,它的一半是一个等腰直角三角形,逆时针旋转90度, 得到如下图型,求阴影部分得面积。(用π的式子表示)
下图是一个直径为3的半圆,让这个半圆以A点为轴沿逆时针方向旋转60度, 此时B点移动到B’点,求阴影部分的面积。(用π的式子表示)
B
A
C
(奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片. 它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸 片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和是多少 平方厘米.
在桌面上放置 个两两重叠、形状相同的圆形纸片.它们的面积都是 平方厘 米,盖住桌面的总面积是 平方厘米,1,2,3,部分的面积和为80, 张纸 片共同重叠的面积是阴影部分,求阴影部分得面积。
六年级奥数-圆与扇形
六年级奥数圆与扇形知识要点:五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=n r2,圆的周长=2 n r ,扇形的面积=兀芒%為崩形的弧长= 2H r X^o dbu本书中如无特殊说明,圆周率都取n =3.14。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?45.7例3左下图中四个圆的半径都是5厘米,求阴影部分的面积。
257例4早场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见左下图)。
问:这只羊能够活动的范围有多大? 2512吊例5右图中阴影部分的面积是2.28厘米2,求扇形的半径。
4cm例6右图中的圆是以0为圆心,半径是10厘米的圆,求阴影部分的面积。
ioocm课堂练习:1. 直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米。
如下图所示,三角形由位置I绕A点转动,至U达位置U,此时B,C点分别到达B, C点;再绕B点转动,到达位置川,此时A,C点分别到达A,C2 点。
求C点经C到C走过的路径的长。
68厘米2. 下左图中每个小圆的半径是1厘米,阴影部分的周长是多少厘米? 62.8厘米3. 一只狗被拴在一个边长为3米的等边三角形建筑物的墙角上(见右上图),绳长是4米,求狗所能到的地方的总面积。
43.96m24•左下圏中,廟形的面积是半圆ADB面积的百倍,求角CAE的度数*605. 右上图是一个400米的跑道,两头是两个半圆,每一半圆的弧长是100米,中间是一个长方形,长为100米。
求两个半圆的面积之和与跑道所围成的面积之比。
1:36. 左下图中,正方形周长是圆环周长的2倍,当圆环绕正方形无滑动地滚动一周又回到原来位置时,这个圆环转了几圈?3圈7. 右上图中,圆的半径是4厘米,阴影部分的面积是14n厘米2,求图中三角形的面积。
小学奥数4-4-2 圆与扇形(二).专项练习及答案解析
研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、 跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n. 比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、 常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块二 曲线型面积计算例题精讲圆与扇形【例 1】 如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________.DCBA【考点】圆与扇形 【难度】3星 【题型】填空【解析】 设半圆ADB 的半径为1,则半圆面积为21ππ122⨯=,扇形BAC 的面积为π42π233⨯=.因为扇形BAC 的面积为2π360n r ⨯,所以,22ππ23603n ⨯⨯=,得到60n =,即角CAB 的度数是60度.【答案】60度【例 2】 如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆,已知图中阴影部分的面积是17,那么角A 是多少度(π3=)67CBA【考点】圆与扇形 【难度】4星 【题型】解答【解析】 167212ABC S =⨯⨯=△,三角形ABC 内两扇形面积和为21174-=,根据扇形面积公式两扇形面积和为2π24360B C∠+∠⨯⨯=°,所以120B C ∠+∠=°,60A ∠=°. 【答案】60度【例 3】 如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?【考点】圆与扇形 【难度】3星 【题型】解答【解析】 小圆的面积为2π525π⨯=,则大小圆相交部分面积为325π15π5⨯=,那么大圆的面积为422515ππ154÷=,而2251515422=⨯,所以大圆半径为7.5厘米.【答案】7.5【例 4】 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)CBA【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由右图知,绳长等于6个线段AB 与6个BC 弧长之和.将图中与BC 弧相似的6个弧所对的圆心角平移拼补,可得到6个角的和是360︒, 所以BC 弧所对的圆心角是60︒,6个BC 弧合起来等于直径5厘米的圆的周长. 而线段AB 等于塑料管的直径,由此知绳长为:565π45⨯+=(厘米). 【答案】45【例 5】 如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心,12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 如图,点C 是在以B 为中心的扇形上,所以AB CB =,同理CB AC =,则ABC∆是正三角形,同理,有CDE ∆是正三角形.有60ACB ECD ∠=∠=,正五边形的一个内角是1803605108-÷=,因此60210812ECA ∠=⨯-=,也就是说圆弧AE 的长度是半径为12厘米的圆周的一部分,这样相同的圆弧有5个,所以中间阴影部分的周长是()122 3.1412512.56cm 360⨯⨯⨯⨯=.【答案】12.56【例 6】 如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 图中四个小圆的半径为大圆半径的一半,所以每个小圆的面积等于大圆面积的14,则4个小圆的面积之和等于大圆的面积.而4个小圆重叠的部分为灰色部分,未覆盖的部分为黑色部分,所以这两部分面积相等,即灰色部分与黑色部分面积相等.【答案】相等【例 7】 如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,2212S r r π=-,所以()12: 3.142:257:100S S =-=.移动图形是解这种题目的最好方法,一定要找出图形之间的关系.【答案】57:100【例 8】 用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 大圆直径是小圆的3倍,半径也是3倍,小圆面积∶大圆面积22π:π1:9r R ==,小圆面积13649=⨯=,7个小圆总面积4728=⨯=,边角料面积36288=-=(平方厘米).【答案】8【例 9】 如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 由于直接求阴影部分面积太麻烦,所以考虑采用增加面积的方法来构造新图形.由右图可见,阴影部分面积等于16大圆面积减去一个小圆面积,再加上120︒的小扇形面积(即13小圆面积),所以相当于16大圆面积减去23小圆面积.而大圆的半径为小圆的3倍,所以其面积为小圆的239=倍,那么阴影部分面积为21259π1π 2.5636⎛⎫⨯-⨯⨯== ⎪⎝⎭.【答案】2.5【例 10】 如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)CA【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 所要求的阴影面积是用正六边形的面积减去六个小扇形面积、正六边形的面积已知,现在关键是小扇形面积如何求,有扇形面积公式2π360n R S =扇.可求得,需要知道半径和扇形弧的度数,由已知正六边形每边所对圆心角为60°,那么120AOC ∠=︒,又知四边形ABCO 是平行四边形,所以120ABC ∠=︒,这样就可求出扇形的面积和为21206π10628360⨯⨯⨯=(平方厘米),阴影部分的面积1040628412=-=(平方厘米).【答案】412【例 11】 (09年第十四届华杯赛初赛)如下图所示,AB 是半圆的直径,O 是圆心,AC CD DB ==,M 是CD 的中点,H 是弦CD 的中点.若N 是OB 上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是 平方厘米.【考点】圆与扇形【难度】3星【题型】填空【解析】如下图所示,连接OC、OD、OH.本题中由于C、D是半圆的两个三等分点,M是CD的中点,H是弦CD的中点,可见这个图形是对称的,由对称性可知CD与AB平行.由此可得CHN∆的面积与CHO∆的面积相等,所以阴影部分面积等于扇形COD面积的一半,而扇形COD的面积又等于半圆面积的13,所以阴影部分面积等于半圆面积的16,为11226⨯=平方厘米.