高中生物基因工程

合集下载

高中生物选修三基因工程知识点总结

高中生物选修三基因工程知识点总结

高中生物选修三基因工程知识点总结
高中生物选修三(基因工程)知识点总结如下:
1. 基因工程的基本步骤:
- 分离基因:从目标DNA序列中分离特定的基因。

- 转录:将分离得到的基因转录成RNA。

- 修饰:对转录后的基因进行修饰,使其更具表达效果。

- 克隆:用适当的载体将修饰过的基因导入目标细胞中。

- 表达:使目标细胞中导入的基因表达。

2. 基因工程的主要方法:
- 重组DNA技术:包括文库制备、扩增和筛选。

- 外源DNA片段导入技术:包括限制性内切酶消化、连接、转化、融合等。

- 自组织培养技术:包括离心、培养基选择、细胞培养等。

- 基因编辑技术:包括CRISPR/Cas9、CRISPR-Cas13a等。

3. 基因工程的应用:
- 细胞治疗:通过基因工程手段治疗一些遗传性疾病。

- 农业育种:通过基因工程技术改良作物品质和产量。

- 生物恐怖袭击防御:通过基因工程技术检测和防御生物恐怖袭击。

- 环境污染治理:通过基因工程技术处理污染物。

4. 基因工程的限制:
- 伦理和道德问题:基因工程技术可能会带来未知的伦理和道德
问题。

- 技术成本:基因工程技术相对其他技术更为复杂,成本较高。

- 技术安全:基因工程技术的安全性需要持续进行研究和维护。

5. 基因工程的安全性问题:
- 基因突变:基因工程过程中可能会引发基因突变,导致不良后果。

- 质量控制:基因工程技术的产品需要进行质量控制,以确保其质量和稳定性。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结一、基因工程的概念基因工程,又称为重组 DNA 技术,是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。

二、基因工程的工具1、限制性核酸内切酶(限制酶)限制酶能够识别双链 DNA 分子的某种特定核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开。

限制酶具有特异性,即一种限制酶只能识别一种特定的核苷酸序列,并在特定的切点上切割 DNA 分子。

2、 DNA 连接酶DNA 连接酶的作用是将两个具有相同末端的 DNA 片段连接起来,形成磷酸二酯键。

常用的 DNA 连接酶有 E·coli DNA 连接酶和 T4 DNA 连接酶。

3、载体常用的载体有质粒、λ噬菌体的衍生物、动植物病毒等。

载体需要具备的条件包括:能够在宿主细胞中稳定保存并自我复制;具有一个或多个限制酶切点,以便与外源基因连接;具有标记基因,便于进行筛选。

三、基因工程的基本操作程序1、目的基因的获取目的基因可以从自然界已有的物种中分离出来,也可以通过人工合成的方法获得。

常用的方法有从基因文库中获取、利用 PCR 技术扩增目的基因、通过化学方法人工合成等。

2、基因表达载体的构建基因表达载体的构建是基因工程的核心步骤。

目的是使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。

一个基因表达载体包括目的基因、启动子、终止子、标记基因等部分。

3、将目的基因导入受体细胞将目的基因导入受体细胞的方法因受体细胞的不同而有所不同。

例如,将目的基因导入植物细胞可以采用农杆菌转化法、基因枪法和花粉管通道法;将目的基因导入动物细胞常用的方法是显微注射法;将目的基因导入微生物细胞通常采用感受态细胞法。

4、目的基因的检测与鉴定目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,需要进行检测与鉴定。

新教材高中生物第3章基因工程 基因工程的基本工具与聚合酶链式反应PCR技术教师用书苏教版选择性必修3

新教材高中生物第3章基因工程 基因工程的基本工具与聚合酶链式反应PCR技术教师用书苏教版选择性必修3

第一节基因工程及其技术第1课时基因工程的基本工具与聚合酶链式反应(PCR)技术课标内容要求核心素养对接1.概述基因工程是在遗传学、微生物学、生物化学和分子生物学等学科基础上发展而来的。

