《概率论与数理统计》7-2正态总体的均值和方差的假设检验

合集下载

第二节-正态总体均值和方差的假设检验PPT课件

第二节-正态总体均值和方差的假设检验PPT课件
拒 绝域 的 t 形 x式 0 k为 . s/ n
根据第六章定理三知,
当 H 0 为,真 X S/ n 时 0~t(n1 ),
P { 当 H 0为 ,拒 真 H 0 } 绝 P0 X S/n0 k ,
10
得 kt/2(n 1 ),
拒绝 t域 x s/n 0为 t/2(n1).
上述利用 t 统计量得出的检验法称为t 检验法.
故接H受 0,认为金属棒的 无平 显均 著. 长 变
12
例3 某种电子元件的寿命X(以小时计)服从正态
分布, , 2 均为未知. 现测得16只元件的寿命如
下: 152981002112223471972964 223261262851042964081570 问是否有理由认为元件的平均寿命大于225(小时)?
P 2 0 2 (n 1 2 )S 2 (n 0 1 2 )k . (因2 为 0 2 )
要 P { H 0 为 使 ,拒 H 真 0 } 绝 ,
只需 P 2 0 2 令 (n 1 2 )S 2(n 0 1 2 )k .
因(为 n 12)S2~2(n1),所(以 n01 2)k 2(n1),
拒绝域 x的 0k,(形 k待 式 ).定
由标准正态分布的分布函数(•) 的单调性可知,
P {拒H 绝 0|H 0为} 真 P 0(x 0 k )
4
P 0 x /n 00 /k n
1(0/k)n0(/ 0n k)0
0
(/0nk)/ kn,
因此 P { 拒 要 H 0|绝 H 0 控 为 } 制 真 ,
件都尽可能做到相同.先采用标准方法炼一炉, 然
后用建议的新方法炼一炉, 以后交替进行, 各炼了
10炉, 其得率分别为(1)标准方法: 78.1, 72.4, 76.2,

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。

能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。

参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。

参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。

⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。

当然由于样本的随机性,这种推断只能具有⼀定的可靠性。

本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。

由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。

第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。

例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。

现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。

问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。

灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。

即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。

另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。

这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。

究竟是哪种情况与实际情况相符合,这需要作检验。

假如给定显著性⽔平05.0=α。

在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。

7-2 正态总体均值与方差的假设检验

7-2 正态总体均值与方差的假设检验
因为 X ~ N ( , 2 ), 0.15,
要检验假设 H 0 : 10.5, H1 : 10.5,
n 15,
x 10.48,

2
0.05,
x 0 10.48 10.5 0.516, 则 / n 0.15 / 15
查表得 u0.05 1.645,
H1 : 0 10
x 9.2
s 1.6
x 0 9.2 10 于是 T 3.54 2.01 t0.025 49 s n 1.6 50
故在 0.05 的水平下,丰产林的树高与10米的差异 有统计意义。(拒绝原假设)
例7 某车间生产某种化学纤维的强度服从正态分布,且原来
单边检验
2
得H0 的拒绝域为:
2 n 1 S 2 0
12 n

2 n 1 S 2 0
2 n
作业
• 习题七:3,5,9,12.
• 复习第七章(可做习题七之1~13题) • 复习5~7章,准备课堂测验
例5 P160 8 从某批矿砂中,抽取容量为 5 的一个样本,测得其 含镍量为(单位:%) 3.25 3.27 3.24 3.26 3.24 设测量值服从正态分布,问在 这批矿砂的含镍量为 3.25 ?
例1 某切割机在正常工作时, 切割每段金属棒的平 均长度为10.5cm, 标准差是0.15cm, 今从一批产品中 随机的抽取15段进行测量, 其结果如下(单位:cm) 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度X服从正态分布, 且标准差没有 变化, 试问该机工作是否正常? ( 0.1) 解

正态总体均值和方差的假设检验

正态总体均值和方差的假设检验
分布。要根据s的值检验假设H0: 10.00;H1: 10.00
求检验统计量为 2 (n -1)S 2 8 s2 0.08s2
σ02
100
当H0为真时,χ2服从自由度为8的χ2分布
对于α=0.05,
查表得
2 0.975
(8)
2.180,
2 0.025
(8)
17.535
则拒绝域为
W {0.08s2 2.180 U0.08s2 17.535}

W {s 5.220 Us 14.805}
每当测得s的值小于5.220或大于14.805时, 就认为机床的精度发生了变化。应引起注意, 并分析原因。
当方差σ12σ22已知时,用U检验法,构造 统计量
U (X Y)
2 1
2 2
n1 n2
取显著性水平α
P{| U | u /2}
得拒绝域为 | U | u /2
二、正态总体方差的检验
1、单个总体的情况—χ2检验
设总体N(, 2), , 2 未知,x1,L ,xn 是
来自总体X的样本,现要检验假设(显著性
(n
1)S
2 0
2
2/2 (n 1)
2
,
则p{ 2 χ12 (n 1) 2 χ2 (n 1)} α
2
2
得显著性水平为的拒绝域为
2
2 1
/
2
(n
1)或
2
2 / 2 (n 1)。
例3 由以往管理生产过程的大量资料表明某自 动机床产品的某个尺寸X服从正态分布,其标 准差为σ0=10.00毫米,并且把σ0=10.00毫米 定为机床精度的标准。为控制机床工作的稳定 性,定期对其产品的标准差进行检验:每次随 机地抽验9件产品,测量结果为x1,x2,…x9。试 制定一种规则,以便能根据样本标准差s的值 判断机床的精度(即标准差)有无变化(显著 性水平为α=0.05)? 解 依题意,所考虑的产品指标X服从正态

正态总体均值与方差的假设检验

正态总体均值与方差的假设检验


取检验统计量:
T
=
X−
S
∗ n
µ0 n
在H0成立的条件下, T
=
X − µ0
S
∗ n
n
~ t(n − 1)

给定显著性水平
α
(0
<
α

0.05)

⎧ P⎨
T
⎫ ≥ tα (n − 1)⎬ = α

2

查表可得临界值 t α (n − 1). 拒绝域:W = {(x1, x2 , , xn ) : t ≥ tα (n − 1)}.
2
, xn ) : u ≥ uα }.
2
α
y = ϕ(x)
α
2
2
−uα O uα
x
2
2
4° 由样本值计算U的观察值 u0 .
5° 作判断:若 u0 ∈W,则拒绝 H0;否则, 若 u0 ∈ W,则接受H0.
例 7.4 某工厂生产的铜丝的折断力(单位:N)服从正态分布N(µ, 82). 某日抽取 10 根铜 丝, 进行折断力试验, 测得结果如下:
578, 572, 570, 568, 572, 570, 572, 596, 584, 570 若已知µ=576, 问是否可以认为该日生产的铜丝合格(α=0.10)? 解 1° 假设: H0: µ = 576 ; H1: µ ≠ 576
2° 取检验统计量: U = X − 576 8 10
在H0成立的条件下,U = X − 576 ~ N (0,1) 8 10
2
拒绝域:W = {(x1, x2 ,
, xn1 ; y1, y2 ,
, yn2 ) :

正态总体均值与方差的假设检验概述

正态总体均值与方差的假设检验概述
问建议的新操作方法能否提高得率?

