总体均值的假设检验
正态总体均值的假设检验
![正态总体均值的假设检验](https://img.taocdn.com/s3/m/66426f03e2bd960590c677d9.png)
2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一
一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:
正态总体均值的假设检验
![正态总体均值的假设检验](https://img.taocdn.com/s3/m/eddace5f19e8b8f67d1cb914.png)
上一段中, H0:μ=μ0 ; H1: μ≠μ0 的对立假设为H1:μ≠μ0 ,该假设称为双边对立假设。
2. 单边检验 H0: μ=μ0; H1: μ>μ0而现在要处理的对立假设为 H1: μ>μ0, 称为右边对立假设。
类似地,H0: μ=μ0; H1: μ<μ0 中的对立假设H1: μ<μ0,假设称为左边对立假设。
右边对立假设和左边对立假设统称为单边对立假设,其检验为单边检验。
例如:工厂生产的某产品的数量指标服从正态分布,均值为μ0 ;采用新技术或新配方后,产品质量指标还服从正态分布,但均值为µ。
我们想了解“µ是否显著地大于μ”,即产品的质量指标是否显著地增加了。
8.2.2 两个正态总体N(µ1, σ12) 和N(µ2, σ22)均值的比较在应用上,经常会遇到两个正态总体均值的比较问题。
例如:比较甲、乙两厂生产的某种产品的质量。
将两厂生产的产品的质量指标分别看成正态总体N(µ1, σ12) 和N(µ2, σ22)。
比较它们的产品质量指标的问题,就变为比较这两个正态总体的均值µ1和µ2的的问题。
上面,我们假定 σ12=σ22。
当然,这是个不得已而强加上去的条件,因为如果不加此条件,就无法使用简单易行的 t 检验。
在实用中,只要我们有理由认为σ12和σ22相差不是太大,往往就可使用上述方法。
通常是:如果方差比检验未被拒绝(见下节), 就认为σ12和σ22相差不是太大。
J 说明小结本讲首先介绍假设检验的基本概念;然后讨论正态总体均值的各种假设检验问题,给出了检验的拒绝域及相关例题。
总体均数的假设检验
![总体均数的假设检验](https://img.taocdn.com/s3/m/89e82ab4951ea76e58fafab069dc5022aaea460c.png)
$number {01}
目 录
• 引言 • 假设检验的基本原理 • 总体均数的假设检验方法 • 实例分析 • 总结与展望
01 引言
目的和背景
确定样本数据是否与假设的总体均数 存在显著差异,从而对总体均数进行 假设检验。
在科学实验、统计学、医学研究等领 域广泛应用,用于评估样本数据是否 支持或拒绝关于总体均数的假设。
配对样本均数假设检验实例
总结词
配对样本均数假设检验用于比较同一组研究对象在不同条件下的均数是否存在统计学显 著性差异。
详细描述
例如,为了比较同一组患者在接受两种不同治疗措施前后的改善程度,研究者收集了患 者的基线数据和接受不同治疗措施后的数据,并计算出各自治疗组的平均改善程度。然 后,研究者使用配对样本均数假设检验来比较同一组患者在不同治疗措施下的平均改善
概念简介
假设检验是一种统计推断方法,通过 检验样本数据是否符合某个假设,从 而对总体参数进行推断。
它基于概率论原理,通过计算样本数 据与假设的总体参数之间的差异,评 估这种差异是否具有统计学上的显著 性。
02
假设检验的基本原理
假设检验的步骤
建立假设
根据研究目的,提出一个关于总 体参数的假设,通常包括零假设 和备择假设。
收集样本数据
从总体中随机抽取一定数量的样 本,并记录样本数据。
确定检验水准
选择合适的检验水准,如α和β, 以平衡第一类和第二类错误的概 率。
计算统计量
根据样本数据计算适当的统计量, 如t值、Z值或χ^2值。
假设检验的类型
1 2
3
单样本均数检验
比较一个样本均数与已知总体均数或正常值范围。
两样本均数比较
概率论与数理统计02-82.2 两个正态总体均值的检验_70
![概率论与数理统计02-82.2 两个正态总体均值的检验_70](https://img.taocdn.com/s3/m/24f8753c8762caaedc33d42e.png)
第八章假设检验第二节正态总体均值的假设检验2. 两个正态总体在寿命问题中提出了两个正态总体均值是否相等的假设012:H μμ=112:H μμ≠这种情形经常发生在当研究对象的外界条件发生了改变时,判断研究对象是否受到了这种影响.检验统计量如何构造呢?例3对用两种不同热处理方法加工的金属材料做抗拉强度试验,得到的试验数据如下:方法Ⅰ:31,34,29,26,32,35,38,34,30,29,32,31方法Ⅱ:26,24,28,29,30,29,32,26,31,29,32,28设两种热处理加工的金属材料的抗拉强度都服从正态分布,且方差相等.比较两种方法所得金属材料的平均抗拉强度有无显著差异().05.0=α).,(),,(2221σμσμN N 解:记两总体的正态分布为.:,:211210μμμμ≠=H H 本题是要检验假设关键问题在于找到拒绝域12k μμ->X Y k->121212()()~(2),11w X Y t n n S n n μμ---+-+222112212(1)(1)2w n S n S S n n -+-=+-其中12221212()()~(0,1)X Y N n n μμσσ---+).,(),,(2221σμσμN N 解:记两总体的正态分布为.:,:211210μμμμ≠=H H 本题是要检验假设1212~(2)11w X Y T t n n S n n -=+-+检验统计量为21212||(2)11w x y t t n n S n n α-=≥+-+拒绝域为,1221==n n ,75.31=x .67.28=y ,25.112)1(211=-s n ,64.66)1(222=-s n .85.2=w s .647.26185.2|67.2875.31|11||||21=-=+-=n n s y x t w 计算统计值074.2)22()2(025.0212==-+t n n t α查t 分布表,得/212||(2)t t n n α>+-统计判决:由于故拒绝H 0.即认为两种热处理方法加工的金属材料的平均抗拉强度有显著差异.解:休息一下吧。
正态总体均值的假设检验
![正态总体均值的假设检验](https://img.taocdn.com/s3/m/e1f14517700abb68a882fbda.png)
即认为元件的平均寿 命不大于 225小时。
二、两个正态总体均值差的检验(t 检验N)o:
Image
设X1,X2,,Xn1是 来 自 正 态 总 体 N(m1,s2)的 样 本Y;1,Y2,,Yn2是 来 自 正 态 总 体 N(m2,s2)的 样 本 , 且 设 两 样 立本 。独 又 分 别 记 它 们
1)
s
2 2
10 10 - 2
= 2.775,
t0.05 (18) = 1.7341,
故拒绝域为:
T = X -Y
Sp
11 10 10
- t 0.05 (18 ) = -1.7341 ,
可算得 T = -4.295 < -1.7341 , 故拒绝 H 0 ,
即 认为新方法能提高得率。
已知总 例体服从2正态某分布地,且区方差大高致相考同,负由抽样责获得人资料想如下:知道某年来自城市中学考生
当H0成 立 时T,~ t(n1 n2 -2), 对 于 给 定 a 的
P{|T |>ta/2(n1 n2 -2)}=a,
故 拒 绝 域 为|T |>t a/2(n1 n2 -2).
说明: 1. 对于单侧检验 “ H0 : m1 - m2 ≤ m0 ” 和 “ H0 : m1- m2 ≥ m0 ”, 可以类似地讨论。 常用的是 m0 = 0。 2. 对于两个正态总体的方差均为已知时,
的 样 本 均 值 X,Y为, 样 本 方 差 S12为 ,S22, 并 设 m1,m2,s2 均未知。
检验H: 0:m1-m2 =m0,H1:m1-m2 m0,
取统2
其
中
S2p
=
(n1
-1)S12 (n2 -1)S22 n1 n2 -2
正态总体均值和方差的假设检验
![正态总体均值和方差的假设检验](https://img.taocdn.com/s3/m/7e9044f40740be1e640e9a82.png)
给定检验水平,查t(n-1)表得, t1-/2(n-1),使
得,
P{| T | t (n 1)}
即得,
1 2
P{|
x s
0
|
t 1
(n 1)}
n
2
拒绝域: 即
算出|T|与 t1比较,若 2 否则,接受H 0.