【答案】2【巩固】如图,C、D是以AB为直径的半圆的三等分点,O是圆心,且半径为6.求图中阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】如图,连接OC、OD、CD.由于C、D是半圆的三等分点,所以AOC∆和COD∆都是正三角形,那么CD与AO是平行的.所以ACD∆的面积与OCD∆的面积相等,那么阴影部分的面积等于扇形OCD的面积,为21π618.846⨯⨯=.【答案】18.84【例 12】如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(π取3)O【考点】圆与扇形【难度】4星【题型】解答【解析】本题要求两块阴影部分的面积之差,可以先分别求出两块阴影部分的面积,再计算它们的差,但是这样较为繁琐.由于是要求面积之差,可以考虑先从面积较大的阴影中割去与面积较小的阴影相同的图形,再求剩余图形的面积.如右图所示,可知弓形BC 或CD 均与弓形AB 相同,所以不妨割去弓形BC .剩下的图形中,容易看出来AB 与CD 是平行的,所以BCD ∆与ACD ∆的面积相等,所以剩余图形的面积与扇形ACD 的面积相等,而扇形ACD 的面积为260π10.5360⨯⨯=,所以图中两块阴影部分的面积之差为0.5. 【答案】0.5【例 13】 如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)AFEAFE【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 方法一:设小正方形的边长为a ,则三角形ABF 与梯形ABCD 的面积均为()122a a +⨯÷.阴影部分为:大正方形+梯形-三角形ABF -右上角不规则部分=大正方形-右上角不规则部分=14圆.因此阴影部分面积为:3.1412124113.04⨯⨯÷=.方法二:连接AC 、DF ,设AF 与CD 的交点为M ,由于四边形ACDF 是梯形,根据梯形蝴蝶定理有ADM CMF S S =△△,所以DCF S S =阴影扇形 3.1412124113.04=⨯⨯÷=【答案】113.04【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 (法1)观察可知阴影部分面积等于三角形ACD 的面积减去月牙BCD 的面积,那么求出月牙BCD 的面积就成了解题的关键.月牙BCD 的面积为正方形BCDE 的面积减去四分之一圆:166π6694⨯-⨯⨯⨯=;则阴影部分的面积为三角形ACD 的面积减去月牙BCD 的面积,为:()110669392S =⨯+⨯-=阴影.(法2)观察可知AF 和BD 是平行的,于是连接AF 、BD 、DF .则ABD ∆与BDF ∆面积相等,那么阴影部分面积等于BDF ∆与小弓形的面积之和,也就等于DEF ∆与扇形BED 的面积之和,为:211(106)6π63924-⨯⨯+⨯⨯=.【答案】39【例 14】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)DD【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 连接PD 、AP 、BD ,如图,PD 平行于AB ,则在梯形ABDP 中,对角线交于M 点,那么ABD ∆与ABP ∆面积相等,则阴影部分的面积转化为ABP ∆与圆内的小弓形的面积和.ABP ∆的面积为:()10102225⨯÷÷=; 弓形面积: 3.145545527.125⨯⨯÷-⨯÷=; 阴影部分面积为:257.12532.125+=.【答案】32.125【例 15】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)A【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 连接小正方形AC ,有图可见 ACD ABC S S S S =+-△△阴影扇形∵211144222AC ⨯=⨯⨯ ∴232AC =同理272CE =,∴48AC CE ⨯=∴148242ACD S =⨯=△290π412.56360S =⨯=扇形,14482ABC S =⨯⨯=△∴2412.56828.56S =+-=阴影【答案】28.56【例 16】 如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 假设最小圆的半径为r ,则三种半圆曲线的半径分别为4r ,3r 和r .阴影部分的面积为:()()22222111π4π3ππ5π222r r r r r -++=,空白部分的面积为:()222π45π11πr r r -=, 则阴影部分面积与空白部分面积的比为5:11. 【答案】5:11【例 17】 (西城实验考题)奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 ⑴每个圆环的面积为:22π4π37π21.98⨯-⨯==(平方厘米); ⑵五个圆环的面积和为:21.985109.9⨯=(平方厘米); ⑶八个阴影的面积为:109.977.132.8-=(平方厘米); ⑷每个阴影的面积为:32.88 4.1÷=(平方厘米). 【答案】4.1【例 18】 已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于______方厘米.(π 3.14=)【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 39.25 【答案】39.25【例 19】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)DCBAaDCBAa【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 这道题目是很常见的面积计算问题.阴影部分是一个花瓣状的不规则图形,不能直接通过面积公式求解,观察发现阴影部分是一个对称图形,我们只需要在阴影部分的对称轴上作两条辅助线就明了了.如图,这样阴影部分就划分成了4个半圆减去三角形,我们可以求得,()4S S S =⨯-阴影半圆三角形21142222a a a π⎡⎤⎛⎫=⨯⨯⨯-⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦212a =【答案】12a【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3) D BA DB【考点】圆与扇形 【难度】3星 【题型】解答【解析】 由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积.解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分.则阴影部分的面积为=21π44482⋅⋅-⨯=;解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积,所以阴影部分面积=212π444284⨯⋅⋅-⨯÷=().【答案】8【例 20】 (四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 从图中可以看出,阴影部分的面积等于两个半圆的面积和与直角三角形ABC 的面积之差,所以阴影部分的面积为:2214121ππ42 2.5π4 3.8522222⎛⎫⎛⎫⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(2cm ). 【答案】3.85【例 21】 (奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和 是平方厘米.【考点】圆与扇形 【难度】4星 【题型】填空 【解析】 根据容斥原理得1003242144S ⨯--⨯=阴影,所以100314424272S =⨯--⨯=阴影(平方厘米)【答案】72【例 22】 如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点.以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点,若图中1S 和2S 两块面积之差为2π(cm )m n -(其中m 、n 为正整数),请问m n +之值为何?S 2S 1G HFE DC B AS图1S 2S 1G HF E DC B A【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】国际小学数学竞赛【解析】 (法1)2248cm FCDE S =⨯=,21π44π4BCD S =⨯⨯=扇形2(cm ),21π2π4BFH S =⨯⨯=扇形2(cm ),而124ππ8FCDE BCD BFH S S S S S -=--=--扇形扇形3π8=-2(cm ),所以3m =,8n =,3811m n +=+=.(法2)如右上图,1S S +=BFEA BFH S S -=扇形2422π48π⨯-⨯⨯÷=-2(cm ), 24444π4164πABCD BCD S S S S +=-=⨯-⨯⨯÷=-扇形2(cm ),所以,12(8π)(164π)3π8S S -=---=-2(cm ),故3811m n +=+=. 【答案】11【巩固】在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 我们只要看清楚阴影部分如何构成则不难求解.