分别求出标准方法和新方法下的样本均值和样本 方差:
查表5.2知其拒绝域为 即认为建议的新操作方法较原来的方法为优.
作业
P181 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
表5.2
1 2 3 4
5 6 7
问能否认为这两台仪器的测量结果有显著的差异
?
解 本题中的数据是成对的, 即对同一试块测出 一对数据, 我们看到一对与另一对之间的差异是 由各种因素, 如材料成分、金属含量、均匀性等 因素引起的. [这也表明不能将光谱仪Ix 对9个试 块的测量结果(即表中第一行)看成是一个样本, 同样也不能将表中第二行看成一个样本, 因此不 能用表8.1中第4栏的检验法作检验].
70度:20.5, 18.8, 19.8, 21.5, 19.5, 21.0, 21.2 80度: 17.7, 20.3, 20.0, 18.8, 19.0, 20.1, 20.2, 19.1

所以两总体方差无显著差异.
例8 分别用两个不同的计算机系统检索10个资料, 测得平均检索时间及方差(单位:秒)如下:
查表得
所有住户消费数据的总体方差为0.3不可信
三、F 检验
需要检验假设:
根据第二章§2.3定理2.10知
定理2.10
检验问题的拒绝域为 上述检验法称为F检验法.
例7(p104例5.8) 为了考察温度对某物体断裂强 力的影响,在70度和80度分别重复做了8次试验, 测得的断裂强力的数据如下(单位Pa):
假定检索时间服从正态分布, 问这两系统检索资 料有无明显差别? 解 根据题中条件, 首先应检验方差的齐性.

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章

概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章

写在前面:由于答案是一个个复制到word中,比较耗时耗力,故下载收取5分,希望需要的朋友给予理解和支持!PS:网上有一些没经我同意就将我的答案整合、转换成pdf,放在文库里的,虽然是免费的,但是窃取了我的劳动成果,希望有心的朋友支持我一下,下载我的原版答案。