2.阐明DNA重组技术的实现需要利用限制性内切核酸酶、DNA连接酶和载体三种基本工具。

生命观念:掌握基因工程的基本工具的种类及作用,并能说出它们在基因工程中的应用。

科学思维:掌握PCR技术的过程与原理,并能正确比较PCR技术与体内DNA复制的异同。

社会责任:通过了解基因工程的发展历程,认同新技术的发展是一代又一代科学家前赴后继努力的结果,并会给人类发展带来巨大的经济效益和社会效益。

一、基因工程是在多学科基础上发展而来的1957年:科恩伯格等首次发现DNA聚合酶。

↓1967年:罗思和海林斯基等发现运转工具质粒,同年,科学家发现DNA连接酶。

↓1970年:特明和巴尔的摩各自在RNA病毒中发现逆转录酶。

史密斯等人分离到限制性内切核酸酶。

↓1972年科学家伯格领导的研究小组完成了世界上首次DNA分子体外重组。

↓1973年科学家科恩领导的研究小组利用大肠杆菌质粒进行了另一个体外重组DNA分子实验。

↓接着,科恩和美国博耶证明真核生物的基因可以在原核生物中进行表达。

↓1976年,科学家用质粒为载体,将生长激素释放抑制因子基因转入大肠杆菌,1977年首次生产出治疗肢端肥大症、巨人症的生长激素释放抑制因子。

↓1977年桑格测定了一种噬菌体的基因组序列,这是人类首次对完整基因组的核苷酸顺序进行测定。

二、基因工程的基本工具1.基因工程(1)概念:又称为DNA重组技术,是指在体外通过人工“剪切”和“拼接”等方法,将外源目的基因与载体DNA进行组合形成重组DNA,然后导入受体细胞,并使其在受体细胞中表达,产生人类需要的基因产物的技术。

(2)原理:基因重组。

(3)操作水平:基因(分子)水平。

2.“分子剪刀”——限制性内切核酸酶(限制酶)(1)作用:识别DNA分子上特定的脱氧核苷酸序列,并使每条链中特定部位的两个脱氧核苷酸之间的磷酸二酯键断开。

高中生物基因工程课件

高中生物基因工程课件

毒性和提高免疫原性。
基因工程疫苗的应用
03
预防传染病,如乙型肝炎疫苗、人乳头瘤病毒疫苗等,降低人
群发病率。
基因工程抗体
基因工程抗体的种类
包括单克隆抗体、双特异性抗体、人源化抗体等。
基因工程抗体的制备
通过基因工程技术克隆和表达抗体的重链和轻链可变区基因,与适 当的恒定区基因融合,在哺乳动物细胞中表达。
公众参与与透明度
加强公众参与和透明度,促进利益相关方的对话 和协商,共同制定符合各方利益的决策。
3
国际合作与协调
加强国际合作与协调,共同制定国际性的伦理准 则和法律法规,促进全球范围内的公平和平等。
谢谢
THANKS
生物固氮
通过基因工程技术将固氮基因转入植物,提高植 物的固氮能力,减少化肥使用。
生物农药
通过基因工程技术生产具有杀虫、杀菌作用的生 物农药,减少化学农药的使用。
基因编辑技术
利用基因编辑技术如CRISPR-Cas9等对作物进行 精确的基因改造,提高作物的抗逆性和产量。
05 基因工程与环境保护
CHAPTER
生物的遗传性状。
基因工程原理
基因工程基于分子生物学和遗传学 原理,通过改变生物体的基因组, 实现对生物性状的遗传改良。
基因工程操作步骤
基因工程的操作步骤包括基因克隆 、载体构建、受体细胞转化、基因 表达和产物分离纯化等。
基因工程的历史与发展
基因工程的起源
基因工程的未来发展
基因工程起源于20世纪70年代,当时 科学家发现了限制性内切酶和DNA连 接酶,为基因操作提供了工具。
基因工程在土壤修复中的应用
土壤修复是指通过各种手段改善土壤质量,降低土壤污染 对环境和人体健康的影响。基因工程技术可以帮助我们培 育出具有特定功能的植物,用于土壤修复。

高中生物选修三专题一基因工程知识点

高中生物选修三专题一基因工程知识点

高中生物选修三专题一基因工程知识点专题一基因工程基因工程的概念基因工程就是指按照人们的心愿,展开严苛的设计,通过体外dna重组和转基因技术,剥夺生物以代莱遗传特性,缔造出以合乎人们须要的代莱生物类型和生物产品。

基因工程就是在dna分子水平上展开设计和施工的,又叫作dna重组技术。

(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内乌酶(管制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)功能:能辨识双链dna分子的某种特定的核苷酸序列,并且并使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。