左边的阴影是大扇形减去小扇形,再扣除一个长方形中的不规则白色部分,而右边的阴影是长方形扣除这块不规则白色部分,那么它们的差应为大扇形减去小扇形,再减去长方形.则为:ππ4422423 3.148 1.4244⨯⨯-⨯⨯-⨯=⨯-=. 【答案】1.42【例 23】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)CB A【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 方法一:观察发现,阴影部分属于一个大的扇形,而这个扇形除了阴影部分之外,还有一个不规则的空白部分ABFD 在左上,求出这个不规则部分的面积就成了解决这个问题的关键. 我们先确定ABFD 的面积,因为不规则部分ABFD 与扇形BCF 共同构成长方形ABCD ,所以不规则部分ABFD 的面积为2164π4124⨯-⨯⨯=(平方厘米),再从扇形ABE 中考虑,让扇形ABE 减去ABFD 的面积,则有阴影部分面积为21π612154⨯⨯-=(平方厘米).方法二:利用容斥原理2211π6π4461544EAB BCF ABCD S S S S =+-=⨯+⨯-⨯=阴影扇形扇形长方形(平方厘米)【答案】15【巩固】求图中阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 阴影部分面积=半圆面积+扇形面积-三角形面积22211211π()π121241.042282=⨯+⨯-⨯=. 【答案】41.04【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 观察可知阴影部分是被以AD 为半径的扇形、以AB 为直径的半圆形和对角线BD 分割出来的,分头求各小块阴影部分面积明显不是很方便,我们发现如果能求出左下边空白部分的面积,就很容易求出阴影部分的面积了,我们再观察可以发现左下边空白部分的面积就等于三角形ABD 的面积减去扇形ADE 的面积,那么我们的思路就很清楚了. 因为45ADB ∠=︒,所以扇形ADE 的面积为:224545π 3.1459.8125360360AD ⨯⨯=⨯⨯=(平方厘米),那么左下边空白的面积为:1559.8125 2.68752⨯⨯-=(平方厘米),又因为半圆面积为:215π9.812522⎛⎫⨯⨯= ⎪⎝⎭(平方厘米),所以阴影部分面积为:9.8125 2.68757.125-=(平方厘米). 【答案】7.125【例 24】 如图所示,阴影部分的面积为多少?(圆周率取3)33B A33A1.51.51.545︒45︒B33【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 图中A 、B 两部分的面积分别等于右边两幅图中的A 、B 的面积.所以()()229271.5π 1.5343π3328498416A B S S +=-⨯÷+-⨯⨯÷=÷+÷=.【答案】2716【巩固】图中阴影部分的面积是 .(π取3.14)333【考点】圆与扇形 【难度】3星 【题型】填空【解析】 如右上图,虚线将阴影部分分成两部分,分别计算这两部分的面积,再相加即可得到阴影部分的面积.所分成的弓形的面积为:22131199π3π2242168⎡⎤⎛⎫⨯-⨯⨯=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;另一部分的面积为:221199π33π8484⨯-⨯=-;所以阴影部分面积为:99992727πππ 1.92375 1.9216884168-+-==-=≈.【答案】1.92【例 25】 已知右图中正方形的边长为20厘米,中间的三段圆弧分别以1O 、2O 、3O 为圆心,求阴影部分的面积.(π3=)OO 3B【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 图中两块阴影部分的面积相等,可以先求出其中一块的面积.而这一块的面积,等于大正方形的面积减去一个90︒扇形的面积,再减去角上的小空白部分的面积,为:()()()2142020π202020100π4754S S S S ⎡⎤---÷=⨯-⨯-⨯-÷=⎡⎤⎣⎦⎣⎦圆正方形正方形扇形(平方厘米),所以阴影部分的面积为752150⨯=(平方厘米). 【答案】150【例 26】 一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 方法一:圆在长方形内部无法运动到的地方就是长方形的四个角,而圆在角处运动时的情况如左下图,圆无法运动到的部分是图中阴影部分,那么我们可以先求出阴影部分面积,四个角的情况都相似,我们就可以求出总的面积是阴影部分面积的四倍.阴影部分面积是小正方形面积减去扇形面积,所以我们可以得到:每个角阴影部分面积为290111π13604⨯-⨯⨯=;那么圆无法运动到的部分面积为 1414⨯=方法二:如果把四个角拼起来,则阴影如右上图所示,则阴影面积为222311⨯-⨯=【答案】1【例 27】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由于阴影部分是一个不规则图形,所以要设法把它转化成规则图形来计算.从图中可以看出,阴影部分的面积是一个45°的扇形与一个等腰直角三角形的面积差.由于半圆的面积为62.8平方厘米,所以262.8 3.1420OA =÷=. 因此:22210AOB S OA OB OA =⨯÷=÷=△(平方厘米).由于AOB ∆是等腰直角三角形,所以220240AB =⨯=.因此:扇形ABC 的面积24545ππ4015.7360360AB =⨯⨯=⨯⨯=(平方厘米).所以,阴影部分的面积等于:15.710 5.7-=(平方厘米). 【答案】5.7【例 28】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 题目已经明确告诉我们ABC 是等腰直角三角形,AEF 是扇形,所以看似没有关系的两个阴影部分通过空白部分联系起来.等腰直角三角形的角A 为45度,则扇形所在圆的面积为扇形面积的8倍.而扇形面积与等腰直角三角形面积相等,即11010502S =⨯⨯=扇形,则圆的面积为508400⨯= 【答案】400【例 29】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC 长.(π 3.14=)乙甲CBA【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 因为两块阴影部分都是不规则图形,单独对待它们无法运用面积公式进行处理,而解题的关键就是如何把它们联系起来,我们发现把两块阴影加上中间的一块,则变成1个半圆和1个直角三角形,这个时候我们就可以利用面积公式来求解了.因为阴影甲比阴影乙面积大7,也就是半圆面积比直角三角形面积大7.半圆面积为:21π101572⨯⨯=,则直角三角形的面积为157-7=150,可得BC =2⨯150÷20=15. 【答案】15【巩固】三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.I IAB C I【考点】圆与扇形 【难度】3星 【题型】解答 【解析】 由于阴影I 的面积比阴影II 的面积小225cm ,根据差不变原理,直角三角形ABC面积减去半圆面积为225cm ,则直角三角形ABC 面积为218π258π2522⎛⎫⨯+=+ ⎪⎝⎭(2cm ), BC 的长度为()8π25282π 6.2512.53+⨯÷=+=(cm ).【答案】12.53【巩固】 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)【考点】圆与扇形 【难度】3星 【题型】解答【解析】 图中半圆的直径为AB ,所以其面积为2120π200 3.146282⨯⨯≈⨯=.有空白部分③与①的面积和为628,又②-①28=,所以②、③部分的面积和62828656+=.有直角三角形ABC 的面积为12AB BC ⨯⨯=1406562BC ⨯⨯=.所以32.8BC =厘米.【答案】32.8【例 30】 图中的长方形的长与宽的比为8:3,求阴影部分的面积.【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】十三分,入学测试题 【解析】 如下图,设半圆的圆心为O ,连接OC .从图中可以看出,20OC =,20416OB =-=,根据勾股定理可得12BC =. 阴影部分面积等于半圆的面积减去长方形的面积,为:21π20(162)12200π3842442⨯⨯-⨯⨯=-=.【答案】244【例 31】 如图,求阴影部分的面积.(π取3)【考点】圆与扇形 【难度】4星 【题型】解答 【解析】 如图,图中阴影部分为月牙儿状,月牙儿形状与扇形和弓形都不相同,目前我们还不能直接求出 它们的面积,那么我们应该怎么来解决呢?首先,我们分析下月牙儿状是怎么产生的,观察发现月牙儿形是两条圆弧所夹部分,再分析可以知道,两条圆弧分别是不同圆的圆周的一部分,那么我们就找到了解决问题的方法了.阴影部分面积=12小圆面积+12中圆面积+三角形面积-12大圆面积=2221111π3π434π52222⋅⋅+⋅⋅+⨯⨯-⋅⋅ =6【答案】6【例 32】如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?68【考点】圆与扇形【难度】4星【题型】解答【解析】S S S=-阴影直角三角形半圆,设半圆半径为r,直角三角形面积用r表示为:6108 22r rr ⨯⨯+=又因为三角形直角边都已知,所以它的面积为168242⨯⨯=,所以824r=,3r=所以1249π=24 4.5π2S=-⨯-阴影【答案】24 4.5π-【例 33】大圆半径为R,小圆半径为r,两个同心圆构成一个环形.