T , t1拒 绝 , H 0 2
例3 在某砖厂生产的一批砖中,随机地抽取6块进 行抗断强度试验,测得结果(单位:kg/cm2)如下: 32.56, 29.66, 31.64, 30.00, 31.87, 31.03, 设砖的抗断强度服从正态分布.问这批砖的 平均抗断强度是否为32.50 (kg/cm2)?(=0.05)。
2 0
,
H1
:
2
2 0
给定检验水平 ,查 2 n 1 分布表得
2 (n 1),
使得 P 2 2 (n 1)
根据样本值计算统计量的值.
如果 2 2 (n 1)
则拒绝 H 0 , 接受 H1.
第一类错误
弃真错误
第二类错误
取伪错误
假设检验的两类错误
所作判断 真实情况
H0 为真 H0 为假
接受 H0
拒绝 H0
正确
第二类错误 (取伪)
第一类错误 (弃真)
正确
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
P
否定H0
H
为真
0
P第一类错误
P
不否定H0
H
为假
0
P第二类错误
若 T t,1拒绝 ,H接0 受
H1
T t1 ,接受 H,0 拒绝 H。1
3,4形式的检验成为右边检验.
总体均值的假设检验
![总体均值的假设检验](https://img.taocdn.com/s3/m/cf3d915c79563c1ec5da71d9.png)
总体均值的假设检验一、正态总体均值的检验设n X X X ,,, 21为总体),(2σμN 的一个容量为n 的样本. 1.方差2σ已知,μ的检验——u 检验法. 当202σσ=已知时,假设检验问题:0100μμμμ≠=:;:H H . 选择检验统计量nX U /00σμ-=,当0H 成立时,)1,0(~N U .给定显著性水平α,由标准正态分布分位点的定义, 有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= ,这种利用服从正态分布的检验统计量的检验方法称为u 检验法.有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值μ是小于等于原来的均值0μ,还是大于0μ,即检验假设 0100μμμμ>≤:;:H H . 可以证明,在显著性水平α下,上述假设检验问题和检验假设0100μμμμ>=:;:H H 有相同的拒绝域,因此,遇到形如00μμ≤:H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100μμμμ<≥:;:H H 的检验问题, 可归结为检验假设 0100μμμμ<=:;:H H .这都是单边检验问题.给定显著性水平α,求得的临界值点是上α分位点或上α-1分位点.例1 某厂生产的某种钢索的断裂强度X 服从),(2σμN ,其中40=σ(kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值x 较以往正常生产的μ大20(kg/cm 2),设总体方差不变,问在1.00=α下,能否认为这批钢索质量有显著提高?解 依题意,检验假设0100μμμμ>≤:;:H H , 由于40=σ已知,选择检验统计量nX U /0σμ-=因为0H 中的μ全部都比1H 中的μ要小,从直观上看,当0H 成立时,X 的取值x 不应比μ大很多,若偏差0μ-x 过大,则拒绝0H 而接受1H .因为 0100μμμμ>=:;:H H 的拒绝域为}{αu U W >=, 故在显著性水平1.00=α下原假设的拒绝域为}{}{0nu X u U W σμαα+>=>=.本题中,9=n ,40=σ,200=-μx ,33.201.0=u , 计算U 的值33.25.1/0<=-=nx u σμ因此在显著性水平1.00=α下不能拒绝0H ,即认为这批钢索质量没有显著提高.2.方差2σ未知,μ的检验——t 检验法. 检验假设0100μμμμ≠=:;:H H .因为2σ未知,而样本方差2S 是总体方差2σ的无偏估计量,用S 代替σ. 选择检验统计量 nS X T /0μ-=,当0H 成立时,)1(~-n t T .给定显著性水平α,由t 分布分位点的定义, 有αα=->)}1(|{|2/n t T P ,故拒绝域)}1({)}1({)}1(|{|2/2/2/->--<=->=n t T n t T n t T W ααα , 这种利用服从t 分布的检验统计量的检验方法称为t 检验法.例2 某切割机工作正常时,切割每段金属棒的平均长度为10.5cm .今在某段时间内随机地抽取15段进行测量,其结果如下(cm):10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7问此段时间内该机工作是否正常(5.00=α)?假设金属棒长度服从正态分布.解 依题意,检验假设0100.510μμμμ≠==:;:H H , 由于2σ未知,故选择检验统计量nS X T /0μ-=.在0H 下,)1(~-n t T ,15=n .给定显著性水平5.00=α,查t 分布表, 得临界值1448.2)14()1(025.02/==-t n t α,故拒绝域)}1(|{|2/->=n t T W α.由已知条件可得48.102.15715111=⨯==∑=n i i x n x056.0784.0141)(11122=⨯=--=∑=n i ix x n s 故2366.0=s .计算统计量的值3274.015/2366.05.1048.10/0-=-=-=ns x t μ因为)1(||2/-<n t t α,所以接受0H ,认为切割机工作正常.例3 设木材的小头直径),(~2σμN X ,12≥μcm 为合格,今抽出12根测得小头直径的样本均值为2.11=x cm ,样本方差为44.12=s cm 2,问该批木材是否合格(5.00=α)?解 依题意,检验假设010012μμμμ<=≥:;:H H ,选择检验统计量nS X T /0μ-=.在假设0100μμμμ<=:;:H H 下,)1(~-n t T ,12=n .给定显著性水平5.00=α,查t 分布表,得临界值7959.1)11()1(05.0==-t n t α,故拒绝域)}1({--<=n t T W α,也是假设010012μμμμ<=≥:;:H H 的拒绝域. 由于2.11=x ,44.12=s ,计算统计量的值3094.212/44.1122.11/0-=-=-=ns x t μ因为)1(--<n t t α,故拒绝0H ,认为该批木材是不合格的. 二、正态总体方差的检验——2χ检验法设n X X X ,,, 21为来自总体),(2σμN 的一个样本,检验假设 20212020σσσσ≠=:;:H H .1.均值μ已知. 因为)1,0(~N X i σμ-,n i ,,2,1 =,则选取检验统计量∑∑==-=⎪⎪⎭⎫ ⎝⎛-=ni ini i XX 12201202)(1μσσμχ.当0H 成立时,)(~22n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=><-))}(())({(22/222/12n n P ,故得拒绝域)}({)}({22/222/12n n W ααχχχχ><=- .2.均值μ未知.因为X 是总体均值μ的无偏估计量,用X 代替μ.选择检验统计量202122)1(σσχS n XX ni i -=⎪⎪⎭⎫ ⎝⎛-=∑=. 当0H 成立时,)1(~22-n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=->-<-))}1(())1({(22/222/12n n P故得拒绝域)}1({)}1({22/222/12->-<=-n n W ααχχχχ .类似地,在μ已知和μ未知时,可以求出检验假设20212020σσσσ>≤:;:H H 和20212020σσσσ<≥:;:H H的拒绝域.例如,在μ未知时,检验假设2020σσ≤:H 的拒绝域为)}1({22->=n W αχχ.上述检验所用的检验统计量均服从2χ分布,称这种检验方法为2χ检验法例4 某无线电厂生产的一种高频管,其中一指标服从正态分布),(2σμN ,今从一批产品中抽取8只管子,测得指标数据:68 43 70 65 55 56 60 72(1) 总体均值60=μ时,检验228=σ(取5.00=α); (2) 总体均值μ未知时,检验228=σ(取5.00=α). 解 本题是在显著性水平5.00=α下,检验假设2021220208σσσσ≠==:;:H H ,这里8=n .(1) 60=μ已知时临界值35.517)8()(2025.022/==χχαn ,80.12)8()(2975.022/1==-χχαn ,而检验统计量的值359.10663641)(811222=⨯=-=∑=ni i x μχ, 由于)()(22/222/1n n ααχχχ<<-,故接受0H .(2) μ未知时临界值13.016)7()1(2025.022/==-χχαn ,90.61)7()1(2975.022/1==--χχαn ,而125.614898111=⨯==∑=n i i x n x ,875.652)()1(122=-=-∑=ni i x x s n ,检验统计量的值2012.1075.86526412=⨯=χ, 由于)1()1(22/222/1-<<--n n ααχχχ,故接受0H .