(3)结果:经管制酶研磨产生的dna片段末端通常存有两种形式:黏性末端和平末端。

黏性末端:当限制酶从识别序列的中心轴线两侧切开时,被限制酶切开的dna两条单链的切口,带有几个伸出的核苷酸,他们之间正好互补配对,这样的切口叫黏性末端。

平末端:当管制酶从辨识序列的中心轴线处剖开时,剖开的dna两条单链的切口,就是平坦的,这样的切口叫做元显恭末端。

2.“分子缝合针”——dna连接酶(1)两种dna连接酶(e·colidna连接酶和t4-dna连接酶)的比较:①相同点:都缝合磷酸二酯键。

②区别:e·colidna连接酶源于大肠杆菌,就可以将双链dna片段优势互补的黏性末端之间的磷酸二酯键连接起来;而t4dna连接酶能缝合两种末端,但连接平末端的之间的效率较低。

(2)与dna聚合酶促进作用的优劣:dna聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。

dna连接酶是(1)载体具有的条件:①能够在受到体细胞中激活并平衡留存。

②具有一至多个限制酶切点,供外源dna片段插入。

③具备标记基因,可供重组dna的鉴别和挑选。

④对受体细胞无害。

(2)最常用的载体就是质粒,它就是一种外露的、结构直观的、单一制于细菌染色体之外,并具备自我复制能力的双链环状dna分子。

高中生物基因工程pt课件

高中生物基因工程pt课件

• 大肠杆菌的质粒:
最常用的质粒是大 肠杆菌的质粒;其中常 含有抗药基因;如四环 素的标记基因 质粒的 存在与否对宿主细胞生 存没有决定性作用;但 复制只能在宿主细胞内 成
原核细胞的基因结构补充内容
非编码区 编码区上游
启动子
编码区
非编码区 编码区下游
终止子
与RNA聚合酶结合位点
原核 细胞 的 基因 结构
工的 在基因操作的基本步骤中;不进行碱基
互补配对的步骤是
C
A 人工合成目的基因
B 目的基因与运载体结合
C 将目的基因导入受体细胞
D 目的基因的检测和表达
B 限制性内切酶用于目的基因的获得
C 目的基因须由运载体导入受体细胞
D 人工合成目的基因不用限制性内切酶
练习
4有关基因工程的叙述正确的是
D
A 限制酶只在获得目的基因时才用
B 重组质粒的形成在细胞内完成
C 质粒都可作为运载体
D 蛋白质的结构可为合成目的基因提供资 料
练习
5基因工程是在DNA分子水平上进行设计施
基因
结构 非编码区 :有调控作用;上游有启动子;下
游有终止子
非编码序列: 包括非编码区和内含子
原核细胞与真核细胞的基因结构比较
不同点 相同点
原核细胞
真核细胞
编码区是 _连__续__的
编码区是间隔的 __不__连_的续
都由能够编码蛋白质的_编__码__区_和具 有调控作用的非__编__码__区组成的
④利用PCR技术扩增目的基因
PCR——聚合酶链式反应
是一项生物体外复制特定DNA片 段的核酸合成技术 通过此技术;可获取 大量的目的基因
DNA序列自动测序仪: 对提取出来的