以圆心O为顶点,半径R为边长作一个正方形:再以O为顶点,以r为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【考点】圆与扇形【难度】3星【题型】解答【关键词】华校第一学期,期中测试,第6题【解析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是2250R r-=平方厘米,那么环形的面积为:2222πππ()π50=157R r R r-=-=⨯(平方厘米).【答案】157【巩固】图中阴影部分的面积是225cm,求圆环的面积.【考点】圆与扇形 【难度】3星 【题型】解答【解析】 设大圆半径为R ,小圆半径为r ,依题有222522R r -=,即2250R r -=.则圆环面积为:22222πππ()50π157(cm )R r R r -=-==.【答案】157【例 34】 已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【关键词】101中学,考题 【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222ar =.所以,大圆的面积与正方形的面积之比为:22π:π:2r a =,所以大圆面积为:202π10π÷⨯=;小圆的面积与正方形的面积之比为:22π():π:42aa =,所以小圆的面积为:204π5π÷⨯=;两个圆的面积之和为:10π5π15π15 3.1447.1+==⨯=(平方厘米). 【答案】47.1【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 设图中大圆的半径为r ,正方形的边长为a ,则小圆的直径等于正方形的边长,所以小圆的半径为2a,大圆的直径2r 等于正方形的对角线长,即222(2)r a a =+,得222a r =.所以,大圆的面积与小圆的面积之比为:222222π:π()::2:12424a a a a r r ===, 即大圆的面积是小圆面积的2倍,大圆的面积为30260⨯=(平方厘米). 【答案】60【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .【考点】圆与扇形 【难度】3星 【题型】填空 【解析】 设图中小正方形的边长为b ,由于圆的直径等于大正方形的边长,所以圆的直径为a ,而从图中可以看出,圆的直径等于小正方形的对角线长,所以22222a b b b =+=,故2212b a =,即小正方形的面积为212a .【答案】212a【巩固】一些正方形内接于一些同心圆,如图所示.已知最小圆的半径为1cm ,请问阴影部分的面积为多少平方厘米?(取22π7=)【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】台湾小学数学竞赛选拔,复赛 【解析】 我们将阴影部分的面积分为内圈、中圈、外圈三部分来计算. 内圈等于内圆面积减去内部正方形的面积,也就是2π1222π2⨯-⨯÷=-.内圆的直径为中部正方形的边长,即为2,中部正方形的对角线等于中圆的直径,于是中圈阴影部分面积是22π(22)4222π4⨯+÷-⨯=-.中圆的直径的平方即为外部正方形的面积,即为22228+=,外部正方形的对角线的平方即为外圆的直径的平方,即为8216⨯=,所以外圈阴影部分的面积是π16484π8⨯÷-=-.所以阴影部分的面积是227π1471487-=⨯-=(平方厘米).【答案】8【例 35】 图中大正方形边长为6,将其每条边进行三等分,连出四条虚线,再将虚线的中点连出一个正方形(如图),在这个正方形中画出一个最大的圆,则圆的面积是多少?(π 3.14=)。
【小学奥数精编】圆与扇形(三).学生版
研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯; 圆的周长2πr =;扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素: ①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)例题精讲圆与扇形【例 1】 正三角形ABC 的边长是6厘米,在一条直线上将它翻滚几次,使A 点再次落在这条直线上,那么A 点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是15平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留π)【巩固】直角三角形ABC 放在一条直线上,斜边AC 长20厘米,直角边BC 长10厘米.如下图所示,三角形由位置Ⅰ绕A 点转动,到达位置Ⅱ,此时B ,C 点分别到达1B ,1C 点;再绕1B 点转动,到达位置Ⅲ,此时A ,1C 点分别到达2A ,2C 点.求C 点经1C 到2C 走过的路径的长.60︒30︒B 1C 1C 2A 2CB AⅢⅡⅠ【巩固】如图,一条直线上放着一个长和宽分别为4cm 和3cm 的长方形Ⅰ.它的对角线长恰好是5cm .让这个长方形绕顶点B 顺时针旋转90°后到达长方形Ⅱ的位置,这样连续做三次,点A 到达点E 的位置.求点A 走过的路程的长.ⅣⅢⅡⅠEDCBA【例 2】 草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见如图).问:这只羊能够活动的范围有多大?(圆周率取3.14)【巩固】一只狗被拴在底座为边长3m的等边三角形建筑物的墙角上(如图),绳长是4m,求狗所能到的地方的总面积.(圆周率按3.14计算)3【例3】如图是一个直径为3cm的半圆,让这个半圆以A点为轴沿逆时针方向旋转60︒,此时B点移动到'B点,求阴影部分的面积.(图中长度单位为cm,圆周率按3计算).BA【例4】如图所示,直角三角形ABC的斜边AB长为10厘米,60∠=︒,此时BC长5厘米.以ABC点B为中心,将ABC∆顺时针旋转120︒,点A、C分别到达点E、D的位置.求AC边扫过的图形即图中阴影部分的面积.(π取3)CE【巩固】如右图,以OA为斜边的直角三角形的面积是24平方厘米,斜边长10厘米,将它以O点为中心旋转90︒,问:三角形扫过的面积是多少?(π取3)A'AO【巩固】(“华罗庚杯”数学试题)如图,直角三角形ABC中,B∠为直角,且2BC=厘米,4AC=厘米,则在将ABC∆绕C点顺时针旋转120︒的过程中,AB边扫过图形的面积为.(π 3.14=)CBAB'A'CBA【例5】如下图,△ABC是一个等腰直角三角形,直角边的长度是1米。
六年级下册数学试题-奥数:几何之圆与扇形(解析版)全国通用
第二讲 几何之圆与扇形教学目标组合图形的面积计算,除了直线型面积计算“五大模型”,跟圆有关的曲线型面积也是得别重要的组成部分。
其中,尤以结合情境的曲线形面积计算为最常见考点。
教师版答案提示:纸的厚度为:(206)27-÷=(厘米),那么有70.04175÷=圈纸,中心的卷轴到纸用完时大约会转175圈;圆环的面积为:2210391ππ⨯(-)=,因为纸的厚度为0.4毫米,即0.04厘米,所以纸展开后的长度约为:910.0422757143.5ππ÷=≈厘米.利用“加、减”思想解答问题【例1】 如图,一个“月牙”形屏幕在屏幕上随意平行移动(不许发生转动也不越过屏幕边界),已知线段AB 是月牙外半圆弧的直径,长为2厘米。
初始时,A 、B 两点在矩形屏幕的一条边上。
屏幕的长和宽分别为30厘米和20厘米。
问:屏幕上“月牙”擦不到的部分的面积是多少平方厘米?(π取3)分析:由于“月牙”形屏幕在屏幕上只能平行移动(不许发生转动也不越过屏幕边界),所以它擦不到的地方只是屏幕的右上角和右下角两部分,如右下图中斜线所示区域,其面积为0.5平方厘米。
想 挑 战 吗 ?卷筒软纸中的数学右图为一圈“心相印”圈纸的截面图,纸卷直径 为20厘米,中间有一直径为6厘米的卷轴,若纸的 厚度为0.4毫米,问:中心的卷轴到纸用完时大约会转多少圈?这卷纸展开后大约有多长?(π取3.14)[前铺]如右图所示,等腰直角三角形ABC 的高AD=4厘米,以AD 为直径作圆分别交AB 、AC 与E 、F ,求阴影部分的面积。
(π取3) 分析:连接EF ,那么有BED ABD EOD S S S =-阴影三角形扇形,计算可得阴影部分面积为6平方厘米。
[巩固]一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是多少?(π取3)分析:圆无法运动到的部分是右下图中角处的阴影部分面积的4倍, 114111π⨯⨯-⨯⨯=[拓展]如右图所示,用一块面积为36平方厘米铝板下料,可裁出七个同样大小的圆铝板。
小学奥数—圆与扇形(三)
A
BC
DE
【例 2】 草场上有一个长 20 米、宽 10 米的关闭着的羊圈,在羊圈的一角用长 30 米的绳子拴着一只羊(见如 图).问:这只羊能够活动的范围有多大?(圆周率取 3.14 )
4-3-3 圆与扇形 题库
学生版
page 2 of 8
【巩固】一只狗被拴在底座为边长 3m 的等边三角形建筑物的墙角上(如图),绳长是 4m ,求狗所能到的地方 的总面积.(圆周率按 3.14 计算)
A
B
D
C
【例 8】 (华杯赛初赛)半径为 25 厘米的小铁环沿着半径为 50 厘米的大铁环的内侧作无滑动的滚动,当小 铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?