第七章假设检验7.1 假设检验的基本概念习题1样本容量n确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有(). (A)α+β=1;(B)α+β>1;(C)α+β<1;(D)α+β<2.解答:应选(D).当样本容量n确定后,α,β不能同时都很小,即α变小时,β变大;而β变小时,α变大.理论上,自然希望犯这两类错误的概率都很小,但α,β的大小关系不能确定,并且这两类错误不能同时发生,即α=1且β=1不会发生,故选(D).习题2设总体X∼N(μ,σ2),其中σ2已知,若要检验μ,需用统计量U=X¯-μ0σ/n.(1)若对单边检验,统计假设为H0:μ=μ0(μ0已知),H1:μ>μ0,则拒绝区间为;(2)若单边假设为H0:μ=μ0,H1:μ<μ0,则拒绝区间为(给定显著性水平为α,样本均值为X¯,样本容量为n,且可记u1-α为标准正态分布的(1-α)分位数).解答:应填(1)U>u1-α;(2)U<uα.由单侧检验及拒绝的概念即可得到.习题3如何理解假设检验所作出的“拒绝原假设H0”和“接受原假设H0”的判断?解答:拒绝H0是有说服力的,接受H0是没有充分说服力的. 因为假设检验的方法是概率性质的反证法,作为反证法就是必然要“推出矛盾”,才能得出“拒绝H0”的结论,这是有说服力的,如果“推不出矛盾”,这时只能说“目前还找不到拒绝H0的充分理由”,因此“不拒绝H0”或“接受H0”,这并没有肯定H0一定成立. 由于样本观察值是随机的,因此拒绝H0,不意味着H0是假的,接受H0也不意味着H0是真的,都存在着错误决策的可能.当原假设H0为真,而作出了拒绝H0的判断,这类决策错误称为第一类错误,又叫弃真错误,显然犯这类错误的概率为前述的小概率α:α=P(拒绝H0|H0为真);而原假设H0不真,却作出接受H0的判断,称这类错误为第二类错误,又称取伪错误,它发生的概率β为β=P(接受H0|H0不真).习题4犯第一类错误的概率α与犯第二类错误的概率β之间有何关系?解答:一般来说,当样本容量固定时,若减少犯一类错误的概率,则犯另一类错误的概率往往会增大.要它们同时减少,只有增加样本容量n.在实际问题中,总是控制犯第一类错误的概率α而使犯第二类错误的概率尽可能小.α的大小视具体实际问题而定,通常取α=0.05,0.005等值.习题5在假设检验中,如何理解指定的显著水平α?解答:我们希望所作的检验犯两类错误的概率尽可能都小,但实际上这是不可能的. 当样本容量n固定时,一般地,减少犯其中一个错误的概率就会增加犯另一个错误的概率. 因此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平α,因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,其原因是不知道犯第二类错误的概率β究竟有多少,且α小,β就大,所以通常用“H0相容”,“不拒绝H0”等词语来代替“接受H0”,而“不拒绝H0”还包含有再进一步作抽样检验的意思.习题6在假设检验中,如何确定原假设H0和备择假设H1?解答:在实际中,通常把那些需要着重考虑的假设视为原假设H0,而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设,而将新方案取为备择假设;(2)若提出一个假设,检验的目的仅仅是为了判断这个假设是否成立,这时直接取此假设为原假设H0即可.习题7假设检验的基本步骤有哪些?解答:根据反证法的思想和小概率原理,可将假设检验的步骤归纳如下:(1)根据问题的要求,提出原理假设H0和备择假设H1.(2)根据检验对象,构造检验统计量T(X1,X2,⋯,Xn),使当H0为真时,T有确定的分布.(3)由给定的显著水平α,查统计量T所服从的分布表,定出临界值λ,使P(∣T∣>λ)=α,或P(T>λ1)=P(T<λ2)=α/2,从而求出H0的拒绝域:∣T∣>λ或T>λ1,T<λ2.(4)由样本观察值计算统计量T的观察值t.(5)作出判断,将t的值与临界值比较大小作出结论:当t∈拒绝域量时,则拒绝H0,否则,不拒绝H0,即认为在显著水平α下,H0与实际情况差异不显著.习题8假设检验与区间估计有何异同?解答:假设检验与区间估计的提法虽不同,但解决问题的途径是相通的. 参数θ的置信水平为1-α的置信区间对应于双边假设检验在显著性水平α下的接受域;参数θ的置信水平为1-α的单侧置信区对应于单边假设检验在显著性水平α下的接受域.在总体的分布已知的条件下,假设检验与区间估计是从不同的角度回答同一个问题. 假设检验是判别原假设H0是否成立,而区间估计解决的是“多少”(或范围),前者是定性的,后者是定量的.习题9某天开工时,需检验自动包装工作是否正常. 根据以往的经验,其装包的质量在正常情况下服从正态分布N(100,1.52)(单位:kg).现抽测了9包,其质量为:99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5.问这天包装机工作是否正常?将这一问题化为假设检验问题. 写出假设检验的步骤(α=0.05).解答:(1)提出假设检验问题H0:μ=100,H1:μ≠100;(2)选取检验统计量U:U=X¯-1001.59,H0成立时, U∼N(0,1);(3)α=0.05,uα/2=1.96,拒绝域W={∣u∣>1.96};(4)x¯≈99.97,∣u∣=0.06.因∣u∣<uα/2=1.96,故接受H0,认为包装机工作正常.习题10设总体X∼N(μ,1),X1,X2,⋯,Xn是取自X的样本. 对于假设检验H0:μ=0,H1:μ≠0,取显著水平α,拒绝域为W={∣u∣>uα/2},其中u=nX¯,求:(1)当H0成立时, 犯第一类错误的概率α0;(2)当H0不成立时(若μ≠0),犯第二类错误的概率β.解答:(1)X∼N(μ,1),X¯∼N(μ,1/n),故nX¯=u∼N(0,1).α0=P{∣u∣>uα/2∣μ=0}=1-P{-uα/2≤u≤uα/2}=1-[Φ(uα/2)-Φ(-uα/2)]=1-[(1-α2)-α2]=α,即犯第一类错误的概率是显著水平α.(2)当H0不成立,即μ≠0时,犯第二类错误的概率为β=P{∣u∣≤uα/2∣E(X)=μ}=P{-uα/2≤u≤uα/2∣E(X)=μ}=P{-uα/2≤nX¯≤uα/2∣E(X)=μ}=P{-uα/2-nμ≤n(X¯-μ)≤uα/2-nμ∣E(X)=μ}=Φ(uα/2-nμ)-Φ(-uα/2-nμ).注1当μ→+∞或μ→-∞时,β→0.由此可见,当实际均值μ偏离原假设较大时,犯第二类错误的概率很小,检验效果较好.注2当μ≠0但接近于0时,β≈1-α.因α很小,故犯第二类错误的概率很大,检验效果较差.7.2 单正态总体的假设检验习题1已知某炼铁厂铁水含碳量服从正态分布N(4.55,0.1082).现在测定了9炉铁水,其平均含碳量为4.484.如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=4.55,H1:μ≠4.55.由于σ2=0.1082已知,所以可选取统计量U=X¯-4.550.108/9,在H0成立的条件下,U∼N(0,1),且此检验问题的拒绝域为∣U∣=∣X¯-4.550.108/9∣>uα/2,这里u=4.484-4.550.108/9≈-1.833,uα/2=1.96.显然∣u∣=1.833<1.96=uα/2.说明U没有落在拒绝域中,从而接受H0,即认为现在生产之铁水平均含碳量仍为4.55.习题2要求一种元件平均使用寿命不得低于1000小时,生产者从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时. 已知该种元件寿命服从标准差为σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合格?设总体均值为μ,μ未知,即需检验假设H0:μ≥1000,H1:μ<1000.解答:检验假设H0:μ≥1000,H1:μ<1000.这是单边假设检验问题. 由于方差σ2=0.05,故用u检验法. 对于显著性水平α=0.05,拒绝域为W={X¯-1000σ/n<-uα.查标准正态分布表,得u0.05=1.645.又知n=25,x¯=950,故可计算出x¯-1000σ/n=950-1000100/25=-2.5.因为-2.5<-1.645,故在α=0.05下拒绝H0,认为这批元件不合格.习题3打包机装糖入包,每包标准重为100kg.每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg).某日开工后,测得9包糖重如下(单位:kg):99.398.7100.5101.298.399.799.5102.1100.5打包机装糖的包得服从正态分布,问该天打包机工作是否正常(α=0.05)?解答:本问题是在α=0.05下检验假设H0:μ=100,H1:μ≠100.由于σ2未知,所以可选取统计量T=X¯-100S/n,在H0成立的条件下,T∼t(n-1),且此检验问题的拒绝域为∣T∣=∣X¯-100S/n∣>tα/2(n-1),这里t=x¯-100s/n≈99.978-1001.2122/9≈-0.0544,t0.025(8)=2.306.显然∣t∣=0.0544<2.306=t0.025(8),即t未落在拒绝域中,从而接受H0,即可以认为该天打包工作正常.习题4机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准含量为500g,标准差不得超过10g.某天开工后,随机抽取9袋,测得净重如下(单位:g):497,507,510,475,515,484,488,524,491,试在显著性水平α=0.05下检验假设:H0:μ=500,H1:μ≠500.解答:x¯=499,s≈16.031,n=9,t=(x¯-μ0)sn=499-50016.0319=-0.1871,α=0.05,t0.025(8)=2.306.因∣t∣<t0.025(8),故接受H0,认为该天每袋平均质量可视为500g.习题5从清凉饮料自动售货机,随机抽样36杯,其平均含量为219(mL),标准差为14.2mL,在α=0.05的显著性水平下,试检验假设:H0:μ=μ0=222,H1:μ<μ0=222.解答:设总体X∼N(μ,σ2),X代表自动售货机售出的清凉饮料含量,检验假设H0:μ=μ0=222(mL),H1:μ<222(mL).由α=0.05,n=36,查表得t0.05(36-1)=1.6896,拒绝域为W={t=x¯-μ0s/n<-tα(n-1).