§8.3 两个正态总体参数的假设检验设121n X X X ,,, 为总体),(~112σμN X 的一个样本,221n Y Y Y ,,, 为总体),(~222σμN Y 的一个样本.∑==1111n i i X n X 和∑==2121n i iYn Y 分别是两个样本的样本均值,∑=--=112121)(11n i i X X n S 和∑=--=212222)(11n i i Y Y n S 是相应的两个样本方差.设这两个样本相互独立..一、两个正态总体均值的检验考虑检验假设 211210μμμμ≠=:;:H H . 1.方差21σ与22σ已知——u 检验法. 选取 22212121)()(n n Y X U σσμμ+---=.当0H 成立时,检验统计量)1,0(~222121N n n YX U σσ+-=.给定显著性水平α,由标准正态分布表分位点的定义,有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= .例1 设从甲乙两场所生产的钢丝总体X ,Y 中各取50束作拉力强度试验,得1208=x ,1282=y ,已知801=σ,942=σ,请问两厂钢丝的抗拉强度是否有显著差别(5.00=α)?解 本题是在显著性水平5.00=α下, 检验假设211210μμμμ≠=:;:H H , 这里5021==n n .选取检验统计量222121n n YX U σσ+-=.给定显著性水平05.0=α,查标准正态分布表,得临界值96.1025.02/==u u α,故拒绝域}|{|2/αu U W >=.由于1208=x ,1282=y ,801=σ,942=σ, 计算检验统计量的值2392.450/)(2221-=+-=σσy x u .由于2/||αu u >,故拒绝0H ,认为两厂钢丝的抗拉强度有显著差别. 2.方差21σ与22σ未知,但2221σσ=——t 检验法.选取 212111)()(n n S Y X T w+---=μμ.这里2)1()1(21222211-+-+-=n n S n S n S w .当0H 成立时,检验统计量)2(~112121-++-=n n t n n S Y X T w.给定显著性水平α,由t 分布表分位点的定义, 有αα=-+>)}2(|{|212/n n t T P ,故拒绝域)}2({)}2({212/212/-+>-+-<=n n t T n n t T W αα .例2 某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量有无显著差异?解 检验假设211210μμμμ≠=:;:H H ,这里621==n n ..525=x ,67.625=y ,7386.21=s ,3267.32=s ,0469.3=w s . 选取检验统计量2111n n S Y X T w+-=.给定显著性水平5.00=α,查t 分布表,得临界值2281.2)10()2(025.0212/==-+t n n t α,故拒绝域)}2(|{|212/-+>=n n t T W α.计算统计量的值0949.00469.33)667.255.25(1121-=⨯-=+-=n n s y x t w.由于)2(||212/-+<n n t t α,故接受0H ,认为两种香烟的尼古丁含量无显著差异. 二、两个正态总体方差的检验——F 检验法 考虑检验假设 2221122210σσσσ≠=:;:H H . 1.均值1μ与2μ已知.因为)(~)(11212121211n Xn i iχμσχ∑=-=,)(~)(12212222222n Yn i iχμσχ∑=-=,选取221222211211222121/)(1/)(1//21σμσμχχ∑∑==--==n i i n i i Y n X n n n F . 当0H 成立时,检验统计量),(~)(1)(1211222121121n n F Y n X n F n i i n i i ∑∑==--=μμ.给定显著性水平α,由F 分布分位点的定义,有ααα=><-))},(()),({(212/212/1n n F F n n F F P , 故得拒绝域)},({)},({212/212/1n n F F n n F F W αα><=- . 2.均值1μ与2μ未知.因为)1(~)1()(112212111221211--=-=∑=n S n X X n i i χσσχ,)1(~)1()(122222221222222--=-=∑=n S n Y Yn i iχσσχ,选取22222121222121//)1/()1/(σσχχS S n n F =--=.当0H 成立时,检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,由F 分布分位点的定义,有ααα=-->--<-))}1,1(())1,1({(212/212/1n n F F n n F F P , 故得拒绝域)}1,1({)}1,1({212/212/1-->--<=-n n F F n n F F W αα .例3某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量的方差是否相等? 解 考虑检验假设2221122210σσσσ≠=:;:H H . 由于两个正态总体的均值都未知,选取检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,查F 分布表,得两个临界值:15.7)5,5()1,1(025.0212/==--F n n F α1399.015.71)5,5(1)5,5()1,1(025.0975.0212/1====---F F n n F α,故得拒绝域}15.7{}1399.0{><=F F W . 计算统计量的值6777.03267.37386.2222221===s s F .由于15.71399.0<<F , 故接受0H ,认为两种香烟的尼古丁含量的方差也无显著差异.§8.4 非正态总体参数的大样本检验本节讨论一般总体参数的检验.设总体X 的均值为μ,方差为2σ, n X X X ,,, 21为总体X 的一个样本.由中心极限定理可知,当样本容量n 足够大时,nX U /σμ-=近似地服从标准正态分布.因此,我们可以用正态分布去近似.如果对均值μ进行检验,方差2σ未知时,可以用样本方差2S 代替2σ;如果对方差2σ进行检验,均值μ未知时,可以用样本均值X 代替μ.下面举两个例子.例1 设某段高速公路上汽车限速为104.6km/h ,现检验85辆汽车的样本,测出的平均车速为106.7km/h ,已知总体标准差为.413=σ km/h ,但不知总体是否服从正态分布.在显著性水平50.0=α下,试检验高速公路上的汽车是否比限制速度104.6km/h 显著地快?解 依题意,检验假设0100.6104μμμμ>=≤:;:H H , 由于.413=σ已知,n =85足够大, 选择检验统计量nX U /0σμ-=近似地服从)10(,N .其拒绝域}{αu U W >=,其中65.105.0==u u α. 计算U 的值449.4185/4.136.1047.106=-=u ,由于αu u <,因此接受0H ,没有理由认为高速公路上的汽车比限制速度104.6km/h 显著地快.例2 为比较甲乙两种小麦植株的高度(单位:cm),分别抽得甲、乙小麦各100穗,在相同条件下进行高度测定,算得甲乙小麦样本均值和样本方差分别为28=x ,8.3521=s ,26=y ,3.3222=s ,问这两种小麦的株高有无显著差异(50.0=α)?解 依题意,检验假设 211210μμμμ≠=:;:H H , 选取 22212121)()(n n Y X U σσμμ+---=,这里两个方差用样本方差代替.当0H 成立时, 检验统计量 222121n Sn S Y X U +-=近似地服从)1,0(N .给定显著性水平05.0=α,查附表3,得临界值96.1025.02/==u u α, 得拒绝域}|{|2/αu U W >=.计算U 的值4236.21003.328.352628=+-=u ,由于αu u >,因此拒绝0H ,认为这两种小麦的株高有显著差异.当总体服从(0-1)分布),1(p b 时,由于只有一个参数p ,总体均值p 和方差)1(p p -均只与p 有关,这时对参数p 进行假设检验时,检验统计量可以直接用样本和参数p 表示出来.例3 某厂有一批产品须经检验后方可出厂.按规定二级品率不得超过10%,从中随机抽取100件产品进行检查,发现有二级品14件,问这批产品是否可以出厂(50.0=α)?解 这里n =100,14.0=x .检验假设01001.0p p H p p H >=≤:;:, 选取检验统计量 np p p X U )1(000--=,U 近似地服从)1,0(N .由显著性水平50.0=α,可以得到拒绝域}{αu U W >=,其中65.105.0==u u α,计算U 的值333.31100.90.10.104.10=⨯-=u ,由于αu u <,因此接受0H ,认为这批产品二级品率没有超过10%,可以出厂.§8.5 分布的拟合检验前几节的检验都是参数的检验.实际问题中,有时需要对分布作出假设,进行检验.本节只介绍一种分布的检验方法——皮尔逊2χ检验法,它只适合于大样本的情形,一般要求样本容量50≥n .