【巩固】如果半径为 25 厘米的小铁环沿着半径为 50 厘米的大铁环的外侧作无滑动的滚动,当小铁环沿大铁 环滚动一周回到原位时,问小铁环自身转了几圈?
360 扇形中的弧长部分 所在圆的周长 n
360 扇形的周长 所在圆的周长 n 2 半径(易错点是把扇形的周长等同于扇形的弧长)
360 ②弓形:弓形一般不要求周长,主要求面积.
一般来说,弓形面积 扇形面积-三角形面积.(除了半圆)
③”弯角”:如图:
弯角的面积 正方形-扇形
④”谷子”:如图:
正方形的边长为 10,那么阴影部分的面积是多少?( 取 3.14)
A
10 D
P
B QC
4-3-3 圆与扇形 题库
学生版
page 8 of 8
【巩固】如右图,以 OA 为斜边的直角三角形的面积是 24 平方厘米,斜边长 10 厘米,将它以 O 点为中心旋 转 90 ,问:三角形扫过的面积是多少?( π 取 3)
4-3-3 圆与扇形 题库
六年级奥数 圆和扇形
圆和扇形
无论什么圆,它的周长除以直径的商总是一个固定的数,这个固定数叫圆周率,用π来表示。
π是一个无限不循环小数:π=3.14159265……
圆
如果用C 表示圆周的长度,d 表示这个圆的直径,r 表示它的半径。
圆的周长为:C =2πr=πd
圆的面积为:S =πr 2
扇形
设扇形的圆心角是n 度,扇形的弧长用L 表示。
扇形的弧长为:L =360n ×2πr=180
n ×πr; 扇形的面积为:S =360n ×πr 2=2
1Lr
例1:如图是个半圆(单位:厘米),其阴影部分的周长是多少?
例2:直径均为1米的四根管子被一根金属带紧紧地捆在一起如图,试求金属带的长度和阴影部分的面积。
例3:如图,一个圆心角是450的扇形,其中等腰直角三角形的直角边是6厘米,则阴影部分的面积是多少平方厘米?
例4:如图,圆O1、圆O2、圆O3的半径都是2厘米,则阴影部分的面积是多少平方厘米?
例5:如图,圆O的直径是8厘米,则阴影部分的面积是多少平方厘米?
例6:如图,AD=DB=DC=10厘米,阴影部分的面积是多少平方厘米?
例7:一个直径为4厘米的半圆,让点A不动,把整个半圆顺时针旋转45o,此时点B移至点B1,如图所示,求图中阴影部分的面积。
例8:如图,阴影部分的周长是多少厘米?。
小学奥数教师版-4-4-1 圆与扇形(一)
圆与扇形例题精讲研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360n r =⨯;圆的周长2πr =;扇形的弧长2π360n r =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n .比如:扇形的面积=所在圆的面积360n ⨯;扇形中的弧长部分=所在圆的周长360n ⨯扇形的周长=所在圆的周长+360n ⨯2⨯半径(易错点是把扇形的周长等同于扇形的弧长)②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图:弯角的面积=正方形-扇形④”谷子”:如图:“谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的)②等积变形(割补、平移、旋转等)③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块一平移、旋转、割补、对称在曲线型面积中的应用【例1】如图,圆O 的直径AB 与CD 互相垂直,AB =10厘米,以C 为圆心,CA 为半径画弧。
求月牙形ADBEA (阴影部分)的面积。
【考点】圆与扇形【难度】3星【题型】解答【关键词】华杯赛,决赛,第9题,10分【解析】①月牙形ADBEA (阴影部分)的面积=半圆的面积+△ABC 的面积-扇形CAEBC 的面积②月牙形ADBEA 的面积=211π525π502524⨯⨯+-⨯⨯=(平方厘米),所以月牙形ADBEA 的面积是25平方厘米。
【答案】25【例2】三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)【考点】圆与扇形【难度】3星【题型】填空【关键词】迎春杯,六年级,初赛,4题【解析】三个扇形的弧长相当于半径100厘米,圆心角为1800的扇形的弧长,1802 3.14314360⨯⨯=厘米;【答案】314【例3】分别以一个边长为2厘米的等边三角形的三个顶点为圆心,以2厘米为半径画弧,得到右图;那么,阴影图形的周长是_______厘米.(π取3.14)【考点】圆与扇形【难度】3星【题型】填空【关键词】迎春杯,六年级,初赛,试题【解析】每段弧长为16C 圆,所以166C C C =⨯=圆圆阴影C 阴影=6×16C 圆=C 圆,所以12.56C =阴影【答案】12.56【例4】下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?【考点】圆与扇形【难度】3星【题型】解答【解析】割补法.如右图,格线部分的面积是36平方厘米.【答案】36【巩固】下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?【考点】圆与扇形【难度】3星【题型】解答【解析】割补法.如右图,格线部分的面积是36平方厘米.【答案】36【例5】如图,在18⨯8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【考点】圆与扇形【难度】3星【题型】解答【解析】我们数出阴影部分中完整的小正方形有8+15+15+16=54个,其中部分有6+6+8=20个,部分有6+6+8=20(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+20=74(个)完整小正方形,而整个方格纸包含8⨯18=144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的74144,即3772.【答案】3772【巩固】在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?【考点】圆与扇形【难度】3星【题型】解答【解析】矩形纸板共28个小正方格,其中弧线都是14圆周,非阴影部分有3个完整的小正方形,其余部分可拼成6个小正方格.因此阴影部分共28-6-3=19个小正方格.所以,阴影面积占纸板面积的1928.【答案】1928【例6】在一个边长为2厘米的正方形内,分别以它的三条边为直径向内作三个半圆,则图中阴影部分的面积为平方厘米.【考点】圆与扇形【难度】3星【题型】填空【关键词】西城实验【解析】采用割补法.如果将阴影半圆中的2个弓形移到下面的等腰直角三角形中,那么就形成两个相同的等腰直角三角形,所以阴影部分的面积等于两个等腰直角三角形的面积和,即正方形面积的一半,所以阴影部分的面积等于21222⨯=平方厘米.【答案】2【巩固】如图,在一个边长为4的正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】阴影部分经过切割平移变成了一个面积为正方形一半的长方形,则阴影部分面积为4428⨯÷=.【答案】8【例7】如图,正方形边长为1,正方形的4个顶点和4条边分别为4个圆的圆心和半径,求阴影部分面积.(π取3.14)【考点】圆与扇形【难度】4星【题型】解答【关键词】人大附中,分班考试【解析】把中间正方形里面的4个小阴影向外平移,得到如右图所示的图形,可见,阴影部分的面积等于四个正方形面积与四个90︒的扇形的面积之和,所以,221444441π14π7.14S S S S S =⨯+⨯=⨯+=⨯+⨯=+= 圆阴影圆.【例8】图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?【考点】圆与扇形【难度】4星【题型】解答【解析】如下图所示:可以将每个圆内的阴影部分拼成一个正方形,每个正方形的面积为11240.542⨯÷⨯=⨯=()(平方厘米),所以阴影部分的总面积为248⨯=(平方厘米).【答案】8【巩固】如图所示,四个全等的圆每个半径均为2m ,阴影部分的面积是.