计算t值并判断:t=219-22214.2/36≈-1.27>-1.6896,习题6某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008Ω,对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?解答:本问题是在α=0.05下检验假设H0:σ2=0.0052,H1:σ2≠0.0052.选取统计量χ2=n-1σ2S2,在H0成立的条件下,χ2∼χ2(n-1),且此检验问题的拒绝域为χ2>χα/22(n-1)或χ2<χ1-α/22(n-1).这里χ2=9-10.0052s2=80.0052×0.0082=20.48,χ0.9752(8)=2.18,χ0.0252(8)=17.5.显然χ2落在拒绝域中,从而拒绝H0,即不能认为这批导线电阻的标准差仍为0.005.习题7某厂生产的铜丝,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容量为9的样本,测得其折断力如下(单位:N):289,286,285,286,285,284,285,286,298,292设总体服从正态分布,问该日生产的铜线的折断力的方差是否符合标准(α=0.05)?解答:检验问题为H0:σ2≤16,H1:σ2>16,n=9,s2≈20.3611,χ2=8×s216≈10.181,α=0.05,χ0.052(8)=15.507.因χ2<χ0.052(8)=15.507,故接受H0,可认为铜丝的折断力的方差不超过16N2.习题8过去经验显示,高三学生完成标准考试的时间为一正态变量,其标准差为6min.若随机样本为20位学生,其标准差为s=4.51,试在显著性水平α=0.05下,检验假设:H0:σ≥6,H1:σ<6.解答:H0:σ≥6,H1:σ<6.α=0.05,n-1=19,s=4.51,χ0.952(19)=10.117.拒绝域为W={χ2<10.117}.计算χ2值χ2=(20-1)×4.51262≈10.74.因为10.74>10.117,故接受H0,认为σ≥6.习题9测定某种溶液中的水分,它的10个测定值给出s=0.037%,设测定值总体服从正态分布,σ2为总体方差,σ2未知,试在α=0.05水平下检验假设:H0:σ≥0.04%,H1:σ<0.04%.解答:在α=0.05下,拒绝域为W={(n-1)S2σ02<χ1-α2(9).查χ2分布表得χ0.952(9)=3.325.计算得(n-1)s2σ02=(10-1)×(0.037\per)2(0.04\per)2≈7.7006>3.325,未落入拒绝域,故接受H0.sw=(5-1)×(1.971)2+(4-1)×(1.167)25+4-2≈1.674.查表得t0.005(7)=1.895.算得t=2.86-2.075-01.67415+14≈0.699<1.895.因为0.699<1.895,故不拒绝H0,认为此药无效.习题3据现在的推测,矮个子的人比高个子的人寿命要长一些.下面给出美国31个自然死亡的总统的寿命,将他们分为矮个子与高个子2类,列表如下:矮个子总统8579679080高个子总统6853637088746466606078716790737177725778675663648365假设2个寿命总体均服从正态分布且方差相等,试问这些数据是否符合上述推陈出推测(α=0.05)?解答:设μ1,μ2分别为矮个子与高个子总统的平均寿命,则检验问题为H0:μ1≤μ2,H1:μ1>μ2,n1=5,x¯=80.2,s1≈8.585,n2=26,y¯≈69.15,s2≈9.315,sw=4×8.5852+9.315229≈9.218,n1n2n1+n2≈2.048,t=(80.2-69.15)9.218×2.048≈2.455,α=0.05,t0.05(29)=1.6991,因t>t0.05(29)=1.6991,故拒绝H0,认为矮个子总统的寿命比高个子总统寿命长.习题4在20世纪70年代后期人们发现,酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA).到了20世纪80年代初期,人们开发了一种新的麦芽干燥过程,下面给出了分别在新、老两种过程中形成的NDMA含量(以10亿份中的份数计):故拒绝H0,认为新、老过程中形成的NDMA平均含量差大于2.习题5有两台车床生产同一种型号的滚珠. 根据过去的经验,可以认为这两台车床生产的滚珠的直径都服从正态分布. 现要比较两台车床所生产滚珠的直径的方差,分别抽出8个和9个样品,测得滚珠的直径如下(单位:mm).甲车床xi:15.014.515.215.514.815.115.214.8乙车床yi:15.215.014.815.215.015.014.815.114.8问乙车床产品的方差是否比甲车床的小(α=0.05)?解答:以X,Y分别表示甲,乙二车床产品直径.X∼N(μ1,σ12),Y∼N(μ2,σ22),X,Y独立. 检验假设H0:σ12=σ22,H1:σ22<σ22.用F检验法, 在H0成立时F=S12S22∼F(n1-1,n2-1).由已知数据算得x¯≈15.01,y¯≈14.99,s12≈0.0955,s22≈0.0261,n1=8,n2=9,α=0.05.拒绝域为Rα={F>Fα(n1-1,n2-1)}.查F分布表得F0.05(8-1,9-1)=3.50.计算F值F=s12/s22=0.0955/0.0261≈3.66.因为3.66>3.50,故应否定H0,即认为乙车床产品的直径的方差比甲车床的小.习题6某灯泡厂采用一项新工艺的前后,分别抽取10个灯泡进行寿命试验. 计算得到:采用新工艺前灯泡寿命的样本均值为2460小时. 样本标准差为56小时;采用新工艺后灯泡寿命的样本均值为2550小时,样本标准差为48小时. 设灯泡的寿命服从正态分布,是否可以认为采用新工艺后灯泡的平均寿命有显著提高(α=0.01)?解答:(1)检验假设H0:σ12=σ22,H1:σ12≠σ22.应选取检验统计量F=S12/S22,若H0真, 则F∼F(m-1,n-1);对于给定的检验水平α=0.01,查自由度为(9,9)的F分布表得F0.005(9,9)=6.54;已知m=n=10,s1=56,s2=48,由此得统计量F的观察值为F=562/482≈1.36;因为F<F0.005(9,9),所以接受原假设H0,即可认为这两个总体的方差无显著差异.(2)检验假设H0′:μ1=μ2,H1′:μ1<μ2.按上述关于双总体方差的假设检验的结论知这两个总体的方差未知但相等,σ12=σ22,所以应选取检验统计量:T=X¯-Y¯(m-1)S12+(n-1)S22m+n-2(1m+1n),若H0′真,则T∼t(m+n-2);对给定的检验水平α=0.01,查自由度为m+n-2=18的t分布表得临界值计算t值t=z¯-0sz/n=-0.1-00.141/5≈-1.59>-2.776,故接受H0:μz=0,即在α=0.05下,认为两种分析方法所得的均值结果相同.7.4 关于一般总体数学期望的假设检验习题1设两总体X,Y分别服从泊松分布P(λ1),P(λ2),给定显著性水平α,试设计一个检验统计量,使之能确定检验H0:λ1=λ2,H1:λ1≠λ2的拒绝域,并说明设计的理论依据.解答:因非正态总体,故宜用大样统计,设X¯=1n1∑i=1n1Xi,S12=1n1-1∑i=1n1(Xi-X¯)2;Y¯=1n2∑i=1n2Yi,S22=1n2-1∑i=1n2(Yi-Y¯)2.\because(X¯-Y¯)-(λ1-λ2)S12n1+S22n2→N(0,1)∴可选用样本函数u=(X¯-Y¯)-(λ1-λ2)S12n1+S22n2作为拒绝域的检验统计量.习题2设某段高速公路上汽车限制速度为104.6km/h,现检验n=85辆汽车的样本,测出平均车速为x¯=106.7km/h,已知总体标准差为σ=13.4km/h,但不知总体是否服从正态分布. 在显著性水平α=0.05下,试检验高速公路上的汽车是否比限制速度104.6km/h显著地快?解答:设高速公路上的车速为随机变量X,近似有X∼N(μ,σ2),σ=13.4km/h,要检验假设H0:μ=μ0=104.6,H1:μ>104.6.α=0.05,n=85,uα=u0.05=1.645.拒绝域W={u=x¯-μ0σ/n>uα.由x¯=106.7,σ=13.4,μ0=104.6,n=85得u=106.7-104.613.4/85≈1.44<1.645.因为1.44<1.645,所以接受H0,即要α=0.05显著性水平下,没有明显的证据说明汽车行驶快于限制速度.习题3某药品广告上声称该药品对某种疾病和治愈率为90%,一家医院对该种药品临床使用120例,治愈85人,问该药品广告是否真实(α=0.02)?解答:设该药品对某种疾病的治愈率为p,随机变量X为X={1,临床者使用该药品治愈0,反之则X∼b(1,p),问题该归结为检验假设:H0:p=0.9,H1:p≠0.9.由于n=120足够大,可以用u检验法,所给样值(x1,x2,⋯,x120)中有85个1,35个0,所以x¯=1120∑i=1120xi=1120∑i=1851=85120≈0.71,又p0=0.9,以之代入统计量U得U的观察值为∣u∣=∣0.71-0.9∣0.9×0.1120=6.94>u0.01=2.33,故拒绝H0,即认为该药品不真实.习题4一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8小时电视.”她认为她所领导的学校,学生看电视时间明显小于该数字. 为此,她向她的学校的100名初中学生作了调查,得知平均每周看电视的时间x¯=6.5小时,样本标准差为s=2小时,问是否可以认为这位校长的看法是对的(α=0.05)?解答:检验假设H0:μ=8,H1:μ<8.由于n=100,所以T=X¯-μS/n近似服从N(0,1)分布,α=0.05,u0.05=1.645.又知x¯=6.5,s=2,故计算得t=6.5-82/100=-7.5,否定域W={X¯-8S/n<-u0.05.因为-7.5<-1.645,故否定H0,认为这位校长的看法是对的.习题5已知某种电子元件的使用寿命X(h)服从指数分布e(λ),抽查100个元件,得样本均值x¯=950(h),能否认为参数λ=0.001(α=0.05)?解答:由题意知X∼e(λ),E(X)=1/λ,D(X)=1/λ2,故当n充分大时u=x¯-1/λ1nλ=(x¯-1λ)λn=(λx¯-1)n(0,1).