设总体X 的分布函数为)(x F ,)(0x F 为一个已知的分布函数,n X X X ,,, 21为总体X 的一个样本,我们来检验关于总体分布的假设)()()()(0100x F x F H x F x F H ≠=:;:.一、基本原理2χ检验法的基本思想是:将随机试验的所有可能结果的全体分成k 个两两互不相容的事件k A A A ,,, 21,在n 次试验中,将i A 发生的次数i f 叫做i A 发生的频数,如果0H 为真,则由大数定律,在n 次试验中(n 足够大),i A (k i ,,, 21=)出现的实际频率nf i与理论频率)(i i A P p =(可由分布函数)(0x F 算出)不应相差很大.基于这种想法,皮尔逊构造了统计量∑=-=ki i i i np np f 122)(χ或∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 其中i p ˆ是由)(ˆ0x F 计算出来的理论频率,)(ˆ0x F 是)(0x F 中未知参数估计出后的分布函数,并证明了如下定理:定理1 若n 足够大,当0H 成立时,统计量2χ总是近似地服从自由度为1--r k 的2χ分布,其中r 是已知的分布函数)(0x F 中未知参数的个数.直观上看,2χ值表示实际观测结果与理论期望结果的相对差异的总和,当它的取值大于临界值时,应拒绝0H . 二、检验步骤如果)(0x F 为不带有未知参数的已知分布,皮尔逊2χ检验法的具体步骤如下: (1) 将总体X 的值域划分成k 个不交的区间i A (k i ,,, 21=),使得每个区间包含的理论频数满足5≥i np ,否则将区间适当调整; (2) 在0H 成立时,计算各理论频率即概率i p 的值:)()()(100--==i i i i y F y F A P p ,k i ,,, 21=.这里1-i y 与i y 为区间i A 的端点,即](1i i i y y A ,-=;(3) 数出i A 中含有样本值的个数,即i A 的频数i f ,并计算统计量∑=-=ki ii i np np f 122)(χ 的值2χ;(4) 由2χ分布,对于给定的显著性水平α,找出临界值)1(2-k αχ; (5) 判断:若)1(22->k αχχ,则拒绝0H ,否则可接受0H . 如果总体X 是离散型的,则假设0H 相当于假设总体X 的概率分布00}{i i p x X P H ==:, ,,21=i .如果总体X 是连续型的,则假设0H 相当于)()(00x f x f H =:,这里)(x f 为总体的概率密度.例1 至1984年底,南京市开办有奖储蓄以来,13期兑奖号码中诸数码的频数汇总如表8.1:表8.1试检验器械或操作方法是否有问题(50.0=α).解 设抽取的数码为X ,它可能的取值为0~9,如果检验器械或操作方法没有问题,则0~9出现是等可能的,即检验假设 1010=i p H :,9210,,,, =i ,这里}{i X P p i ==. 依题意知k =10,令}{i A i =,9210,,,, =i ,n =350,则理论频数35=i np .57.61935688)(922==-=∑=i i i i np np f χ给定显著性水平5.00=α,查2χ分布表,得临界值9.16)9()1(205.02==-χχαk .由于19.675>16.9,故拒绝0H ,即认为器械或操作方法有问题.如果)(0x F 为带有未知参数的已知分布,未知参数为r θθθ,,, 21,这时用这r 个未知参数的极大似然估计量r θθθˆˆˆ21,,, 来代替)(0x F 中的参数r θθθ,,, 21,得到分布函数)(ˆ0x F ,然后建立统计量∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 这里i p ˆ是由)(ˆ0x F 计算出来的理论频率,再用以上检验步骤进行检验,但此时检验统计量2χ近似服从)1(2--r k χ分布(这里k >r +1).例2 某高校对100名新生的身高(厘米)做了检查,把测得的100个数据按由大到小的顺序排列,相同的数合并得表8.2:表8.2试问,在显著性水平5.00=α下是否可以认为学生身高X 服从正态分布? 解 这里n =100,我们来检验假设222)(021)(σμσπ--=x ex f H :,+∞<<∞-x ,这里)(x f 为正态分布),(2σμN 的概率密度,设其分布函数为)(x F ,μ与0>σ为未知参数.先求μ与2σ的极大似然估计值μˆ,2ˆσ: 33.1661ˆ1==∑=n i i x n μ, 06.28)ˆ(1ˆ212=-=∑=μσn i i x n . 设服从正态分布)ˆ,ˆ(2σμN 的随机变量为Y ,分布函数为)(ˆy F .按照分组要求,每个小区间的理论频数i pn ˆ不应小于5,因此我们将数据分成了7个组,使得每组的实际频数不小于5,各计算结果如下表8.3所示.表8.3中第3列i pˆ的计算如下: )(ˆ)(ˆ}{ˆ11---=≤<=i i i i i y F y F y Y y P p ,7210,,,, =i , 例如,}06.2833.1665.164ˆˆ06.2833.1665.161{}5.1645.161{ˆ3-≤-<-=≤<=σμY P Y P p1837.0)911.0()345.0(=-Φ--Φ=.给定显著性水平5.00=α,查2χ分布表,得临界值488.9)4()127()1(205.0205.02==--=--χχχαr k .由于1.8843<9.488,故接受0H ,即认为学生身高服从正态分布.。
§正态总体均值的假设检验
![§正态总体均值的假设检验](https://img.taocdn.com/s3/m/efefe5a102d276a200292ef9.png)
1 , 2 , 2 未知,
问新操作方法是否会增加钢的得率? (α=0.05)
解:
H 0 : 1 2 0,
n1 10, n2 10,
H 1 : 1 2 0
2 s1
x 76.23,
3.325,
y 79.43,
2 s2 2.225,
2 2 ( n 1 ) s ( n 1 ) s 2 1 2 2 sw 1 2.775, n1 n2 2
H1 : 0
(2) 选取检验统计量
X 0 Z n
在 H 0 成立的条件下, Z ~ N (0,1) (3) 给定的显著性水平α ,查正态分布表得临界值 z
2
P{ Z z 2 }
(4) 计算检验统计量与临界值比较;
(5) 拒绝域
x 0 z 2 , n
(1) 提出假设
H0 : 0 ,
H1 : 0
(2) 选取检验统计量
X 0 t S n
在 H 0 成立的条件下, t ~ t ( n 1) (3) 给定的显著性水平α ,找临界值
t 2 (n 1)
使
P{ t t 2 ( n 1)}
x 0 t 2 ( n 1), 下结论. s n
解:设两种方法处理后的羊皮含脂率分别为X 和Y,
X ~ N ( 1 , 2 ), Y ~ N ( 2 , 2 )
x 16.375, y 14.857,
sw 2.945,
H 0 : 1 2 0, H1 : 1 2 0
在H0成立下,
X Y T ~ t ( n1 n2 2) 1 1 SW n1 n2
《统计学》第5章 假设检验
![《统计学》第5章 假设检验](https://img.taocdn.com/s3/m/1fd5f62c777f5acfa1c7aa00b52acfc788eb9f77.png)
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),
正态总体均值的假设检验
![正态总体均值的假设检验](https://img.taocdn.com/s3/m/41aa7675ce84b9d528ea81c758f5f61fb73628a0.png)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)
.
又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
单个正态总体均值假设检验(标准差已知,Z检验)
![单个正态总体均值假设检验(标准差已知,Z检验)](https://img.taocdn.com/s3/m/099bd7fe4028915f804dc2db.png)
X
n
z 2
0
X
n
z
2
16
7
步骤1:提出检验假设
H0 : 1550, H1 : 1550
步骤2:确定检验规则
检验统计量为 Z X 1550. 取显著水平 0.05, n
由备择假设的形式知,这是左边检验,因此检验 规则为:当Z z z0.05 1.645时,拒绝H0.
8
步骤3:计算检验统计量的值
2
双边假设问题
H0 : 0, H1 : 0,
其中0是已知的常数.
2
拒绝域
接受域
2
检验统计量为 Z X 0
z 2
z 2
n
检验拒绝域W | Z |
X 0 n
z/2 .
3
P_值的计算
对给定的样本观察值x1,, xn,记检验统计量Z的取值
9
利用P_值进行假设检验
步骤3’:计算P_值
P_ P( X 1550 1530 1550 1550) n 120 225
P(Z 2.5) 0.006
步骤4’:根据显著水平作出判断
P_ 0.006 0.05,
同样做出拒绝原假设H0 : 1550的判断.