或【考点】圆与扇形【难度】3星【题型】填空【解析】我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于222216m ⨯=()().【答案】16【例9】如右图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.则花瓣图形的面积是多少平方厘米?(π取3)【考点】圆与扇形【难度】4星【题型】解答【解析】本题直接计算不方便,可以利用分割移动凑成规则图形来求解.如右上图,连接顶角上的4个圆心,可得到一个边长为4的正方形.可以看出,与原图相比,正方形的每一条边上都多了一个半圆,所以可以把原花瓣图形的每个角上分割出一个半圆来补在这些地方,这样得到一个正方形,还剩下4个14圆,合起来恰好是一个圆,所以花瓣图形的面积为224π119+⨯=(平方厘米).【总结】在求不规则图形的面积时,我们一般要对原图进行切割、移动、补齐,使原图变成一个规则的图形,从而利用面积公式进行求解.这个切割、移动、补齐的过程实际上是整个解题过程的关键,我们需要多多练习,这样才能快速找到切割拼补的方法、【答案】19【例10】如图中三个圆的半径都是5cm ,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)【考点】圆与扇形【难度】4星【题型】解答【解析】将原图割补成如图,阴影部分正好是一个半圆,面积为255 3.14239.25(cm )⨯⨯÷=【答案】39.25【巩固】如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)【考点】圆与扇形【难度】4星【题型】解答【解析】如图添加辅助线,小圆内部的阴影部分可以填到外侧来,这样,空白部分就是一个圆的内接正方形.设大圆半径为r ,则222S r =,221π2S r r =-,所以()12: 3.142:257:100S S =-=.移动图形是解这种题目的最好方法,一定要找出图形之间的关系.【答案】57:100【例11】计算图中阴影部分的面积(单位:分米).【考点】圆与扇形【难度】3星【题型】解答【解析】将右边的扇形向左平移,如图所示.两个阴影部分拼成—个直角梯形.()5105275237.5+⨯÷=÷=(平方分米).【答案】37.5【巩固】如图,阴影部分的面积是多少?【考点】圆与扇形【难度】3星【题型】解答【解析】首先观察阴影部分,我们发现阴影部分形如一个号角,但是我们并没有学习过如何求号角的面积,那么我们要怎么办呢?阴影部分我们找不到出路,那么我们不妨考虑下除了阴影部分之外的部分吧!观察发现,阴影部分左侧是一个扇形,而阴影部分右边的空白部分恰好与左边的扇形构成一个边长为4的正方形,那么阴影部分的面积就等于大的矩形面积减去正方形面积.则阴影部分面积(222)4(22)48++⨯-+⨯=【答案】8【例12】请计算图中阴影部分的面积.【考点】圆与扇形【难度】4星【题型】解答【解析】法一:为了求得阴影部分的面积,可以从下图的整体面积中扣掉一个圆的面积,就是要求的面积了.要扣掉圆的面积,如果按照下图把圆切成两半后,从两端去扣掉也是一样.如此一来,就会出现一个长方形的面积.因此,所求的面积为210330cm ⨯=().法二:由于原来的月牙形很难直接计算,我们可以尝试构造下面的辅助图形:如左上图所示,我们也可以这样来思考,让图形往右侧平移3cm 就会得到右上图中的组合图形,而这个组合图形中右端的月牙形正是我们要求的面积.显然图中右侧延伸出了多少面积,左侧就会缩进多少面积.因此,所求的面积是210330cm ⨯=().【答案】30【例13】求图中阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】如图,连接BD ,可知阴影部分的面积与三角形BCD 的面积相等,即为1112123622⨯⨯⨯=.【答案】36【例14】求如图中阴影部分的面积.(圆周率取3.14)【考点】圆与扇形【难度】2星【题型】解答【解析】可将左下橄榄型的阴影部分剖开,两部分分别顺逆时针90︒,则阴影部分转化为四分之一圆减去一个等腰直角三角形,所以阴影部分的面积为211π444 4.5642⨯⨯-⨯⨯=.【答案】4.56【巩固】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227.【考点】圆与扇形【难度】3星【题型】解答【解析】原题图中的左边部分可以割补至如右上图位置,这样只用先求出四分之一大圆的面积,再减去其内的等腰直角三角形面积即为所求.因为四分之一大圆的半径为7,所以其面积为:2211227π738.5447⨯⨯≈⨯⨯=.四分之一大圆内的等腰直角三角形ABC 的面积为17724.52⨯⨯=,所以阴影部分的面积为38.524.514-=.【答案,14【例15】求下列各图中阴影部分的面积.【考点】圆与扇形【难度】3星【题型】解答【解析】在图(1)中,阴影部分经过切割平移变成了一个底为10,高为5的三角形,利用三角形面积公式可以求得110102522S =⨯⨯=阴影;在图(2)中,阴影部分经过切割平移变成了一个长为b ,宽为a 的长方形,利用长方形面积公式可以求得S a b ab =⨯=阴影.【答案】25,ab【巩固】求下列各图中阴影部分的面积(图中长度单位为cm ,圆周率按3计算):⑴⑵⑶⑷⑸⑹【考点】圆与扇形【难度】3星【题型】解答【解析】⑴4.5⑵4⑶1⑷2⑸1.5⑹4.5【答案】⑴4.5⑵4⑶1⑷2⑸1.5⑹4.5【例16】如图,ABCD 是正方形,且1FA AD DE ===,求阴影部分的面积.(取π3=)【考点】圆与扇形【难度】3星【题型】解答【解析】方法一:两个分割开的阴影部分给我们求面积造成了很大的麻烦,那么我们把它们通过切割、移动、补齐,使两块阴影部分连接在一起,这个时候我们再来考虑,可能会有新的发现.由于对称性,我们可以发现,弓形BMF 的面积和弓形BND 的面积是相等的,因此,阴影部分面积就等于不规则图形BDWC 的面积.因为ABCD 是正方形,且FA =AD =DE =1,则有CD =DE .那么四边形BDEC为平行四边形,且∠E =45°.我们再在平行四边形BDEC 中来讨论,可以发现不规则图形BDWC和扇形WDE 共同构成这个平行四边形,由此,我们可以知道阴影部分面积=平行四边形BDEC -扇形DEW 245511π13608=⨯-⨯⨯=.方法二:先看总的面积为14的圆,加上一个正方形,加上一个等腰直角三角形,在则阴影面积为总面积扣除一个等腰直角三角形,一个14圆,一个45︒的扇形.那么最终效果等于一个正方形扣除一个45︒的扇形.面积为215113188⨯-⨯⨯=.【答案】58【巩固】求图中阴影部分的面积(单位:cm ).【考点】圆与扇形【难度】2星【题型】解答【解析】从图中可以看出,两部分阴影的面积之和恰好是梯形的面积,所以阴影部分面积为21(24)39cm 2⨯+⨯=.【答案】9【例17】如图,长方形ABCD 的长是8cm ,则阴影部分的面积是2cm .(π 3.14=)【考点】圆与扇形【难度】2星【题型】填空【解析】阴影部分的面积实际上是右上图阴影部分面积的一半,所以求出右上图中阴影部分面积再除以2即可.长方形的长等于两个圆直径,宽等于1个圆直径,所以右图的阴影部分的面积等于:()2882822π2 6.88⨯÷-÷÷⨯⨯=所以左图阴影部分的面积等于6.882 3.44÷=平方厘米.【答案】3.44【例18】如图所示,在半径为4cm 的图中有两条互相垂直的线段,阴影部分面积A 与其它部分面积B 之差(大减小)是2cm .【考点】圆与扇形【难度】3星【题型】填空【关键词】西城实验,期末考试【解析】如图,将圆对称分割后,B 与A 中的部分区域能对应,B 仅比A 少了一块矩形,所以两部分的面积差为:()()222128cm ⨯⨯⨯=.【答案】8【巩固】一块圆形稀有金属板平分给甲、乙二人.但此金属板事先已被两条互相垂直的弦切割成如图所示尺寸的四块.现甲取②、③两块,乙取①、④两块.如果这种金属板每平方厘米价值1000元,问:甲应偿付给乙多少元?5cm 7.5cm3cm2cm ④③②①【考点】圆与扇形【难度】3星【题型】解答【解析】如右上图所示,④的面积与Ⅰ的面积相等,①的面积等于②与Ⅱ的面积之和.