现在检验问题为H0:λ=0.001,H1:λ≠0.001,样本值u=(0.001×950-1)×100=0.5,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即可认为参数λ=0.001(即元件平均合适用寿命为1000h).习题6某产品的次品率为0.17,现对此产品进行新工艺试验,从中抽取400检查,发现次品56件,能否认为这项新工艺显著地影响产品质量(α=0.05)?解答:检验问题为H0:p=0.17,H1:p≠0.17,由题意知⌢p=mn=56400=0.14,u=(⌢p-p0)p0q0n=0.14-0.170.17×0.83×400≈-1.597,α=0.05,u0.025=1.96.因∣u∣<u0.025=1.96,故接受H0,即认为新工艺没有显著地影响产品质量.习题7某厂生产了一大批产品,按规定次品率p≤0.05才能出厂,否则不能出厂,现从产品中随机抽查50件,发现有4件次品,问该批产品能否出厂(α=0.05)?解答:问题归结为在α=0.05下,检验假设H0:p≤0.05,H1:p>0.05.这是一个单侧检验问题,用u检验法,H0的拒绝域为U=X¯-p0p0(1-p0)n>uα.已知n=50,p0=0.05,x¯=450=0.08,代入U的表达式得u=0.08-0.050.05×0.9550≈0.97<uα=u0.05=1.645,故接受H0,即认为这批产品可以出厂.习题8从选区A中抽取300名选民的选票,从选区B中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所提候选人,试在显著水平α=0.05下,检验两个选区之间对候选人的支持是否存在差异. 解答:这是两个比率的比较问题,待检假设为H0:p1=p2,H1:p1≠p2.由题设知n=300,μn=168,m=200,μm=96,p1=168320=0.56,p2=96200=0.48,p=μn+μmm+n=264500=0.528.U0∼=p1-p2p(1-p)(1n+1m)=0.56-0.480.528×0.472×1120≈1.755,由P{∣U∼∣>1.96}=α=0.05,得拒绝域∣U∼∣>1.96,因为U0∼=1.755<1.96,故接受H0,即两个选区之间无显著差异.7.5 分布拟合检验Ai k概率pi npi频数fi(fi-npi)2(fi-npi)2npiA001/108085250.3125A111/108093169 2.1125A221/108084160.2A331/10807910.0125A441/10807840.05A551/108069121 1.5125A661/108074360.45A771/10807181 1.0125A881/108091121 1.5125A991/108076160.2∑18007.375由于当H0为真时,χ2=∑i=0k(fi-npi)2npi∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r).这里χ2=7.375,查表知χ0.052(10-1-0)=χ0.052(9)=16.9,显然χ2=7.375<16.9=χ0.052(9),即χ2未落在拒绝域中,所以接受H0,即认为这个正20面体是由均匀材料制面的.习题2根据观察到的数据疵点数0 1 2 3 4 5 6频数fi 14 27 26 20 7 3 3检验整批零件上的疵点数是否服从泊松分布(α=0.05).解答:设X表示整批零件上的疵点数,则本问题是在α=0.05下检验假设H0:P{X=i}=λie-λi!,i=0,1,2,⋯.由于在H0中参数λ未具体给出,所以先估计λ的值. 由极大似然估计法得λ=x¯=1100(0×14+1×27+2×26+3×20+4×7+5×3+6×3)=2.将试验的所有可能结果分为7个互不相容的事件A0,A1,⋯,A7, 当H0成立时,P{X=i}有估计值p0=P{X=0}=e-2≈0.135335,p1=P{X=1}=2e-2≈0.27067,p2=P{X=2}=2e2≈0.270671,p3=P{X=3}≈0.180447,p4=P{X=4}=2/3e-2≈0.090224,p5=P{X=5}=4/15e-2≈0.036089, p6=P{X=6}=4/45e-2≈0.0120298. 列表如下:Ai k 概率pi npi 频数fi (fi-npi)2 (fi-npi)2npiA0 A1 A2 A3 A4 A5 A6 0 1 2 3 4 5 6 0.1353350.270671 0.270671 0.180447 0.090224 0.036089 0.0120298 13.5335 27.0671 27.0672 18.0447 9.02243.60891.2029813.83428 14 27 26 2073313 0.2176 0.0045 1.1387 3.8232 0.6960 0.01608 0.000166 0.04207 0.2118740.050310∑1000.3205当H0为真时,χ2=∑i=0k(fi-npi)2npi ∼χ2(k-1-r),且此检验问题的拒绝域为χ2≥χα2(k-1-r), 这里χ2=0.3205, 查表知χ0.052(5-1-1)=χ0.052(3)=7.815. 显然 χ2=0.3205<7.815=χ0.052(3).即χ2未落在拒绝域中,接受H0, 故可认为整批零件上的疵点数服从泊松分布.习题3检查了一本书的100页,记录各页中印刷错误的个数,其结果为错误个数fi0 1 2 3 4 5 6 ≥7含fi 个错误的页数 36 40 19 2 0 2 1 0问能否认为一页的印刷错误个数服从泊松分布(取α=0.05)? 解答:检验假设H0: 一页的印刷错误个数X 服从泊松分布, P{X=i}=λie -λi!,i=0,1,2,⋯.H0 不成立. 先估计未知参数λλ=x¯=1/100(0×36+1×40+2×19+3×2+4×0+5×2+6×1)=1. 在H0成立下pi =P {X=i}=(λ)ie-λi!=e-1i!,i=0,1,2,⋯. 用χ2检验法χ2=∑i =1k(fi-npi )2npi ∼χ2(k -r-1). 本题中r=1, 其中fi 为频数. H0的拒绝域为 Rα={χ2>χα2(k -r-1)}. 列表计算如下:n=100, 对每个{X=i}计算pi ,npi ,fi-npi ,(fi-npi )2/(npi )(i=1,2,⋯,7). 要求每一个npi ≥5.计算χ2值χ2=0.0170+0.2801+0.0202+1.1423=1.4596.习题6下表记录了2880个婴儿的出生时刻:试问婴儿的出生时刻是否服从均匀分布U[0,24](显著性水平α=0.05)?解答:原假设H0:F0(x), 由F0(x)算得pi=F0(i)-F0(i-1)=124,npi=2880×124=120 (i=1,2,⋯,24),于是χ2=∑i=124(fi-npi)2npi≈40.47,对α=0.05, 自由度n-1=23, 查χ2-分布表,得χα2(n-1)=35.17,因为χ2=40.47>35.17, 所以拒绝H0, 即可以认为婴儿出生时刻不服从均匀分布U[0,24].总习题解答习题1下面列出的是某工厂随机选取的20只部件的装配时间(min):9.8,10.4,10.6,9.6,9.7,9.9,10.9,11.1,9.6,10.2,10.3,9.6,9.9,11.2,10.6,9.8,10.5,10.1,10.5,9.7.设装配时间的总体服从正态分布N(μ,σ2),μ,σ2均未知,是否可以认为装配时间的均值显著地大于10(取α=0.05)?解答:检验假设H0:μ≤μ0=10,H1:μ>10.已知n=20,α=0.05,由数据算得x¯=10.2,s≈0.5099.因σ2未知,故用t检验法,拒绝域为W={X¯-μ0S/n>tα(n-1).计算得x¯-μ0s/n=10.2-100.5099/20≈1.7541.查t分布表得t0.05(19)=1.7291.因为1.7541>1.7291,故拒绝H0,可以认为装配时间的均值显著地大于10.习题2某地早稻收割根据长势估计平均亩产为310kg,收割时,随机抽取了10块,测出每块的实际亩产量为x1,x2,⋯,x10,计算得x¯=110∑i=110xi=320.如果已知早稻亩产量X服从正态分布N(μ,144),显著性水平α=0.05,试问所估产量是否正确?解答:这是一个正态分布总体,方差已知,对期望的假设检验问题,如果估计正确,则应有μ=310,因此我们先将问题表示成两个假设:①H0:μ=310,H1:μ≠310.接下来就要分析样本值来确定是接受H0,还是接受H1.当H0为真时,统计量②U=X¯-31012/10∼N(0,1),从而有③P{∣U∣>1.96}=0.05,拒绝域为(-∞,-1.96)∪(1.96,+∞).④计算U0=∣320-310∣12/n≈2.64>1.96,即拒绝H0,也就是有理由不相信H0是真的,故认为估产310kg不正确.习题3设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著水平0.05下,是否可认为这次考试全体考生的平均成绩为70分?并给出检验过程.(1)设这次考试全体考生的平均成绩X∼N(μ,σ2),则待检验假设H0:μ=70,备择假设H1:μ≠70;(2)在H0成立条件下选择统计量T=X¯-μ0S/n∼t(n-1);(3)在显著性水平0.05下,查t分布表,找出临界值tα/2(n-1)=t0.025(35)=2.0301,则拒绝域为(-∞,-2.0301)∪(2.0301,+∞);(4)计算t=∣66.5-70∣15/36=1.4∈(-2.0301,2.0301),故接受H0,因此可认为这次考试全体考生的平均成绩为70分.习题4设有来自正态总体的容量为100的样本,样本均值x¯=2.7,μ,σ2均未知,而∑i=1n(xi-x¯)2=225,在α=0.05水平下,检验下列假设(1)H0:μ=3,H1:μ≠3;(2)H0:σ2=2.5,H1:σ2≠2.5.解答:(1)由题意知n=100,x¯=2.7,s=199×225≈1.508,t=(2.7-3)1.508×100≈-1.9894,α=0.05,t0.025(99)≈t0.025(100)=1.984.因∣t∣=1.9894>t0.025(99)=1.984,故拒绝H0,即认为μ≠3.(2)由题意知χ2=∑i=1n(x1-x¯)22.5=2252.5=90,α=0.05,χ0.0252(99)≈χ0.0252(100)=129.56,χ0.9752(99)≈χ0.9752(100)=74.22,因χ0.9752(99)<χ2=90<χ0.0252(99),故接受H0,即可以认为σ2=2.5.