高中生物选择性必修三 第3章 第3节 基因工程的应用

高中生物选择性必修三  第3章 第3节 基因工程的应用
第3节 基因工程的应用
学习目标
1.举例说明基因工程在农牧业、医药卫生及食品工业 的应用。 2.举例说出日常生活中的转基因产品,理性看待基因工 程给我们的生产和生活带来的影响。
一、基因工程在农牧业方面的应用 1.转基因抗虫植物 (1)方法:从某些生物中分离出具有抗虫功能的基因,将其导入作物 中。 (2)成果:转基因抗虫棉花、玉米、水稻等。 (3)意义:减少化学杀虫剂的使用,降低生产成本,减少环境污染。 2.转基因抗病植物 (1)方法:将来源于某些病毒、真菌等的抗病基因导入植物中。 (2)成果:转基因抗病毒甜椒、番木瓜等。 (3)意义:能获得用常规育种方法很难培育出的抗病的新品种。
答案D 解析萤火虫与烟草的遗传物质都是双链DNA,这是完成基因重组的 基础,①正确;自然界的所有生物几乎都共用一套遗传密码,②正确; 萤火虫的荧光素基因导入烟草细胞使得该转基因植株通体光亮,可 见荧光素基因在该植株中成功表达,即烟草体内合成了荧光素,③ 正确;萤火虫与烟草细胞合成蛋白质的方式基本相同,都是以mRNA 为模板,在核糖体上,经氨基酸脱水缩合形成蛋白质,④正确。
探究点一
探究点二
答案C 解析重组质粒形成后需要通过农杆菌转化法等方法导入棉花的叶 肉细胞;如果抗虫基因导入棉花叶肉细胞的细胞质中,转基因棉花 的花粉中不含该基因,如果导入细胞核基因中,该转基因植株相当 于杂合子,后代会发生性状分离;抗虫棉的选择作用使具有抗性突 变的棉铃虫生存下来,经过长时间积累,棉铃虫的抗性会增强。
2.科学家将萤火虫的荧光素基因转入烟草植物细胞并获得高水平 的表达。长成的烟草植株通体光亮,堪称自然界的奇迹。这一研究 成果表明( ) ①萤火虫与烟草的DNA结构基本相同 ②萤火虫与烟草共用一套遗传密码 ③烟草体内合成了荧光素 ④萤火虫和烟草合成蛋白质的方式基本相同 A.①③ B.②③ C.①④ D.①②③④

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结一、基因工程1、基因工程:通过诱导、控制、修饰和组装酶分子改造生物的技术手段,即基因工程。

2、基因是什么:基因是DNA(deoxyribonucleic acid)在调控生物表达的功能单位,它是细胞在传递遗传信息的实体,也是遗传的核心物质。

它决定着生物体的各种性状特征。

3、基因的分类:基因可以按照性质和功能分为结构基因、调控基因和其他基因。

4、基因工程改造方法:基因工程技术有多种,包括基因重组技术、克隆技术、突变技术、转基因技术和增幅技术等。

二、基因工程在实验室中应用1、基因工程在实验室中的应用:基因工程技术在实验室中的应用大大提高了有关生命科学研究的准确性和灵敏度,广泛应用于药物研发、蛋白质检测、临床诊断等领域。

2、基因芯片:基因芯片是一种微小的电子设备,它可以通过在芯片上安装的特定探针来检测特定基因的表达情况或者其他特征。

这种技术可以用来快速检测病毒、细菌等多种病原体,也可以用来研究和监测人体疾病的进展情况。

3、基因测序:DNA测序技术是利用数字技术对准确确定和分析DNA序列的一种技术。

它可以用来检测基因组DNA的结构、查找靶基因和生物多样性、研究基因变异和肿瘤等。

4、基因合成:基因合成技术是以整合DNA的方式制造新的蛋白质的技术,它是把细菌、哺乳动物等常用基因以指定的比例混合在一起。

三、基因工程的发展1、基因工程的发展趋势:基因工程的发展将继续走向优化、分析和精细化。

将进一步提升对生命系统的认识,并能更好地利用基因信息提高生物系统的性能。

2、基因工程的应用场景:基因工程可用于转基因作物的研发、制药新药研发、生物燃料的生物柴油等方面的开发应用,还可以进行生命科学的深入研究,探索新的生物机理。

3、基因工程的未来发展:基因工程技术将在药物研发、医疗诊断、育种良种、食品检测、农药残留和农作物耐药性等方面获得更大的应用,发挥更大的作用,更好地促进人类健康。

高考生物专题复习《基因工程》含答案

高考生物专题复习《基因工程》含答案

高考生物专题复习《基因工程》【考点梳理.逐个击破】一、基因工程的操作工具1.限制性核酸内切酶(简称限制酶)(1)来源:主要是从原核生物中分离纯化出来的。

(2)作用:识别双链DNA 分子的某种特定的核苷酸序列并切开特定部位的两个核苷酸之间的磷酸二酯键。

(3)结果:产生黏性末端或平末端。

2.DNA 连接酶3.载体(1)作用:携带外源DNA 片段进入受体细胞。

(2)种类:质粒、λ噬菌体的衍生物、动植物病毒等。

(3)条件⎩⎪⎨⎪⎧能自我复制有一个至多个限制酶切割位点有特殊的标记基因二、基因工程的基本操作程序 1.目的基因的获取(1)目的基因:主要是指编码蛋白质的基因,也可以是具有调控作用的因子。