可见甲比乙多拿的部分为中间的长方形,所以甲比乙多拿的面积为:2537.522 5.511cm -⨯-=⨯=()()(),而原本应是两人平分,所以甲应付给乙:11100055002⨯=(元).【答案】5500【例19】求右图中阴影部分的面积.(π取3)【考点】圆与扇形【难度】3星【题型】解答【解析】看到这道题,一下就会知道解决方法就是求出空白部分的面积,再通过作差来求出阴影部分面积,因为阴影部分非常不规则,无法入手.这样,平移和旋转就成了我们首选的方法.C BA (法1)我们只用将两个半径为10厘米的四分之一圆减去空白的①、②部分面积之和即可,其中①、②面积相等.易知①、②部分均是等腰直角三角形,但是①部分的直角边AB 的长度未知.单独求①部分面积不易,于是我们将①、②部分平移至一起,如右下图所示,则①、②部分变为一个以AC为直角边的等腰直角三角形,而AC 为四分之一圆的半径,所以有AC =10.两个四分之一圆的面积和为150,而①、②部分的面积和为11010502⨯⨯=,所以阴影部分的面积为15050100-=(平方厘米).(法2)欲求图①中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A 与C 重合,从而构成如右图②的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.所以阴影部分面积为21110101010022π⨯⨯-⨯⨯=(平方厘米).【答案】100【例20】如图,边长为3的两个正方形BDKE 、正方形DCFK 并排放置,以BC 为边向内侧作等边三角形,分别以B 、C 为圆心,BK 、CK 为半径画弧.求阴影部分面积.(π 3.14=)【考点】圆与扇形【难度】4星【题型】解答【关键词】走美,决赛【解析】根据题意可知扇形的半径r 恰是正方形的对角线,所以223218r =⨯=,如右图将左边的阴影翻转右边阴影下部,S S S =-阴影扇形柳叶1118π2(18π33)34=⨯-⨯-⨯183π8.58=-=【答案】8.58。
小学奥数的七大模块
奥数的七大模块包括:计算、数论、几何、行程、应用题、计数和杂题模块一:计算模块1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程模块二:数论模块1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题模块三:几何模块(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积问题(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物问题模块四:行程模块1、简单相遇与追及问题2、环形跑道问题3、流水行船问题4、火车过桥问题5、电梯问题6、发车间隔问题7、接送问题8、时钟问题9、多人相遇与追及问题10、多次相遇追及问题11、方程与比例法解行程问题模块五:应用题模块1、列方程解应用题2、分数、百分数应用题3、比例应用题4、工程问题5、浓度问题6、经济问题7、牛吃草问题模块六:计数模块1、枚举法之分类枚举、标数法、树形图法2、分类枚举之整体法、对应法、排除法3、加乘原理4、排列组合5、容斥原理6、抽屉原理7、归纳与递推8、几何计数9、数论计数模块七:杂题1、从简单情况入手2、对应与转化思想3、从反面与从特殊情况入手思想4、染色与覆盖5、游戏与对策6、体育比赛问题7、逻辑推理问题8、数字谜9、数独。
小学六年级奥数教案—11圆与扇形.docx
小学六年级奥数教案一11圆与扇形本教程共30讲圆与扇形五年级已经学习过三角形、矩形、平行四边形、梯形以及由它们形成的组合图形的相关问题,这一讲学习与圆有关的周长、面积等问题。
圆的面积=n r2,圆的周长=2 n r,扇形的面积二冗暑.扇形的弧长3b U本书中如无特殊说明,圆周率都取n =3.14。
例1如下图所示,200米赛跑的起点和终点都在直跑道上,中间的弯道是一个半圆。
已知每条跑道宽1.22米,那么外道的起点在内道起点前面多少米?(精确到0.01米)分析与解:半径越大,周长越长,所以外道的弯道比内道的弯道长,要保证内、外道的人跑的距离相等,外道的起点就要向前移,移的距离等于外道弯道与内道弯道的长度差。
虽然弯道的各个半径都不知道,然而两条弯道的中心线的半径之差等于一条跑道之宽。
设外弯道中心线的半径为R,内弯道中心线的半径为r,则两个弯道的长度之差为n R- n r = n (R-r)=3.14 X 1.22 〜3.83 (米)。
即外道的起点在内道起点前面3.83米例2有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如左下图),此时橡皮筋的长度是多少厘米?A B分析与解:由右上图知,绳长等于6个线段AB与6个BC弧长之和。
将图中与BC弧类似的6个弧所对的圆心角平移拼补,得到6个角的和是360 °,所以BC弧所对的圆心角是60°, 6个BC弧等于直径5厘米的圆的周长。
而线段AB等于塑料管的直径,由此知绳长=5X 6+ 5X 3.14 = 45.7 (厘米)。
例3左下图中四个圆的半径都是5厘米,求阴影部分的面积分析与解:直接套用公式,正方形中间的阴影部分的面积不太好计算。
容易看出,正方形中的空白部分是4个四分之一圆,利用五年级学过的割补法,可以得到右上图。
右上图的阴影部分的面积与原图相同,等于一个正方形与4个半圆(即2个圆)的面积之和,为(2r)2+ n r2X 2=102+ 3.14 X 50"257 (厘米2)。
六年级上奥数第8讲 圆与扇形(三)
六秋第8讲 圆与扇形(三)
一、教学目标
圆的周长 = 直径×圆周率,用字母表示为:C = πd ,或C=2πr
圆的面积S=πr ² 或 S= 14 πd 2 扇形弧长计算公式是L=
2360⨯n πr=⨯180n πr,扇形面积计算公式是S=⨯360
n πr 2
二、例题精选 【例1】 如下图,等边三角形边长是10厘米,那么阴影部分的周长是厘米?(π取3.14)
【巩固1】求图形中阴影部分的面积(单位:厘米)。
【例2】 如图所示,图中圆的直径AB 是4厘米,平行四边形ABCD 的面积是7平方厘米,∠ABC =30度,求阴影
部分的面积(得数保留两位小数)。
【巩固2】求图中阴影部分的面积(单位:厘米)。
【例3】 求图中阴影部分的面积(单位:厘米)。
【巩固3】如图所示,求图中阴影部分的面积。
【例4】如图所示,求图中阴影部分的面积(单位:厘米)。
【巩固4】在正方形ABCD中,AC=6厘米。
求阴影部分的面积。
【例5】如图所示,一枚硬币沿着长方形的外围滚动。
已知长方形的长为10cm,宽为5cm,硬币的直径为1cm,求硬币滚动一圈所经过的面积。
【例6】三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米. A B长40厘米, BC长多少厘米?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
60Ⅰ 30
C
A
C1
Ⅲ Ⅱ
B1
C2
【考点】曲线型旋转问题 【难度】3 星 【题型】解答
【解析】由于
BC
为
AC
的一半,所以
CAB
30
,则弧
CC1
为大圆周长的 180 30 360
5 12
,弧 C 1C2
为小圆
周长的
1 4
,而
CC1
C 1C2
即为
C
点经
C1
到
C2
的路径,所以
C
点经
C1
到
C2
走过的路径的长为
于 ABC 的面积与 A' B 'C 的面积相等,所以阴影部分的面积等于扇形 ACA' 与扇形 BCB ' 的面积之
差,为 120 π 42 120 π 22 4π 12.56 (平方厘米).
360
360
【答案】12.56
【例 5】 如下图,△ABC 是一个等腰直角三角形,直角边的长度是 1 米。现在以 C 点为圆点,顺时针旋转
旋转图形的关键,是先从整体把握一下”变化过程”,即它是通过什么样的基本图形经过怎样的 加减次序得到的.先不去考虑具体数据,一定要把思路捋清楚.最后你会发现,所有数据要么直接 告诉你,要么就”藏”在那儿,一定会有.