习题5设某大学的男生体重X为正态总体,X∼N(μ,σ2),欲检验假设:H0:μ=68kg,H1:μ>68kg.已知σ=5,取显著性水平α=0.05,若当真正均值为69kg时,犯第二类错误的概率不超过β=0.05,求所需样本大小.解答:由第一类、第二类错误及分位数的定义,易于证明:对于某个给定的δ>0(∣μ-μ0∣≥δ),样本容量n应满足:n≥(uα+uβ)2σ2δ2.因为α=β=0.05,故uα=uβ=1.645,对其对立假设μ=69而言,取δ=1,则n=(uα+uβ)2σ2δ2=(1.645+1.645)2×251≈270.6,故取n=271.某装置的平均工作温度据制造厂家称不高于190∘C.今从一个由16台装置构成的随机样本测得工作温度的平均值和标准差分别为195∘C和8∘C,根据这些数据能否说明平均工作温度比制造厂所说的要高?(设α=0.05,并假设工作温度近似服从正态分布.)解答:设X为工作温度,则X∼N(μ,σ2).①待检假设H0:μ≤190,备择假设H1:μ>190;②在H0成立条件下,选择统计量T=X¯-μ0S/n≈t(n-1);③在显著性水平0.05下,查t分布表,找出临界值tα(n-1)=t0.05(15)=1.75,拒绝域为(1.75,+∞);④计算t=X¯-μ0S/n=195-1908/16=2.5>1.75,所以否定原假设H0,说明平均工作温度比制造厂所说的要高.习题7电工器材厂生产一批保险丝,抽取10根试验其熔断时间,结果为42657578715957685455假设熔断时间服从正态分布,能否认为整批保险丝的熔断时间的方差不大于80(α=0.05)?解答:①待检假设H0:σ2≤80,备择假设H1:σ2>80;②在H0成立时,选取统计量χ2=(n-1)S2σ02∼χ2(n-1);③由α=0.05,n-1=9,查χ2分布表,χα2(n-1)=χ0.052(9)=16.919;④计算样本值:x¯=110(42+65+75+78+71+59+57+68+54+55)=62.4,s2=19∑i=110(xi-x¯)2≈121.8,χ2=9×121.880≈13.7∈(0,16.919).故接受原假设H0即在α=0.05下,可认为整批保险丝的熔断时间的方差不大于80.习题8某系学生可以被允许选修3学分有实验物理课和4学分无实验物理课,11名学生选3学分的课,考试平均分数为85分,标准差为4.7分;17名学生选4学分的课,考试平均分数为79分,标准差为6.1分. 假定两总体近似服从方差相同的正态分布,试在显著性水平α=0.05下检验实验课程是否能使平均分数增加8分?解答:设有实验的课程考分X1∼N(μ1,σ12),无实验的课程考分X2∼N(μ2-σ22).假定σ12=σ22=σ2未知,检验假设H0:μ1-μ2=8,H1:μ1-μ2≠8.由题意知,选用t检验统计量,则拒绝域为W={∣x1¯-x2¯-(μ1-μ2)sw1n1+1n2∣>tα/2(n1+n2-2),其中sw2=(n1-1)s12+(n2-1)s22n1+n2-2.由x1¯=85,x2¯=79,n1=11,n2=17,s1=4.7,s2=6.1,算出sw=(11-1)×4.72+(17-1)×6.1211+17-2≈5.603.从而算出t值为t=85-79-85.603111+117≈-0.92,由α=0.05,查表得t0.025(11+17-2)=t0.025(25)=2.056,因为∣t∣=0.92<2.056,故接受H0,认为μ1-μ2=8.习题9某校从经常参加体育锻炼的男生中随机地选出50名,测得平均身高174.34厘米;从不经常参加体育锻炼的男生中随机地选50名,测得平均身高172.42厘米. 统计资料表明两种男生的身高都服从正态分布,其标准差分别为5.35厘米和6.11厘米,问该校经常参加锻炼的男生是否比不常参加锻炼的男生平均身高要高些(α=0.05)?解答:设X,Y分别表示常锻炼和不常锻炼男生的身高,由题设X∼N(μ1,5.352),Y∼N(μ2,6.112).①待检假设H0:μ1≤μ2,备择假设H1:μ1>μ2;②选取统计量U=X¯-Y¯σ12n+σ22m∼(H0成立)N(0,1);③对于α=0.05,查标准正态分布表,uα=u0.05=1.64;则拒绝域为(1.64,+∞);④计算u=174.34-172.425.35250+6.11250≈1.67>1.64,故否定原假设H0,即表明经常体育锻炼的男生平均身高比不经常体育锻炼的男生平均身高高些.习题10在漂白工艺中要改变温度对针织品断裂强力的影响,在两种不同温度下分别作了8次试验,测得断裂强力的数据如下(单位:kg):70∘C:20.818.819.820.921.519.521.021.280∘C:17.720.320.018.819.020.120.219.1判断两种温度下的强力有无差别(断裂强力可认为服从正态分布α=0.05)?解答:(1)本问题是在α=0.05下检验假设μ1=μ2,为此需要先检验σ12=σ22是否成立.H01:σ12=σ22,H11:σ12≠σ22.选取统计量F=S12S22,在H01成立的条件下,F∼F(n1-1,n2-1),且此检验问题的拒绝域为F>Fα/2(n1-1,n2-1)或F<F1-α/2(n1-1,n2-1).这里F=s12s22≈0.90550.8286≈1.0928,F0.025(7,7)=4.99,F0.975(7,7)=1F0.025(7,7)=14.99≈0.2004.显然F0.975(7,7)=0.2004<1.0928<4.99=F0.025(7,7).说明F未落在拒绝域中,从而接受H01,即认为两温度下的强力的方差没有显著变化,亦即σ12=σ22. (2)再检验假设H0ʹ:μ1=μ2,H0ʹ:μ1≠μ2,在H0ʹ成立的条件下,T=X1¯-X2¯(n1-1)S12+(n2-1)S22n1+n2-21n1+1n2∼t(n1+n2-2),且此检验问题的拒绝域为∣T∣>tα/2(n1+n2-2),这里T≈20.4-19.47×0.9055+7×0.82868+8-218+18≈2.148,显然∣T∣=2.148>2.145=t0.025(14).说明T落在拒绝域中,从而拒绝H0,即认为两种温度下的断裂强力有显著差别.习题11一出租车公司欲检验装配哪一种轮胎省油,以12部装有Ⅰ型轮胎的车辆进行预定的测试. 在不变换驾驶员的情况下,将这12部车辆换装Ⅱ型轮并重复测试,其汽油耗量如下表所示(单位:km/L).汽车编号i123456789101112Ⅰ型胎(xi)4.24.76.67.06.74.55.76.07.44.96.15.2Ⅱ型胎(yi)4.14.96.26.96.84.45.75.86.94.76.04.9假定两总体均服从正态分布,试在α=0.025的显著性水平下,检验安装Ⅰ型轮胎是否要双安装Ⅱ型轮胎省油?解答:设两种轮胎汽油消耗量之差为随机变量D,则取值为zi=xi-yi=0.1,-0.2,0.4,0.1,-0.1,0.1,0,0.2,0.5,0.2,0.1,0.3.设Z∼N(μz,σz2),σz2未知. 若消耗油相同,则μz=0;若Ⅰ型比Ⅱ型轮胎省油,则μz>0,于是检验假设H0:μz=0,H1:μz>0.由题意知z¯≈0.142,s≈0.198,n-1=12-1=11.α=0.025,查t分布表得t0.025(11)=2.201.所以,拒绝域为W={t>2.201}.由于样本值t=z¯-0s/n=0.142-00.198/12≈2.48>2.201,故拒绝H0:μz=0,即说明Ⅰ型轮胎省油.习题12有两台机器生产金属部件,分别在两台机器所生产的部件中各取一容量n1=60,n2=40的样本,测得部件重量(以kg计)的样本方差分别为s12=15.46,s22=9.66. 设两样本相互独立,两总体分别服从分布N(μ1,σ12),N(μ2,σ22).μi,σi2(i=1,2)均未知,试在α=0.05水平下检验假设H0:σ12≤σ22,H1:σ12>σ22.解答:在α=0.05下,检验假设H0:σ12≤σ22,H1:σ12>σ22,经计算p=1100×10(45+2×17+3×4+4×1+5×1)=1/10,故检验假设为H0:X∼B(10,1/10),即pi=P{X=i}=C10i(1/10)i(9/10)10-i,i=0,1,2,⋯,10.为了使npi≥5,将xi≥3合并,于是k=4,r=1.计算χ2的观察值,计算结果如下表:[200,300) [300,+∞)435843.466.9-0.4-8.90.0041.184∑300300 1.8631其中理论概率pi=p{ti≤T≤ti+1}=∫titi+1f(t)dt(i=1,2,3),p4=1-∑i=13pi,例如p1=P{T<100}=∫01000.005e-0.005tdt=1-e-0.5≈0.393.由k=4,未知参数个数r=0,查表知χα2(k-r-1)=χ0.052(3)=7.815.因χ2=1.8631<χ0.052(3)=7.815.故接受H0,即可认为灯泡的寿命服从该指数分布.习题16关于正态总体X∼N(μ,1)的数学期望有如下二者必居其一的假设,H0:μ=0,H1:μ=1.考虑检验规则:当X¯≥0.98时否定假设H0接受H1,其中X¯=(X1+⋯+X4)/4,而X1,⋯,X4是来自总体X的简单随机样本,试求检验的两类错误概率α和β.解答:易见,在假设“H0:μ=0”成立的条件下,X¯∼N(0,1/4),2X¯∼N(0,1);在假设“H1:μ=1”成立的条件下,X¯∼N(1,1/4),2(X¯-1)∼N(0,1).因此,由定义得α=P{X¯≥0.98∣μ=0}=P{2X¯≥1.96∣μ=0}=0.025,β=P{X¯<0.98∣μ=1}=P{2(X¯-1)<-0.04∣μ=1}=0.4840.习题17考察某城市购买A公司牛奶的比例,作假设H0:p=0.6,H1:p<0.6,随机抽取50个家属,设x为其中购买A公司牛奶的家庭数,拒绝域W={x≤24}.(1)H0成立时,求第一类错误的α;(2)H1成立且p=0.4时,求第二类错误的β(0.4);又当p=0.5时,求第二类错误的β(0.5).解答:由定义知(1)α=P{x≤24∣p=0.6}=Φ(24-50×0.650×0.6×0.4)≈Φ(-1.73)=1-Φ(1.73)=1-0.9528=0.0418.(2)β(0.4)=P{x>24∣p=0.4}=1-Φ(24-50×0.450×0.4×0.6)≈1-Φ(1.15)=1-0.8749=0.1251;。