(2)获取方法⎩⎪⎨⎪⎧从基因文库中获取利用PCR 技术扩增通过化学方法人工合成2.基因表达载体的构建 (1)构建基因表达载体的目的①使目的基因在受体细胞中稳定存在,并且可以遗传给下一代。

②使目的基因能够表达和发挥作用。

(2)基因表达载体的组成:目的基因、启动子、终止子及标记基因等。

3.目的基因导入受体细胞微生物细胞感受态细胞法(Ca2+处理法)4.目的基因的检测与鉴定检测目的检测方法判断标准目的基因是否插入转基因生物的DNA DNA分子杂交技术是否出现杂交带目的基因是否转录出了mRNA 分子杂交技术是否出现杂交带目的基因是否翻译出蛋白质抗原—抗体杂交技术是否出现杂交带个体水平的检测如抗虫、抗病的接种实验是否表现出相应的特性三、基因工程的应用及蛋白质工程1.基因工程的应用(1)动物基因工程:提高动物生长速度从而提高产品产量;改善畜产品品质;用转基因动物生产药物;用转基因动物作器官移植的供体等。

(2)植物基因工程:培育抗虫转基因植物(如抗虫棉)、抗病转基因植物(如转基因烟草)和抗逆转基因植物(如抗寒番茄);利用转基因改良植物的品质(如新花色矮牵牛)。

2.基因诊断与基因治疗(1)基因诊断:又称为DNA诊断,是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。

高中生物基因工程

高中生物基因工程

(一)、获取目的基因的常用方法有哪些?
初始目的基因的来源 1. 从生物中直接获取 2. 人工合成
注意:要保持基因的完整性
目的基因的核苷酸序列未知 目的基因的核苷酸序列已知
从基因文 库中直接 获取
聚合酶链式反应 (PCR)扩增化学合成法1、从基因中直接获取目的基因基因
将含有某种生物不同基因的许多DNA片断,导 入到受体菌的群体中,各个受体化 • 常用的受体细胞: 有大肠杆菌、枯草杆菌、土壤农杆菌、 酵母菌和动植物细胞等。
• 将目的基因导入受体细胞的原理 借鉴细菌或病毒侵染细胞的途径。
1、将目的基因导入植物细胞
①农杆菌转化法:Ti质粒的t DNA ②基因枪法 ③花粉管通道法
2、将目的基因导入动物细胞
显微注射技术:将基因表达载体提纯,用显微仪 注射到受精卵中
种类 项目
作用 底物
作用 部位
限制酶
D分子 片段
磷酸二 酯键
DNA 聚合酶
脱氧核苷酸
磷酸二 酯键
解旋酶
DNA 分子 碱基对间 的氢键
作用 特点
切割目的基因及载体, 能专一性识别双链DNA 分子的某种特定的核 苷酸序列,并且使每 一条链中特定部位的 两个核苷酸之间的磷 酸二酯键断开
将腺苷酸脱氨酶基因转入取自患者的淋 巴细胞中,再将这种淋巴细胞转入患者体内。
4、基因治疗的类型 体外基因治疗:先从病人体内获得某种细 胞,进行培养,然后在体外完成基因转移, 再筛选成功转移的细胞扩增培养,最后重 新输入患者体内。
体内基因治疗:直接向人体组织细胞中转 移的治病方法。(如将治疗囊性纤维病的 正常基因转入患者肺组织)
“分子手术刀” ——限制酶
1、来源: 主要是从原核生物中分离纯化出来的一

高中生物高考1 第十单元 第33讲 基因工程

高中生物高考1 第十单元 第33讲 基因工程

第33讲基因工程考点一基因工程的操作工具1.基因工程的概念2.限制性核酸内切酶(限制酶)3.DNA连接酶4.载体1.(选修3 P6“寻根问底”改编)DNA连接酶和DNA聚合酶的作用相同吗?试简要说明。