将样本均值x 1530, 120, n 225,
代入检验统计量,计算得
Z X 1550 1530 1550 2.5 1.645.
n 120 225
步骤4:根据实际情况作出判断
因此,根据检验规则,做出拒绝原假设H0的判断. 即认为A高校学生的生活水平低于B高校.
总体均值的假设检验
![总体均值的假设检验](https://img.taocdn.com/s3/m/fc72158c4afe04a1b071de9a.png)
学
Z X 0 ~ N (0,1)
2
n
天津财经大学 统计学系
(二)总体分布未知,总体方差已知,大 样本
统 • 来自总体的样本为(x1, x2, …, xn)。对于
假设:H0: = 0,在H0成立的前提下,
计 如果样本足够大(n≥30),近似地有检 验统计量
学
Z X 0 ~ N (0,1)
(四)总体分布未知,总体方差未知,大 样本
统
• 来自总体的样本为(x1, x2, …, xn)。对于
假设:H0: = 0,在H0成立的前提下,
计
如果总体偏斜适度,且样本足够大,近 似地有检验统计量
学
Z X - m0 ~ N (0,1)
S2
n
天津财经大学 统计学系
• 例:某厂采用自动包装机分装产品,假 定每包产品的重量服从正态分布,每包
新方法(x2) 35 31 29 25 34 40 27 32 31
旧方法(x1) 32 37 35 38 41 44 35 31 34
天津财经大学 统计学系
• 解:原假设与备择假设如下:
统
H0:旧 - 新 0 H1:旧 - 新 > 0
计 该题属于两个正态总体,方差相等(但
学 未知)的情况。因此,可利用下式计算 检验统计量。
x2i
i 1
,
s
2 2
1 n2Biblioteka n2 1 i1x2i
x2
2
并且,两样本独立。
天津财经大学 统计学系
• 那么,只要n1和n2都足够大,在原假设
H0: 1 = 2成立的条件下,以下检验统
统 计量近似服从标准正态分布。
计
假设检验 正态总体均值的假设检验
![假设检验 正态总体均值的假设检验](https://img.taocdn.com/s3/m/9c72960e240c844769eaeef0.png)
拒绝域 |u|为 u/2,
临界点 u/2及 为 u/2.
.
11
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原 理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错 误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
第八章 假 设 检 验
第1节 假设检验
一、假设检验的基本原理 二、假设检验的相关概念 三、假设检验的一般步骤
.
1
一、假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
又如 ,对于正态总体 期提 望出 等 0的 数 于学
1.9 0 1.6 0 1.8 0 1.5 0 1.7 0 1.2 0 1.7 0 假定切割的长度X服从正态分布, 且标准差没有 变化, 试问该机工作是否正常?
解 X~N(,2),0.15,
1.提出假设
H0:1.0 5, H 1:1.0 5,
.
17
2.求统计量值
n15, X 10.48, 则 uX01.048 1.05 0.51,6
下面结合实例来说明假设检验的基本思想.
.
3
实例 某车间用一台包装机包装葡萄糖, 包得的 袋装糖重是一个随机变量, 它服从正态分布.当 机器正常时, 其均值为0.5公斤, 标准差为0.015 公斤.某日开工后为检验包装机是否正常, 随机 地抽取它所包装的糖9袋, 称得净重为(公斤): 0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512, 问机器是否正常?
3总体均值的假设检验
![3总体均值的假设检验](https://img.taocdn.com/s3/m/749891815a8102d277a22fb5.png)
• 第3步:在分析工具中选择“t检验:平均值的成对二样 本分析”
• 第4步:当出现对话框后
•
在“变量1的区域”方框内键入数据区域
•
在“变量2的区域”方框内键入数据区域
• 为0)
在“假设平均差”方框内键入假设的差值(这里
•
在“”框内键入给定的显著性水平
1 - 29
质量管理 学实验
匹配样本
(数据形式)
质量管理
实验三
学实验 总体均值的假设检验
1 一个(单)总体均值的检验 2 两个(双)总体均值之差的检验
1 -1
质量管σ2理已知时,样本均值的抽样分布 学实验
总体是否正态分布
否
是
样本容量n
大
小
正态分布
x
~N
(, 1 2 )
n
或Z x ~ N (0,1) / n
1 -2
正态分布 非正态分布
x
~N
•第1步:将原始数据输入到Excel工作表格中
•第2步:选择“工具”下拉菜单并选择“数据分析”选项
•第3步:在“数据分析”对话框中选择 “t-检验:双样本异方 差假设”
•第4步:当对话框出现后
•
在“变量1的区域”方框中输入第1个样本的数据区域
•
在“变量2的区域”方框中输入第2个样本的数据区域
•
在“假设平均差”方框中输入假定的总体均值之差
•
在“”方框中输入给定的显著性水平(本例为0.05)
•
在“输出选项”选择计算结果的输出位置,然后“确
定”
1 - 25
质量管理 学实验
两个总体均值之差的 检验
(匹配样本)
1 - 26
质量管理 两个总体均值之差的检验
8.2正态总体均值的假设检验
![8.2正态总体均值的假设检验](https://img.taocdn.com/s3/m/dd43e8016c175f0e7cd137db.png)
t t ( n1 n2 2).
x y 因为 t 4.295, 1 1 sw 10 10
t0.05 (18) 1.7341,
所以拒绝 H 0 ,
即认为建议的新操作方法较原来的方法为优.
例5 有甲、乙两台机床加工相同的产品, 从这两台机床加工 的产品中随机地抽取若干件, 测得产品直径(单位:mm)为 机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9
X 0 P Z / n
拒绝域为 Z Z
或 H0: 0;H1:0
X 0 P Z / n
拒绝域为 Z Z
2、方差未知 问题:总体 X~N(,2),2未知 假设 H0:=0;H1:≠0 构造T统计量 T X 0 ~ t (n 1)
t检验 双边检验
X 0 由 P t 2 (n 1) S n 确定拒绝域 T t 2 (n 1) x 0 如果统计量的观测值 T t 2 (n 1) S n
则拒绝原假设;否则接受原假设
S
n
例2 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1) 解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
得 k t / 2 (n1 n2 2).
故拒绝域为
( x y) t t / 2 ( n1 n2 2). 1 1 sw n1 n2
t检验与置信区间完全等价
![t检验与置信区间完全等价](https://img.taocdn.com/s3/m/369bed39178884868762caaedd3383c4bb4cb492.png)
t检验与置信区间完全等价t检验和置信区间是统计学中常用的两个方法,用于进行假设检验和进行参数估计。
这两个方法在统计学中有着重要的地位,并且在实际应用中被广泛使用。
本文将深入探讨t检验和置信区间的概念、应用和原理,以及它们之间的完全等价关系。
一、t检验1. t检验的概念t检验是一种用于检验总体均值的假设检验方法。
它的基本思想是通过样本数据估计总体均值,并在对总体均值进行假设检验时,根据样本均值与总体均值之间的偏离程度来判断两者是否有显著差异。
2. t检验的应用t检验在实际应用中有着广泛的运用。
在医学研究中,可以利用t检验来比较不同治疗方法的疗效;在市场营销中,可以利用t检验来分析不同广告策略对销售额的影响。
通过t检验,我们可以在一定程度上得出结论,并做出相应的决策。
3. t检验的原理t检验基于统计量t的分布,其中t统计量表示样本均值与总体均值之间的差异。
根据中心极限定理,当样本容量较大时,t统计量的分布近似于正态分布。
可以通过计算t统计量的值,并与临界值进行比较,来进行假设检验。
二、置信区间1. 置信区间的概念置信区间是用于估计总体参数的一种统计区间。
它表示在给定的置信水平下,总体参数的真值可能落在该区间内的概率。
置信水平通常取95%或99%,代表我们对总体参数的估计具有95%或99%的置信度。
2. 置信区间的应用置信区间在实际应用中也非常常见。
在民意调查中,我们可以利用置信区间来估计某个候选人的支持率;在质量控制中,可以利用置信区间来估计产品的平均质量。
通过置信区间,我们可以获得关于总体参数的更加准确的估计。
3. 置信区间的原理置信区间的计算依赖于样本数据的分布特性和置信水平的选择。
一般情况下,我们可以利用正态分布的性质来计算置信区间。
根据样本容量的大小和总体标准差的已知或未知,选择适当的计算方法,得到置信区间的上限和下限。
三、t检验与置信区间的等价关系t检验和置信区间在某种程度上是等价的。
事实上,t统计量的计算与置信区间的计算是基于相同的理论和方法,只是表达方式不同而已。
正态总体均值的假设检验
![正态总体均值的假设检验](https://img.taocdn.com/s3/m/aec4fcc84bfe04a1b0717fd5360cba1aa8118cfd.png)
于是
x
0
/n
0.516
z0.05
1.645,
故接受 H0 , 认为该机工作正常.