概率论与数理统计课程标准

概率论与数理统计课程标准

《概率论与数理统计》课程标准1.课程说明《概率论与数理统计》课程标准课程编码(37012)承担单位(师范学院)制定(张琦)制定日期(2018-11)审核O审核日期O批准O批准日期O(1)课程性质:本门课程是高等职业类数学教育专业必修的专业基础课。

概率论与数理统计是一门研究大量性随机现象的统计规律的一门数学学科,概率论是数理统计的基础,数理统计是概率论的一种应用。

随着科学技术的发展,概率论与数理统计在国民经济和所有科学技术领域都有广泛的应用,因此,概率论与数理统计已成为高等院校学生的必修课程。

本课程包括概率论与数理统计两部分,概率论部分是从数量关系角度研究自然界和社会生活中普遍存在的不确定现象,即随机现象的规律性,并为后续内容提供理论基础, 概率论的特点是根据问题提出相应的数学模型,然后去研究它们的性质、特征和规律性。

数理统计部分以概率论的理论为基础,利用对随机现象的观察或者试验所取得的数据资料,来研究数学模型,并对所研究对象的客观规律性作出合理的估计与判断。

(2)课程任务:主要针对中小学教师或者教学辅导机构老师等岗位开设,主要任务是培养学生在教学工作或者其他工作岗位的实际工作能力,通过对本课程的学习,使学生掌握概率论与数理统计的基本概念、基本理论及基本方法,使学生初步掌握处理随机现象的基本思想和方法,培养他们运用概率论与数理统计的方法去分析和解决有关实际问题的能力,并为今后学习后继课程打下必需的基础。

同时培养学生爱岗敬业思想,和团结协作精神。

(3)课程衔接:在课程设置上,前导课程有数学分析和高等代数。

2 .学习目标(一)总目标:通过对本课程的学习,使学生掌握概率论与数理统计的基本概念、基本理论及基本方法,使学生初步掌握处理随机现象的基本思想和方法,培养他们运用概率论与数理统计的方法去分析和解决有关实际问题的能力。

(二)分目标:(1)知识和技能目标通过本课程的学习,使学生了解和掌握概率论的基本概念、基本理论及基本方法,增进对数学的理解和兴趣,并能运用其理论与方法解决实际生活中的简单课题。

第二节 正态总体均值和方差的假设检验

第二节 正态总体均值和方差的假设检验
2 1 2 2
查表可知 t0.05 (18) = 1.7341,
查表8.1知其拒绝域为 查表 知其拒绝域为 t ≤ − tα ( n1 + n2 − 2). x− y = −4.295, 因为 t = 1 1 sw + 10 10
≤ − t 0.05 (18) = −1.7341,
所以拒绝 H 0 ,
2. , ( () σ2为未知 关于 的检验 t 检验) µ
设总体 X ~ N ( µ ,σ 2 ), 其中µ ,σ 2 未知, 显著性水平为 α .
求检验问题 H 0 : µ = µ 0 , H 1 : µ ≠ µ 0 的拒绝域 .
设 X 1 , X 2 ,⋯, X n 为来自总体 X 的样本 , X − µ0 2 , 来确定拒绝域 . 因为σ 未知 不能利用 σ/ n
X − µ0 ≥ k = α , P {当 H 0 为真 , 拒绝 H 0 } = Pµ 0 S/ n
得 k = tα / 2 ( n − 1),
x − µ0 拒绝域为 t = ≥ tα / 2(n −1) . s/ n
统计量得出的检验法称为t 检验法. 上述利用 t 统计量得出的检验法称为 检验法
10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度服从正态分布, 假定切割的长度服从正态分布 且标准差没有变 试问该机工作是否正常? 化, 试问该机工作是否正常 (α = 0.05)

因为 X ~ N ( µ ,σ 2 ), σ = 0.15,
要检验假设 H 0 : µ = 10.5, H 1 : µ ≠ 10.5,
要检验假设 H 0 : µ = 10.5, H 1 : µ ≠ 10.5,

两个正态总体均值差和方差的假设检验

两个正态总体均值差和方差的假设检验

方差齐性检验是检验 两个正态总体方差是 否相等的统计方法。
常用的方差齐性检验 方法有:Levene检验、 Bartlett检验和Welch 检验。
Levene检验基于方差 分析,通过比较不同 组间的方差来判断方 差是否齐性。
Bartlett检验基于 Kruskal-Wallis秩和 检验,通过比较不同 组间的中位数和四分 位距来判断方差是否 齐性。
独立样本的均值检验
1
独立样本的均值检验是用来比较两个独立正态总 体的均值是否存在显著差异的统计方法。
2
常用的独立样本均值检验方法包括t检验和z检验, 其中t检验适用于小样本和大样本,而z检验适用 于大样本。
3
在进行独立样本均值检验时,需要满足独立性、 正态性和方差齐性的假设,以确保检验结果的准 确性和可靠性。
根据研究目的和数据类型,选择合适的统计量 来描述样本数据。
确定临界值
根据统计量的分布和显著性水平,确定临界值。
计算样本统计量
根据样本数据计算所选统计量的值。
做出决策
将样本统计量的值与临界值进行比较,做出接受 或拒绝原假设的决策。
解读结果
根据决策结果解读研究问题,给出结论和建议。
Part
02
两个正态总体均值的假设检验
Part
05
结论与展望
假设检验的优缺点
理论基础坚实
假设检验基于概率论和统计学原理,具有坚实的理论基础。
操作简便
假设检验提供了清晰的步骤和标准,方便研究者进行操作。
假设检验的优缺点
• 实用性强:假设检验广泛应用于各个领域,为科学研究和实践提供了有效的工具。
假设检验的优缺点
01
对数据要求较高
假设检验对数据的分布、样本量 等有一定的要求,不符合条件的 样本可能导致检验结果不准确。