答案:不相同。

DNA连接酶连接的是两个DNA片段,而DNA聚合酶连接的是单个的脱氧核苷酸。

2.(选修3 P6“旁栏思考题”)想一想,具备什么条件才能充当“分子运输车”?答案:能自我复制、有一个或多个限制酶切割位点、有标记基因及对受体细胞无害等。

1.限制酶的选择技巧(1)根据目的基因两端的限制酶切割位点确定限制酶的种类①应选择切割位点位于目的基因两端的限制酶,如图甲可选择PstⅠ。

②不能选择切割位点位于目的基因内部的限制酶,如图甲不能选择SmaⅠ。

③为避免目的基因和质粒的自身环化和随意连接,也可使用不同的限制酶切割目的基因和质粒,如图甲也可选择用PstⅠ和Eco RⅠ两种限制酶(但要确保质粒上也有这两种酶的切割位点,如图乙)。

(2)根据质粒的特点确定限制酶的种类①所选限制酶要与切割目的基因的限制酶一致,以确保产生相同的黏性末端。

②质粒作为载体必须具备标记基因等,所以所选择的限制酶尽量不要破坏这些结构,如图乙中限制酶SmaⅠ会破坏标记基因;如果所选酶的切割位点不是一个,则切割重组后可能丢失某些片段,若丢失的片段含复制起点区,则切割重组后的片段进入受体细胞后不能进行自主复制。

2.载体上标记基因的标记原理载体上的标记基因一般是一些抗生素的抗性基因。

目的基因要转入的受体细胞没有抵抗相关抗生素的能力。

当含有抗生素抗性基因的载体进入受体细胞后,抗性基因在受体细胞内表达,使受体细胞能够抵抗相应抗生素,所以在受体细胞的培养体系中加入该种抗生素就可以筛选出转入载体的受体细胞,原理如下图所示:1.(2016·高考全国卷Ⅲ)图(a)中的三个DNA片段上依次表示出了Eco R Ⅰ、Bam H Ⅰ和Sau3A Ⅰ三种限制性内切酶的识别序列与切割位点,图(b)为某种表达载体的示意图(载体上的Eco R Ⅰ、Sau3A Ⅰ的切点是唯一的)。

高中生物基因工程知识点总结

高中生物基因工程知识点总结

高中生物基因工程知识点总结基因工程是一门研究基因的组成、结构、功能以及其在生物体内的表达和调控的学科。

它是通过对DNA(脱氧核糖核酸)的操作和改变来实现人为干预基因,从而改变生物个体的性状、性质或者生物体的功能组成。

下面是对高中生物基因工程相关知识点的总结:一、基因工程的基本原理基因工程的基本原理包括以下内容:1. DNA的重组技术DNA的重组技术是基因工程的核心。

通过DNA的复制、切割、连接等操作,可以将来自不同生物体的DNA片段组合成一个新的DNA 片段,从而改变生物体的遗传特性。

2. 载体的选择和构建在基因工程中,常使用载体来携带外源基因。

载体可以是质粒、噬菌体或者人工合成的DNA片段。

选择合适的载体可以提高基因转移效率和表达水平。

3. DNA的放大和扩增DNA的放大和扩增是基因工程研究的重要手段。

常用的方法有聚合酶链式反应(PCR)和基于细菌的DNA复制。

二、基因工程的应用领域基因工程在许多领域都有广泛的应用,包括以下几个方面:1. 农业领域基因工程可以用于农作物的遗传改良,包括抗病虫害、耐逆性增强、提高产量等。

通过插入外源基因,农作物可以获得新的性状,提供更好的经济效益和环境适应性。

2. 医学领域基因工程在医学领域有广泛的应用,包括基因诊断、基因治疗和药物研发等。

通过基因工程技术,可以识别疾病相关基因,研发新的治疗方法,并生产高效的药物。

3. 环境保护领域基因工程可以用于环境保护和生态修复。

通过改变微生物的代谢能力,可以使其降解有害物质,减少污染物的残留。

4. 工业领域基因工程可以用于工业酶的生产和代谢工程。

利用转基因微生物制备工业酶,可以提高生产效率和质量。

三、基因工程的伦理和风险基因工程的发展也带来了一些伦理和风险问题:1. 生物安全基因工程研究中,外源基因的插入和转移可能会导致新的生物安全问题。

需要加强对转基因生物体的风险评估和管理。

2. 遗传信息的隐私基因工程研究需要大量的个体基因信息,如何保护个体基因信息隐私成为一个重要议题。

高中基因工程总结的知识点

高中基因工程总结的知识点

高中基因工程总结的知识点
一、基因工程
1、什么是基因工程
基因工程是指将一种生物体的基因插入另一种生物体,从而改变另一种生物体的性状,利用它们来改造和改变生物物种的一种技术。