2. 2为未知, 关于 的检验( t 检验)
设总体 X ~ N (, 2 ), 其中, 2 未知, 显著性水平为 .
求检验问题 H0 : 0 , H1 : 0 的拒绝域.
设 X1 , X2 ,, Xn 为来自总体 X 的样本,
正态总体均值的假设检验
一、单个总体均值 的检验
二、两个总体均值差的检验(t 检验) 三、基于成对数据的检验(t 检验)
一、单个总体N(, 2)均值 的检验
1. 2 为已知, 关于 的检验( Z 检验)
在正态总体 N(, 2) 讨论中
当
2为已知时,
关于
的检验问题
0
:
(1) 假设检验 H0 : 0 , H1 : 0 ; (2) 假设检验 H0 : 0 , H1 : 0 ; (3) 假设检验 H0 : 0 , H1 : 0 .
设两样本独立. 注意两总体的方差相等. 又设 X ,Y 分别是总体的样本均值, S12 , S22 是样本方
差, 1, 2 , 2 均为未知,
求检验问题 H0 : 1 2 , H1 : 1 2 ( 为已知常数)的拒绝域.
取显著性水平为 .
引入 t 统计量作为检验统计量:
t
(X Sw
11 n1 n2
k
得 k t / 2 (n1 n2 2).
故拒绝域为
t
(x sw
y)
11 n1 n2
t / 2 (n1
n2
2).
关于均值差的其它两个检验问题的拒绝域见表
8.1, 常用 0 的情况.
正态总体均值的假设检验
![正态总体均值的假设检验](https://img.taocdn.com/s3/m/e9e5f50ded630b1c59eeb52a.png)
拒绝域为 u u u0.05 1.645 .
现在 u x 0 41.25 40 3.125 1.645 , / n 2 / 25
即 u 的取值落在拒绝域中,所以在显著性水
平 = 0.05下拒绝 H0,接受 H1,即认为这
2
2 0
2 0
H0:
,H1:
.
其中
为已知常数.检验统计量
T
1
2 0
n
(Xi )2
i 1
~ 2 (n) .
对于给定的显著性水平 ,拒绝域为
t 12 / 2 (n) 或
t
2
/
2
(n)
.
上述检验的统计量服从 2 分布,称此种检
验为 2 检验,类似地可以进行单边检验(见表
右边检验的拒绝域为 t k ,左边检验的拒绝域为 t k .
例2 某工厂生产的固体燃料推进器的燃烧率
服从正态分布 N (, 2 ), 40cm / s , 2cm/ s ,
现在用新方法生产了一批推进器,从中抽取 n=25 只,测得样本均值为 x 41.25cm / s .设在新方
二、两类错误
由于检验法则是依据样本作出的,因此假设 检验的结果可能犯两类错误:
第一类错误:当原假设H0为真时,作出的决 定却是拒绝H0,犯这类错误的概率记为 ,即
P{拒绝H0|H0为真}= . 第二类错误:当原假设H0不正确时,作出的决定却是接受H0,犯这类错 误的概率记为 ,即
P{接受H0|H0不正确} = .
在H0成立时,检验统计量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总体均值的假设检验一、正态总体均值的检验设n X X X ,,, 21为总体),(2σμN 的一个容量为n 的样本. 1.方差2σ已知,μ的检验——u 检验法. 当202σσ=已知时,假设检验问题:0100μμμμ≠=:;:H H . 选择检验统计量nX U /00σμ-=,当0H 成立时,)1,0(~N U .给定显著性水平α,由标准正态分布分位点的定义, 有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= ,这种利用服从正态分布的检验统计量的检验方法称为u 检验法.有时我们只关心总体的均值是否增大(或减小).比如,经过工艺改革后,产品的质量(如材料的强度)比以前是否提高,此时我们要研究的是新工艺下总体的均值μ是小于等于原来的均值0μ,还是大于0μ,即检验假设 0100μμμμ>≤:;:H H . 可以证明,在显著性水平α下,上述假设检验问题和检验假设0100μμμμ>=:;:H H 有相同的拒绝域,因此,遇到形如00μμ≤:H 的检验问题,可归结为后一个假设检验问题讨论. 类似地,形如0100μμμμ<≥:;:H H 的检验问题, 可归结为检验假设 0100μμμμ<=:;:H H .这都是单边检验问题.给定显著性水平α,求得的临界值点是上α分位点或上α-1分位点.例1 某厂生产的某种钢索的断裂强度X 服从),(2σμN ,其中40=σ(kg/cm 2),现从这批钢索中抽取容量为9的样本,测得断裂强度的平均值x 较以往正常生产的μ大20(kg/cm 2),设总体方差不变,问在1.00=α下,能否认为这批钢索质量有显著提高?解 依题意,检验假设0100μμμμ>≤:;:H H , 由于40=σ已知,选择检验统计量nX U /0σμ-=因为0H 中的μ全部都比1H 中的μ要小,从直观上看,当0H 成立时,X 的取值x 不应比μ大很多,若偏差0μ-x 过大,则拒绝0H 而接受1H .因为 0100μμμμ>=:;:H H 的拒绝域为}{αu U W >=, 故在显著性水平1.00=α下原假设的拒绝域为}{}{0nu X u U W σμαα+>=>=.本题中,9=n ,40=σ,200=-μx ,33.201.0=u , 计算U 的值33.25.1/0<=-=nx u σμ因此在显著性水平1.00=α下不能拒绝0H ,即认为这批钢索质量没有显著提高.2.方差2σ未知,μ的检验——t 检验法. 检验假设0100μμμμ≠=:;:H H .因为2σ未知,而样本方差2S 是总体方差2σ的无偏估计量,用S 代替σ. 选择检验统计量 nS X T /0μ-=,当0H 成立时,)1(~-n t T .给定显著性水平α,由t 分布分位点的定义, 有αα=->)}1(|{|2/n t T P ,故拒绝域)}1({)}1({)}1(|{|2/2/2/->--<=->=n t T n t T n t T W ααα , 这种利用服从t 分布的检验统计量的检验方法称为t 检验法.例2 某切割机工作正常时,切割每段金属棒的平均长度为10.5cm .今在某段时间随机地抽取15段进行测量,其结果如下(cm):10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7问此段时间该机工作是否正常(5.00=α)?假设金属棒长度服从正态分布.解 依题意,检验假设0100.510μμμμ≠==:;:H H , 由于2σ未知,故选择检验统计量nS X T /0μ-=.在0H 下,)1(~-n t T ,15=n .给定显著性水平5.00=α,查t 分布表, 得临界值1448.2)14()1(025.02/==-t n t α,故拒绝域)}1(|{|2/->=n t T W α.由已知条件可得48.102.15715111=⨯==∑=n i i x n x056.0784.0141)(11122=⨯=--=∑=n i ix x n s 故2366.0=s .计算统计量的值3274.015/2366.05.1048.10/0-=-=-=ns x t μ因为)1(||2/-<n t t α,所以接受0H ,认为切割机工作正常.例3 设木材的小头直径),(~2σμN X ,12≥μcm 为合格,今抽出12根测得小头直径的样本均值为2.11=x cm ,样本方差为44.12=s cm 2,问该批木材是否合格(5.00=α)?解 依题意,检验假设010012μμμμ<=≥:;:H H ,选择检验统计量nS X T /0μ-=.在假设0100μμμμ<=:;:H H 下,)1(~-n t T ,12=n .给定显著性水平5.00=α,查t 分布表,得临界值7959.1)11()1(05.0==-t n t α,故拒绝域)}1({--<=n t T W α,也是假设010012μμμμ<=≥:;:H H 的拒绝域. 由于2.11=x ,44.12=s ,计算统计量的值3094.212/44.1122.11/0-=-=-=ns x t μ因为)1(--<n t t α,故拒绝0H ,认为该批木材是不合格的. 二、正态总体方差的检验——2χ检验法设n X X X ,,, 21为来自总体),(2σμN 的一个样本,检验假设 20212020σσσσ≠=:;:H H .1.均值μ已知. 因为)1,0(~N X i σμ-,n i ,,2,1 =,则选取检验统计量∑∑==-=⎪⎪⎭⎫ ⎝⎛-=ni ini i XX 12201202)(1μσσμχ.