可以进一步思考,比如平行四边形的旋转问题、一般三角形的旋转问题等等,此类问题的解决 对提高解决几何图形问题的能力是非常有益的. 【答案】(1) BC 边扫过图形的面积为 9π
4 (2) AB 边扫过图形的面积为 4π (3) AD 边扫过图形的面积为 9π
4 (4)DC 边扫过图形的面积为 4π
【巩固】如右图,以 OA 为斜边的直角三角形的面积是 24 平方厘米,斜边长 10 厘米,将它以 O 点为中心旋 转 90 ,问:三角形扫过的面积是多少?( π 取 3)
4-3-3 圆与扇形 题库
page 4 of 14
请;
【考点】曲线型旋转问题 【难度】3 星 【题型】解答 【解析】从图中可以看出,直角三角形扫过的面积就是图中图形的总面积,等于一个三角形的面积与四分之
一、跟曲线有关的图形元素:
①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说
的 1 圆、 1 圆、 1 圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几
2
4
6
分之几.那么一般的求法是什么呢?关键是 n . 360
比如:扇形的面积 所在圆的面积 n ; 360
,它的长度是
2
π
3
1 4
(
cm
);
4-3-3 圆与扇形 题库
page 2 of 14
请;
所以 A 点走过的路程长为: 2 π 4 1 2 π 5 1 2 π 3 1 6π ( cm ).
4
4
4
【答案】6π
【例 2】 草场上有一个长 20 米、宽 10 米的关闭着的羊圈,在羊圈的一角用长 30 米的绳子拴着一只羊(见如 图).问:这只羊能够活动的范围有多大?(圆周率取 3.14 )
360 【答案】 24π 15
【巩固】直角三角形 ABC 放在一条直线上,斜边 AC 长 20 厘米,直角边 BC 长10 厘米.如下图所示,三角形 由位置Ⅰ绕 A 点转动,到达位置Ⅱ,此时 B ,C 点分别到达 B1 ,C1 点;再绕 B1 点转动,到达位置Ⅲ, 此时 A , C1 点分别到达 A2 , C2 点.求 C 点经 C1 到 C2 走过的路径的长.
形之和.所以答案是 43.96m2 . 【答案】43.96
【例 3】 如图是一个直径为 3cm 的半圆,让这个半圆以 A 点为轴沿逆时针方向旋转 60 ,此时 B 点移动到 B ' 点,求阴影部分的面积.(图中长度单位为 cm ,圆周率按 3 计算).
4-3-3 圆与扇形 题库
page 3 of 14
Ⅰ Ⅱ ⅢⅣ
A
BC
DE
【考点】曲线型旋转问题 【难度】3 星 【题型】解答
【解析】因为长方形旋转了三次,所以 A 点在整个运动过程中也走了三段路程(如右上图所示).
这三段路程分别是:
第
1
段是弧
AA1
,它的长度是
2
π
4
1 4
(
cm
);
第
2
段是弧
A1
A2
,它的长度是
2
π
5
1 4
(
cm
);
第
3
段是弧
A2 E
4-3-3 圆与扇形 题库
page 1 of 14
请;
B
A
C
B
A
【考点】曲线型旋转问题 【难度】3 星 【题型】解答 【解析】如图所示, A 点在翻滚过程中经过的路线为两段120 的圆弧,所以路线的总长度为:
2π 6 120 2 8π 厘米; 360
三角形在滚动过程中扫过的图形的为两个 120 的扇形加上一个与其相等的正三角形,面积为: π 62 120 2 15 24π 15 平方厘米.
2π 20 5 2π 10 1 50 π 5π 65 π (厘米).
12
Hale Waihona Puke 433【答案】 65 π 3
【巩固】如图,一条直线上放着一个长和宽分别为 4cm 和 3cm 的长方形Ⅰ.它的对角线长恰好是 5cm .让这 个长方形绕顶点 B 顺时针旋转 90°后到达长方形Ⅱ的位置,这样连续做三次,点 A 到达点 E 的位 置.求点 A 走过的路程的长.
一圆的面积之和.圆的半径就是直角三角形的斜边 OA . 因此可以求得,三角形扫过的面积为: 24 1 π 1010 24 25π 99 (平方厘米).
4 【答案】99
【巩固】(“学而思杯”数学试题)如图,直角三角形 ABC 中, B 为直角,且 BC 2 厘米, AC 4 厘米,
则在将 ABC 绕 C 点顺时针旋转120 的过程中, AB 边扫过图形的面积为
如下图所示,端点 A 扫过的轨迹为 AAA ,端点 D 扫过轨迹为 DDD ,而 AD 之间的点,扫过的轨迹 在以 A、D 轨迹,AD, AD 所形成的封闭图形内,且这个封闭图形的每一点都有线段 AD 上某点扫过,
所以 AD 边扫过的图形为阴影部分.显然,
有阴影部分面积为 S直角ADC S扇形ACA S 直角ACD S 扇形CDD ,而直角三角形 ADC 、ACD 面积相等.
二、常用的思想方法: ①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法) ④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)
板块、曲线型旋转问题
【例 1】 正三角形 ABC 的边长是 6 厘米,在一条直线上将它翻滚几次,使 A 点再次落在这条直线上,那么 A 点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是 15 平方厘米,那么三角形在滚 动过程中扫过的面积是多少平方厘米?(结果保留 π )
4-3-3 圆与扇形 题库
page 6 of 14
请;
时针方向旋转 90 ,分别求出四边扫过图形的面积.
A
B
D
C
【考点】曲线型旋转问题 【难度】3 星 【题型】解答 【解析】容易发现, DC 边和 BC 边旋转后扫过的图形都是以线段长度为半径的圆的 1 ,如图:
4
A'
A
B
D
C
B'
因此 DC 边扫过图形的面积为 4π , BC 边扫过图形的面积为 9π . 4
44 3、研究 AD 边扫过的图形. 由于在整条线段上距离 C 点最远的点是 A ,最近的点是 D ,所以我们可以画出 AD 边扫过的图形, 如图阴影部分所示:
A'
A
B
D
C
B'
4-3-3 圆与扇形 题库
page 7 of 14
请;
用与前面同样的方法可以求出面积为: 52 π 42 π 9 π 4 44
S直角ADC S扇形ACA S 直角ACD S 扇形CD D =S 扇形ACA S 扇形CD D
= 90 AC 2 90 CD2 (52 42) 9 7.065( 平方厘米)
360
360
4
4
即 AD 边扫过部分的面积为 7.065 平方厘米.
【答案】7.065
【例 7】 (祖冲之杯竞赛试题)如图, ABCD 是一个长为 4 ,宽为 3 ,对角线长为 5 的正方形,它绕 C 点按顺
4
4
4
π
302
3 4
202
1 4
102
1 4
2512 .
【答案】2512
【巩固】一只狗被拴在底座为边长 3m 的等边三角形建筑物的墙角上(如图),绳长是 4m ,求狗所能到的地方 的总面积.(圆周率按 3.14 计算)
3
3
【考点】曲线型旋转问题 【难度】3 星 【题型】解答 【解析】如图所示,羊活动的范围是一个半径 4m ,圆心角 300°的扇形与两个半径1m ,圆心角 120°的扇
【考点】曲线型旋转问题 【难度】3 星 【题型】解答
【解析】如图所示,羊活动的范围可以分为 A , B ,C 三部分,其中 A 是半径 30 米的 3 个圆, B ,C 分别是 4
半径为 20 米和10 米的 1 个圆. 4
所以羊活动的范围是 π 302 3 π 202 1 π 102 1
请;
【考点】曲线型旋转问题 【难度】3 星 【题型】解答
【解析】面积 圆心角为 60 的扇形面积 半圆 空白部分面积(也是半圆) 圆心角为 60 的扇形面积