2、基因工程的意义
基因工程可以帮助人们改善现有的农作物品种,以便获得更高的产量;同时也能够生产药物,如胰岛素,以治疗糖尿病等疾病。

3、基因工程的基本步骤
(1)获取基因序列:科学家首先获取目标基因的结构特征,以
及基因的排列顺序;
(2)构建基因组:科学家将基因拆分为多个碱基对,构建基因组;
(3)转化:将基因注入受体生物体,使之获得新的基因;
(4)表达:把插入的基因转录成mRNA,再转录成蛋白质,从而在受体生物体内表达出新的基因。

二、遗传工程
1、什么是遗传工程
遗传工程是通过改变某一物种的基因组结构而获得意想不到的
新突变,并利用这些突变来改良物种的一种技术。

2、遗传工程的意义
遗传工程可以帮助人们改良农作物品种,提高农作物的生长效率;
同时也可以用于育种,改良家禽种类,以提高食品的品质。

3、遗传工程的基本步骤
(1)获取基因:科学家首先获取和研究目标物种中的基因;
(2)基因分离:将基因拆分为多个碱基对,构建基因组;
(3)基因转移:将基因转移到另一物种中,进行基因转换;
(4)效果评估:使用遗传分析和实验测试,评估遗传工程所产生的效果。

高中生物选修三基因工程常考知识点归纳

高中生物选修三基因工程常考知识点归纳

1.基因工程的概念(1)供体:提供目的基因。

(2)操作环境:体外。

(3)操作水平:分子水平。

(4)原理:基因重组。

(5)受体:表达目的基因。

(6)本质:性状在受体体内的表达。

(7)优点:克服远缘杂交不亲和的障碍,定向改造生物的遗传性状。

2.基础理论和技术的发展催生了基因工程(1)20世纪中叶,基础理论取得了重大突破①DNA是遗传物质的证明:1944年,艾弗里等人通过不同类型肺炎双球菌的转化实验,不仅证明了生物的遗传物质是DNA,还证明了DNA可以从一种生物个体转移到另一种生物个体。

艾弗里等人的工作可以说是基因工程的先导。

②DNA双螺旋结构和中心法则的确立:1953年,沃森和克里克建立了DNA双螺旋结构模型。

1958年,梅塞尔松和斯塔尔用实验证明DNA的半保留复制。

随后不久确立的中心法则,解开了DNA复制、转录和翻译过程之谜,阐明了遗传信息流动的方向。

③遗传密码的破译:1963年,尼伦伯格和马太破译编码氨基酸的遗传密码。

1966年,霍拉纳用实验证实了尼伦伯格提出的遗传密码的存在。

这些成果不仅使人们认识到,自然界中从微生物到人类共用一套遗传密码,而且为基因的分离和合成等提供了理论依据。

(2)技术发明使基因工程的实施成为可能①基因转移载体的发现:1967年,罗思和赫林斯基发现细菌拟核DNA之外的质粒有自我复制能力,并可以在细菌细胞间转移,这一发现为基因转移找到了一种运载工具。

②工具酶的发现:1970年,阿尔伯、内森斯、史密斯在细菌中发现了第一个限制性内切酶(简称限制酶)后,20世纪70年代初相继发现了多种限制酶和连接酶,以及逆转录酶,这些发现为DNA的切割、连接以及功能基因的获得创造了条件。

③DNA合成和测序技术的发明:自1965年,桑格发明氨基酸序列分析技术后,1977年,科学家又发明了DNA序列分析的方法,为基因序列图的绘制提供了可能,之后,DNA 合成仪的问世又为引物、探针和小分子量DNA基因的获得提供了方便。