当0H 成立时,)(~22n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=><-))}(())({(22/222/12n n P ,故得拒绝域)}({)}({22/222/12n n W ααχχχχ><=- .2.均值μ未知.因为X 是总体均值μ的无偏估计量,用X 代替μ.选择检验统计量202122)1(σσχS n XX ni i -=⎪⎪⎭⎫ ⎝⎛-=∑=. 当0H 成立时,)1(~22-n χχ,给定显著性水平α,由2χ分布表分位点的定义,有αχχχχαα=->-<-))}1(())1({(22/222/12n n P故得拒绝域)}1({)}1({22/222/12->-<=-n n W ααχχχχ .类似地,在μ已知和μ未知时,可以求出检验假设20212020σσσσ>≤:;:H H 和20212020σσσσ<≥:;:H H的拒绝域.例如,在μ未知时,检验假设2020σσ≤:H 的拒绝域为)}1({22->=n W αχχ.上述检验所用的检验统计量均服从2χ分布,称这种检验方法为2χ检验法例4 某无线电厂生产的一种高频管,其中一指标服从正态分布),(2σμN ,今从一批产品中抽取8只管子,测得指标数据:68 43 70 65 55 56 60 72(1) 总体均值60=μ时,检验228=σ(取5.00=α); (2) 总体均值μ未知时,检验228=σ(取5.00=α). 解 本题是在显著性水平5.00=α下,检验假设2021220208σσσσ≠==:;:H H ,这里8=n .(1) 60=μ已知时临界值35.517)8()(2025.022/==χχαn ,80.12)8()(2975.022/1==-χχαn ,而检验统计量的值359.10663641)(811222=⨯=-=∑=ni i x μχ, 由于)()(22/222/1n n ααχχχ<<-,故接受0H .(2) μ未知时临界值13.016)7()1(2025.022/==-χχαn ,90.61)7()1(2975.022/1==--χχαn ,而125.614898111=⨯==∑=n i i x n x ,875.652)()1(122=-=-∑=ni i x x s n ,检验统计量的值2012.1075.86526412=⨯=χ, 由于)1()1(22/222/1-<<--n n ααχχχ,故接受0H .§8.3 两个正态总体参数的假设检验设121n X X X ,,, 为总体),(~112σμN X 的一个样本,221n Y Y Y ,,, 为总体),(~222σμN Y 的一个样本.∑==1111n i i X n X 和∑==2121n i iYn Y 分别是两个样本的样本均值,∑=--=112121)(11n i i X X n S 和∑=--=212222)(11n i i Y Y n S 是相应的两个样本方差.设这两个样本相互独立..一、两个正态总体均值的检验考虑检验假设 211210μμμμ≠=:;:H H . 1.方差21σ与22σ已知——u 检验法. 选取 22212121)()(n n Y X U σσμμ+---=.当0H 成立时,检验统计量)1,0(~222121N n n YX U σσ+-=.给定显著性水平α,由标准正态分布表分位点的定义,有αα=>}|{|2/u U P ,故拒绝域}{}{}|{|2/2/2/αααu U u U u U W >-<=>= .例1 设从甲乙两场所生产的钢丝总体X ,Y 中各取50束作拉力强度试验,得1208=x ,1282=y ,已知801=σ,942=σ,请问两厂钢丝的抗拉强度是否有显著差别(5.00=α)?解 本题是在显著性水平5.00=α下, 检验假设211210μμμμ≠=:;:H H , 这里5021==n n .选取检验统计量222121n n YX U σσ+-=.给定显著性水平05.0=α,查标准正态分布表,得临界值96.1025.02/==u u α,故拒绝域}|{|2/αu U W >=.由于1208=x ,1282=y ,801=σ,942=σ, 计算检验统计量的值2392.450/)(2221-=+-=σσy x u .由于2/||αu u >,故拒绝0H ,认为两厂钢丝的抗拉强度有显著差别. 2.方差21σ与22σ未知,但2221σσ=——t 检验法.选取 212111)()(n n S Y X T w+---=μμ.这里2)1()1(21222211-+-+-=n n S n S n S w .当0H 成立时,检验统计量)2(~112121-++-=n n t n n S Y X T w.给定显著性水平α,由t 分布表分位点的定义, 有αα=-+>)}2(|{|212/n n t T P ,故拒绝域)}2({)}2({212/212/-+>-+-<=n n t T n n t T W αα .例2 某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量有无显著差异?解 检验假设211210μμμμ≠=:;:H H ,这里621==n n ..525=x ,67.625=y ,7386.21=s ,3267.32=s ,0469.3=w s . 选取检验统计量2111n n S Y X T w+-=.给定显著性水平5.00=α,查t 分布表,得临界值2281.2)10()2(025.0212/==-+t n n t α,故拒绝域)}2(|{|212/-+>=n n t T W α.计算统计量的值0949.00469.33)667.255.25(1121-=⨯-=+-=n n s y x t w.由于)2(||212/-+<n n t t α,故接受0H ,认为两种香烟的尼古丁含量无显著差异. 二、两个正态总体方差的检验——F 检验法 考虑检验假设 2221122210σσσσ≠=:;:H H . 1.均值1μ与2μ已知.因为)(~)(11212121211n Xn i iχμσχ∑=-=,)(~)(12212222222n Yn i iχμσχ∑=-=,选取221222211211222121/)(1/)(1//21σμσμχχ∑∑==--==n i i n i i Y n X n n n F . 当0H 成立时,检验统计量),(~)(1)(1211222121121n n F Y n X n F n i i n i i ∑∑==--=μμ.给定显著性水平α,由F 分布分位点的定义,有ααα=><-))},(()),({(212/212/1n n F F n n F F P , 故得拒绝域)},({)},({212/212/1n n F F n n F F W αα><=- . 2.均值1μ与2μ未知.因为)1(~)1()(112212111221211--=-=∑=n S n X X n i i χσσχ,)1(~)1()(122222221222222--=-=∑=n S n Y Yn i iχσσχ,选取22222121222121//)1/()1/(σσχχS S n n F =--=.当0H 成立时,检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,由F 分布分位点的定义,有ααα=-->--<-))}1,1(())1,1({(212/212/1n n F F n n F F P , 故得拒绝域)}1,1({)}1,1({212/212/1-->--<=-n n F F n n F F W αα .例3某烟厂生产两种香烟,独立地随机抽取样本容量相同的烟叶标本测其尼古丁含量的毫克数,分别测得:甲种香烟:25 28 23 26 29 22 乙种香烟:28 23 30 25 21 27假定尼古丁含量都服从正态分布且具有公共方差,在显著性水平5.00=α下,判断两种香烟的尼古丁含量的方差是否相等? 解 考虑检验假设2221122210σσσσ≠=:;:H H . 由于两个正态总体的均值都未知,选取检验统计量)1,1(~212221--=n n F S S F .给定显著性水平α,查F 分布表,得两个临界值:15.7)5,5()1,1(025.0212/==--F n n F α1399.015.71)5,5(1)5,5()1,1(025.0975.0212/1====---F F n n F α,故得拒绝域}15.7{}1399.0{><=F F W . 计算统计量的值6777.03267.37386.2222221===s s F .由于15.71399.0<<F , 故接受0H ,认为两种香烟的尼古丁含量的方差也无显著差异.§8.4 非正态总体参数的大样本检验本节讨论一般总体参数的检验.设总体X 的均值为μ,方差为2σ, n X X X ,,, 21为总体X 的一个样本.