《概率论与数理统计》7-2正态总体的均值和方差的假设检验

《概率论与数理统计》7-2正态总体的均值和方差的假设检验

P| T | t/2(n 1) ,查表可得 t/2(n 1).
拒绝域: W1 = { (x1,x2,∙∙∙,xn)| |t | t /2 (n-1)},
t T ( x1, x2, , xn ) 4°由样本值算出 T 的值 t 进行判断:
若t W1,则拒绝H0; 若t W1,则接受H0 .
W1 { f f F12 (n1 1,n2 1) }
{ f f F (n1 1,n2 1) }, 2
4 作判断. 由样本值算出F的值 f ,
若t W1,则拒绝H0; 若f W1,则接受H0.
例6 设X,Y 分别表示70oC与80oC下某种材料的断裂
强力(单位:公斤), X与Y 相互独立,
由于方差σ 2未知,故选择统计量
T X 1600 Sn / n
当H0 成立时,T ~ t ( n-1) = t (9) , 查自由度 n - 1= 9 的 t 分布表得临界值
tα / 2(n 1) t0.025(9) 2.262.
拒绝域: W1 = { (x1,x2,∙∙∙,xn)| |t | 2.262} 由所给的样本值 求得x 1582 , Sn*2 16528.89
分数的方差与0.1082有显著性差异.
问题: 若总体的均值 已知,则如何设计假设检验?
n
( Xi μ)2
构造χ 2 i1 σ2
~ χ 2(n)可类似进行检验.
二、两个总体参数的检验 注意与一个
设总体
X
~
N
(1
,
2 1
),
总体的区别
Y
~
N
(2
,
2 2
),
X与Y独立, 样本( X1, X2, , Xn1 )来自总体X ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2°取检验统计量
U
X σ/
μ0 n
~
N 0,1,
(当H0为真时,)
3° 给定显著水平 ( 0< < 1)
P{| U | u /2 }
由Φuα
/
2
1
α 2
,查表可得uα
/
2
Hale Waihona Puke .拒绝域:W1={(x1,x2,∙∙∙,xn)||u|u/2},
其中u=U(x1,x2,∙∙∙,xn) 4°由样本值算出U的值u判断:
H0 : σ2 0.1082, H1 : σ2 0.1082 ,
取检验统计量:(当H 0为真时)
χ2
(n 1)Sn*2 σ02
~
χ 2(n 1),
由n = 5, = 0.05算得,
χα2/ 2n 1 χ02.0254 11.1, χ12α / 2n 1 χ02.9754 0.484.
即可以认为这批灯泡的平均寿命1600h.
3. μ为未知,关于σ2的检验(χ2检验法) 设X1, X2, , Xn是来自正态总体N ( μ,σ2 )的一样本, 其中μ, σ 2未知,检验水平为α,检验σ 2步骤为:
1 假设H0 : σ2 σ02, H1 : σ2 σ02 , X1, X2, , Xn为来自总体X的样本, 其中 σ02 为已知常数.
tα / 2(n 1) t0.025(9) 2.262.
拒绝域: W1 = { (x1,x2,∙∙∙,xn)| |t | 2.262} 由所给的样本值 求得x 1582 , Sn*2 16528.89
故 |t| |1582 1600| 10 0.443 16528.89
由于|t| =0.443<2.262=t0.025(9) , 因此可以接H0 ,
t T ( x1, x2, , xn ) 4°由样本值算出 T 的值 t 进行判断:
若t W1,则拒绝H0; 若t W1,则接受H0 .
例2 某型灯泡寿命X服从正态分布,从一批灯泡
中任意取出10只,测得其寿命分别为(单位:h) 1490, 1440, 1680, 1610, 1500 1750, 1550, 1420, 1800, 1580
P{ χ 2
χα2/ 2n 1}
α, 2
拒绝域:
W 1 {( x1, x2, , xn ) : χ 2 χ12α / 2(n 1)}
{( x1, x2, , xn ) : χ 2 χα2/ 2n 1}.
4°由样本值算出 χ2 的值进行判断: 若χ2 W1,则拒绝 H0;若χ2 W1,则接受 H0.
第二节 正态总体均值 与方差的假设检验
一、单个总体参数的检验
二、两个总体参数的检验

停 下
一、单个总体参数的检验
1. σ2为已知,关于μ的检验(U检验法)
设X1, X2, , Xn是来自正态总体N ( μ,σ02 )的一样本, 其中μ未知,μ R,σ02已知,检验步骤:
1 假设 H0 : μ μ0 , H1 : μ μ0;
2°取检验统计量
χ
2
(n
1)Sn*2 σ02
~ χ 2(n 1)
,
(当H 0为真时)
3°给定显著水平 ( 0< < 1),
查表得临界值:
χα2/ 2n 1,
χ12α / 2n 1
y
y
p
χ
2
(x)
2
2
O 12 /2(n 1) 2 / 2(n 1)
x
P{ χ 2
χ12α / 2(n 1)}
若u W1,则拒绝H0;若u W1,则接受H0.
例1 某厂生产一种钢索,断裂强度X(单位:Mpa)
服从正态分布N (,402 ), 从一批产品中抽取9件,测
算出 X 770 Mpa,问能否认为这批钢索的断
裂强度为 800 Mpa. 解 本题归结为检验假设
H0 : μ 800, H1 : μ 800;
3 给定检验水平 ,确定临界值和拒绝域W1;
4 由样本观测值计算统计量的值; 5 根据统计量的观测值落入拒绝域W1内,还 是W1外进行判断,落入拒绝域W1内,拒绝H0;落入 拒绝域W1外,接受H0.
2. σ2为未知,关于μ的检验(t检验法)
设X1, X2, , Xn是来自正态总体 N( μ,σ2)的一样本, 其中μ, σ 2未知,检验水平为α,检验μ的步骤为:
选择统计量
U X 800 9 40
当H0成立时,U~N(0,1).对于 = 0.05,由正态分布函
数表查得u /2=u0.025 =1.96,从而得检验的拒绝域为
W1={(x1 , x2 , ∙∙∙ , xn) :|u| u 0.025 =1.96 }, U的观测值为
|u| |X 800| 9 |770 800| 3 2.25,
拒绝域为: W 1 {(x1, x2, , x5 ) : χ2 0.484}
1 假设H0 : μ μ0 , H1 : μ μ0;
2° 取检验统计量
T
X Sn /
μ0 n
~
t(n
1),
(当H0为真时)
3° 给定显著水平 ( 0< < 1)
P| T | t/2(n 1) ,查表可得 t/2(n 1).
拒绝域: W1 = { (x1,x2,∙∙∙,xn)| |t | t /2 (n-1)},
40
40
由 | u | 2.25 1.96,故拒绝原假设H0,即不能认为
这批钢索的断裂强度为 800 Mpa .
假设检验的一般步骤:
上述 U 检验法的步骤具有一般性,通过以 上分析, 我们可归纳出假设检验的一般步骤:
1 提出待检验的假设H0及备择假设H1; 2 选择适当的检验统计量,在H0成立的条件 下,确定它的概率分布;
例3 某炼钢厂铁水含碳质量分数X在正常情况下
服从正态分布 N ( μ,σ 2 ),现对操作工艺进行了改 革又测量了5炉铁水,含碳质量分数分别为:
4.421,4.052,4.357,4.287,4.683
是否可以认为由新工艺炼出的铁水含碳质量分
数的方差仍为0.1082( = 0.05)?
解 检验假设
能否认为这批灯泡平均寿命为1600h (=0.05)? 解 本题是要检验假设
H0 : μ 1600, H1 : μ 1600
由于方差σ 2未知,故选择统计量
T X 1600 Sn / n
当H0 成立时,T ~ t ( n-1) = t (9) , 查自由度 n - 1= 9 的 t 分布表得临界值
相关文档
最新文档