高中生物必修二考点总结之基因工程简介

高中生物必修二考点总结之基因工程简介

基因工程知识点1:基因工程的概念标准概念:在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组细胞在受体细胞内表达,产生出人类所需要的基因产物.通俗概念:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状.基因工程知识点2:基因操作的工具A.基因的剪刀——限制性内切酶(简称限制酶).①分布:主要在微生物中.②作用特点:特异性,即识别特定核苷酸序列,切割特定切点.③结果:产生黏性未端(碱基互补配对).B.基因的针线——DNA连接酶.①连接的部位:磷酸二酯键,不是氢键.②结果:两个相同的黏性未端的连接.C.基困的运输工具——运载体①作用:将外源基因送入受体细胞.②具备的条件:a、能在宿主细胞内复制并稳定地保存.b、具有多个限制酶切点.c、有某些标记基因.③种类:质粒、噬菌体和动植物病毒.④质粒的特点:质粒是基因工程中最常用的运载体.基因工程知识点3:基因操作的基本步骤A.提取目的基因目的基因概念:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等.提取途径:B.目的基因与运载体结合用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒)C.将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞D.目的基因检测与表达检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒.表达:受体细胞表现出特定性状,说明目的基因完成了表达过程.如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等.(4)基因工程的成果和发展前景 A.基因工程与医药卫生B.基因工程与农牧业、食品工业C.基因工程与环境保护基因工程记忆点1. 作为运载体必须具备的特点是:能够在宿主细胞中复制并稳定地保存;具有多个限制酶切点,以便与外源基因连接;具有某些标记基因,便于进行筛选.质粒是基因工程最常用的运载体,它存在于许多细菌以及酵母菌等生物中,是能够自主复制的很小的环状DNA分子.2.基因工程的一般步骤包括:①提取目的基因②目的基因与运载体结合③将目的基因导入受体细胞④目的基因的检测和表达.3.重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程.4.区别和理解常用的运载体和常用的受体细胞,目前常用的运载体有:质粒、噬菌体、动植物病毒等,目前常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等.5.基因诊断是用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本的遗传信息,达到检测疾病的目的.6.基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的.。

基因工程的四个步骤高中生物

基因工程的四个步骤高中生物

基因工程的四个步骤可以简述为以下四步:
1. 目的基因的获取:从基因文库中获取或利用PCR技术扩增基因组DNA。

2. 基因表达载体的构建:基因表达载体包括目的基因、启动子、终止子、标记基因等部分。

3. 受体细胞的选择和培养:根据基因工程的需要,选择适当的受体细胞并进行培养。

4. 基因的转化:将目的基因导入受体细胞。

这四个步骤在高中生物中的具体应用和解释如下:
1. 目的基因的获取:目的基因是从基因库或实验室设计合成,而PCR技术扩增基因组DNA 使得获取目的基因更加便捷。

例如,对于某个特定的生物性状,可以通过分析已知的基因序列来合成目的基因。

2. 基因表达载体的构建:这是将目的基因与合适的启动子、终止子和标记基因等调控组件重组在一起的过程。

这确保了目的基因能在细胞内以特定的方式表达,从而产生所需要的蛋白质。

3. 受体细胞的选择和培养:受体细胞可以是植物细胞、动物细胞或微生物细胞。

高中生物中可能涉及到植物组织培养的内容,就是利用基因工程技术培养符合要求的新植物个体。

4. 基因的转化:这一步是通过某种转化技术,如电转化、显微注射等方法,将重组的表达载体导入受体细胞。

这一步的关键在于确保表达载体准确无误地进入细胞,并且能够在细胞内正常运作。

以上就是基因工程的四个步骤在高中生物中的具体应用和解释。

总的来说,这些步骤体现了现代生物技术的核心内容,即通过改变遗传物质来创造新的生物或修改现有生物的特性。

这些技术不仅在科学研究中具有重要价值,也在工农业生产、医药卫生等领域有着广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4基因工程的基本内容
是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复
制、转录、翻译表达的操作,产生出人类所需要的基因产物或创建新的生物类
型。

在分子水平上对基因进行操作的复杂技术,属于基因重组。

定向改造生物
的性状。

基因工程
基本工具
作用








能识别特定脱氧核糖核苷酸序列
从特定部位的两个核苷酸之间切开
原理催化磷酸二酯键断裂
结果形成黏性末端、平末端
用途切割目的基因和运载体(基因工程)
保护自身细胞原有的遗传信息
D
N
A



作用
原理
结果
用途
催化磷酸二酯键形成
连接DNA片段
获得重组DNA分子
构建基因表达载体(基因工程)
基因修复(原核微生物细胞)


用途
条件
种类
运载工具
在受体细胞内对目的基因进行大量复制
能自我复制
有切割位点
有遗传标记基因
对受体细胞无害、容易分离等
细菌质粒
动植物病毒
BamH I
EcoR I
Hae III。

相关文档
最新文档