由中心极限定理可知,当样本容量n 足够大时,nX U /σμ-=近似地服从标准正态分布.因此,我们可以用正态分布去近似.如果对均值μ进行检验,方差2σ未知时,可以用样本方差2S 代替2σ;如果对方差2σ进行检验,均值μ未知时,可以用样本均值X 代替μ.下面举两个例子.例1 设某段高速公路上汽车限速为104.6km/h ,现检验85辆汽车的样本,测出的平均车速为106.7km/h ,已知总体标准差为.413=σ km/h ,但不知总体是否服从正态分布.在显著性水平50.0=α下,试检验高速公路上的汽车是否比限制速度104.6km/h 显著地快?解 依题意,检验假设0100.6104μμμμ>=≤:;:H H , 由于.413=σ已知,n =85足够大, 选择检验统计量nX U /0σμ-=近似地服从)10(,N .其拒绝域}{αu U W >=,其中65.105.0==u u α. 计算U 的值449.4185/4.136.1047.106=-=u ,由于αu u <,因此接受0H ,没有理由认为高速公路上的汽车比限制速度104.6km/h 显著地快.例2 为比较甲乙两种小麦植株的高度(单位:cm),分别抽得甲、乙小麦各100穗,在相同条件下进行高度测定,算得甲乙小麦样本均值和样本方差分别为28=x ,8.3521=s ,26=y ,3.3222=s ,问这两种小麦的株高有无显著差异(50.0=α)?解 依题意,检验假设 211210μμμμ≠=:;:H H , 选取 22212121)()(n n Y X U σσμμ+---=,这里两个方差用样本方差代替.当0H 成立时, 检验统计量 222121n Sn S Y X U +-=近似地服从)1,0(N .给定显著性水平05.0=α,查附表3,得临界值96.1025.02/==u u α, 得拒绝域}|{|2/αu U W >=.计算U 的值4236.21003.328.352628=+-=u ,由于αu u >,因此拒绝0H ,认为这两种小麦的株高有显著差异.当总体服从(0-1)分布),1(p b 时,由于只有一个参数p ,总体均值p 和方差)1(p p -均只与p 有关,这时对参数p 进行假设检验时,检验统计量可以直接用样本和参数p 表示出来.例3 某厂有一批产品须经检验后方可出厂.按规定二级品率不得超过10%,从中随机抽取100件产品进行检查,发现有二级品14件,问这批产品是否可以出厂(50.0=α)?解 这里n =100,14.0=x .检验假设01001.0p p H p p H >=≤:;:, 选取检验统计量 np p p X U )1(000--=,U 近似地服从)1,0(N .由显著性水平50.0=α,可以得到拒绝域}{αu U W >=,其中65.105.0==u u α,计算U 的值333.31100.90.10.104.10=⨯-=u ,由于αu u <,因此接受0H ,认为这批产品二级品率没有超过10%,可以出厂.§8.5 分布的拟合检验前几节的检验都是参数的检验.实际问题中,有时需要对分布作出假设,进行检验.本节只介绍一种分布的检验方法——皮尔逊2χ检验法,它只适合于大样本的情形,一般要求样本容量50≥n .设总体X 的分布函数为)(x F ,)(0x F 为一个已知的分布函数,n X X X ,,, 21为总体X 的一个样本,我们来检验关于总体分布的假设)()()()(0100x F x F H x F x F H ≠=:;:.一、基本原理2χ检验法的基本思想是:将随机试验的所有可能结果的全体分成k 个两两互不相容的事件k A A A ,,, 21,在n 次试验中,将i A 发生的次数i f 叫做i A 发生的频数,如果0H 为真,则由大数定律,在n 次试验中(n 足够大),i A (k i ,,, 21=)出现的实际频率nf i与理论频率)(i i A P p =(可由分布函数)(0x F 算出)不应相差很大.基于这种想法,皮尔逊构造了统计量∑=-=ki i i i np np f 122)(χ或∑=-=ki i i i p n p n f 122ˆ)ˆ(χ, 其中i p ˆ是由)(ˆ0x F 计算出来的理论频率,)(ˆ0x F 是)(0x F 中未知参数估计出后的分布函数,并证明了如下定理:定理1 若n 足够大,当0H 成立时,统计量2χ总是近似地服从自由度为1--r k 的2χ分布,其中r 是已知的分布函数)(0x F 中未知参数的个数.直观上看,2χ值表示实际观测结果与理论期望结果的相对差异的总和,当它的取值大于临界值时,应拒绝0H . 二、检验步骤如果)(0x F 为不带有未知参数的已知分布,皮尔逊2χ检验法的具体步骤如下:(1) 将总体X 的值域划分成k 个不交的区间i A (k i ,,, 21=),使得每个区间包含的理论频数满足5≥i np ,否则将区间适当调整; (2) 在0H 成立时,计算各理论频率即概率i p 的值:)()()(100--==i i i i y F y F A P p ,k i ,,, 21=.这里1-i y 与i y 为区间i A 的端点,即](1i i i y y A ,-=;(3) 数出i A 中含有样本值的个数,即i A 的频数i f ,并计算统计量∑=-=ki i iinp np f 122)(χ 的值2χ;(4) 由2χ分布,对于给定的显著性水平α,找出临界值)1(2-k αχ; (5) 判断:若)1(22->k αχχ,则拒绝0H ,否则可接受0H . 如果总体X 是离散型的,则假设0H 相当于假设总体X 的概率分布00}{i i p x X P H ==:, ,,21=i .如果总体X 是连续型的,则假设0H 相当于)()(00x f x f H =:,这里)(x f 为总体的概率密度.例1 至1984年底,市开办有奖储蓄以来,13期兑奖中诸数码的频数汇总如表8.1:表8.1试检验器械或操作方法是否有问题(50.0=α).解 设抽取的数码为X ,它可能的取值为0~9,如果检验器械或操作方法没有问题,则0~9出现是等可能的,即检验假设 1010=i p H :,9210,,,, =i ,这里}{i X P p i ==. 依题意知k =10,令}{i A i =,9210,,,, =i ,n =350,则理论频数35=i np .57.61935688)(9022==-=∑=i ii i np np f χ给定显著性水平5.00=α,查2χ分布表,得临界值9.16)9()1(205.02==-χχαk .由于19.675>16.9,故拒绝0H ,即认为器械或操作方法有问题.如果)(0x F 为带有未知参数的已知分布,未知参数为r θθθ,,, 21,这时用这r 个未知参数的极大似然估计量r θθθˆˆˆ21,,, 来代替)(0x F 中的参数r θθθ,,, 21,得到分布函数)(ˆ0x F ,然后建立统计量∑=-=ki ii i p n p n f 122ˆ)ˆ(χ,这里i p ˆ是由)(ˆ0x F 计算出来的理论频率,再用以上检验步骤进行检验,但此时检验统计量2χ近似服从)1(2--r k χ分布(这里k >r +1).例2 某高校对100名新生的身高(厘米)做了检查,把测得的100个数据按由大到小的顺序排列,相同的数合并得表8.2:表8.2试问,在显著性水平5.00=α下是否可以认为学生身高X 服从正态分布? 解 这里n =100,我们来检验假设222)(021)(σμσπ--=x ex f H :,+∞<<∞-x ,这里)(x f 为正态分布),(2σμN 的概率密度,设其分布函数为)(x F ,μ与0>σ为未知参数.先求μ与2σ的极大似然估计值μˆ,2ˆσ: 33.1661ˆ1==∑=n i i x n μ, 06.28)ˆ(1ˆ212=-=∑=μσn i i x n . 设服从正态分布)ˆ,ˆ(2σμN 的随机变量为Y ,分布函数为)(ˆy F .按照分组要求,每个小区间的理论频数i pn ˆ不应小于5,因此我们将数据分成了7个组,使得每组的实际频数不小于5,各计算结果如下表8.3所示.表8.3中第3列i pˆ的计算如下: )(ˆ)(ˆ}{ˆ11---=≤<=i i i i i y F y F y Y y P p ,7210,,,, =i , 例如,}06.2833.1665.164ˆˆ06.2833.1665.161{}5.1645.161{ˆ3-≤-<-=≤<=σμY P Y P p1837.0)911.0()345.0(=-Φ--Φ=.给定显著性水平5.00=α,查2χ分布表,得临界值488.9)4()127()1(205.0205.02==--=--χχχαr k .由于1.8843<9.488,故接受0H ,即认为学生身高服从正态分布.。