第二章-2金属的电化学腐蚀讲解
第2章腐蚀电化学原理简介PPT课件
腐蚀反应中释放的化学能又是从何而来的?
形成腐蚀电池确实对腐蚀有加速作用。在腐蚀控制工作中仍 然要注意防止形成腐蚀电池,或减小腐蚀电池的推动力。
Zn+2H+→Zn2++H2↑
电流的流动
金属中:电子从阳极流向阴极。
形 溶液中:离子迁移。阳离子从阳极区向阴极区迁移,阴离子从
成
阴极区向阳极区迁移。
回 路
阳极:发生氧化反应
阴极:发生还原反应
中国民航大学 理学院 2010/8/14
5
A
k
e
-
+
化学 Zn
Cu
势能2H+
Zn2+
SO42-
电池工作的推动力是电池反应的化学势能,即反应物和反应 产物之间的化学势差。
化学势能与构成电池的两个电极的电位差成正比。
ΔrGm=-nFE
中国民航大学 理学院 2010/8/14
6
2.1 腐蚀电池
-+
Zn Cu e
Zn2+
2H+ SO42-
◦ 把Zn-Cu原电池短路,电池仍可以持续工作。
电池工作的结果仅造成Zn被溶解(腐蚀),不能输出有用的 电功
形成了腐蚀原电池(可简称腐蚀电池)。电化学腐蚀是以腐 蚀电池工作的方式完成的
中国民航大学 理学院 2010/8/14
10
2.1 腐蚀电池
2.1.2 腐蚀电池的类型
◦ 按组成腐蚀电池的阴极、阳极的大小:
宏观腐蚀电池:阳极区和阴极区尺寸较大,区分明显,多数 情况下肉眼可辨。
材料腐蚀与防护 第二章
例如,氧或氢离子到达阴极的速度不足反应速度的需 要,造成电子积聚,引起极化。
消除阴极极化的作用,叫做阴极去极化。与阳极去极化 一样,阴极去极化同样可以加速腐蚀过程。
去极化
凡是在电极上吸收电子的还原反应都能起到去极化的作用 最常见最重要的阴极去极化过程有二: 1.氢离子放电逸出H 2
当金属电极上只有惟一的一种电极反应,并且该反应处
于动态平衡时,金属的溶解速度等于金属离子的沉积速度电 极获得了一个不变的电位值,通常称该电位值为平衡电极电 位----可逆。
平衡电极电位可用能斯特公式计算:
2.非平衡电极电位
Zn浸泡在硫酸锌和Zn浸泡在稀硫酸中是否具有相同的电 极反应?
Zn Zn2 2e
2)不同的金属与同一电解质溶液相接触。
3)浓差电池。
同一种金属浸入同一种电解质溶液中,若局部的浓 度(或温度)不同,即可形成腐蚀电池。
2 微电池:
由于金属表面的电化学不均匀性,在金属表面上出现 许多微小的电极由此而构成的电池称为微电池。
肉眼难以辨别电极的极性
产生原因:
•化学成份不均匀性
将一块工业纯锌浸入稀硫酸溶液中,由于工业纯锌 中合有少量的杂质(如铁),因为杂质Fe(以FeZn7的形式 存在)的电位较纯锌为高,此时锌为阳极,杂质为阴极, 于是构成腐蚀电池,锌被腐蚀。此时构成的腐蚀电池位 于局部微小的区域内,故称之谓微电池。
(2)浓差极化 金属溶解时,在阳极过程中产生的金属离子首先进入阳极
表面附近的溶液中,如果进入溶液中的金属离子向外扩散得很 慢,结果就会使得阳极附近的金属离子浓度逐渐增加,阻碍金 属继续溶解(腐蚀),必然使阳极电位往正的方向移动,产生阳 极极化。从能斯特方程式
第二章 金属腐蚀电化学理论基础
(Pt (镀铂黑)H2(1atm), H+(aH+=1)) 标准氢电极的电极反应为 (Pt) H2 = 2H+ + 2e 规定标准氢电极的电位为零。以 标准氢电极为参考电极测出的电位值 称为氢标电位,记为E(vs SHE) 。 SHE是最基准的参考电极,但使用 不方便,实验室中常用的参考电极有:
1.宏观腐蚀电池
铜铆钉
1. 异种金属相接触 如 电偶腐蚀。 2. 浓差电池 (1)金属离子浓度不同, 浓度低电位低,容易腐蚀。 (2)氧浓度不同 氧浓度低电位低,更容易腐蚀。 3. 温差电池 如金属所处环境温度不同, 高温电位低,更容易腐蚀。
铝板
粘 土
沙 土
2. 微观腐蚀电池 (1)材料本身的不均匀性
也可以简单地说,绝对电极电位是电子导体和离子导体接 触时的界面电位差。
双电层:
由于金属和溶液的内电位不同,在电极系统的金属相和
溶液相之间存在电位差,因此,两相之间有一个相界区,叫做
双电层。 电极系统中发生电极反应,两相之间有电荷转移,是形成 双电层的一个重要原因。 例如:Zn/Zn2+,Cu/Cu2+ 。
腐蚀原电池产生的电流是由于它的两个电极在电解质中的 电位不同产生的电位差引起的,该电位差是电池反应的推动力。 构成腐蚀原电池的基本要素(*) • • • • 阳极 阴极 电解质溶液(*) 电池反应的推动力-电池两个电极的电位差
电流流动:在金属中靠电子从阳极流向阴极;在溶液中靠离 子迁移;在阳、阴极区界面上分别发生氧化还原反应,实现电子 的传递。 从金属腐蚀历程也可看出化学腐蚀与电化学腐蚀的区别。
盐水滴实验
3%NaCl+铁氰化钾+酚酞
第二章电化学腐蚀热力学要点
2.3.2微观腐蚀电池
• 在金属外表上由于存在许多极微小的电极 而形成的电池称为微电池。微电池是因金 属外表的电化学的不均匀性所引起的,不 均匀性的原因是多方面的。
图2.4 腐蚀电池
图2.5铜锌接触形成腐蚀电池示意图
图2.6铸铁形成腐蚀电池示意图
• 单个金属与溶液接触时所发生的金属溶解 现象称为金属的自动溶解。这种自溶解过 程可按化学机理进展,也可按电化学机理 进展。金属在电解质溶液中的自动溶解属 于电化学机理。
图2.7金属锌在稀酸溶液中的腐蚀
2.2.4金属腐蚀的电化学历程
• 金属腐蚀反响体系是一个开放体系。在反响过程 中,体系与环境既有能量的交换又有物质的交换。
金属腐蚀反响一般都是在恒温和恒压的条件下进 展的,用体系的热力学状态函数吉布斯(Gibbs)自
由能判据来判断反响的方向和限度较为方便。吉 布斯自由能用G表示,对于等温等压并且没有非
体积功的过程,腐蚀体系的平衡态或稳定态对应
• Zn2++ 2OH- → Zn(OH)2 ↓ • 这种反响产物称为腐蚀次生产物,也称腐蚀产物。某些情
况下腐蚀产物会发生进一步的变化。例如铁在中性的水中 腐蚀时Fe2+离子转入溶液遇到OH-离子就生成Fe(OH)2, Fe(OH)2又可以被溶液中的溶解氧所氧化而形成Fe(OH)3。
• 4 Fe(OH)2+O2+H2O→ 4Fe(OH)3: • 随着条件的不同(如温度、介质的pH及溶解的氧含量等)也
• 从上面讨论的腐蚀电池的形成可以看 出,—个腐蚀电池必须包括阴极、阳极、 电解质溶液和连接阴极与阳极的电子导体 等几个组成局部,缺一不可。这几个组成 局部构成了腐蚀电池工作历程的下三个根 本过程。
材料腐蚀与防护-金属的电化学腐蚀原理(2)
此时,两电极的稳定电位差0.05+0.83=0.88V,
铜-锌腐蚀原电池示意图
电池刚接通时,毫安表指示的起始瞬间电流 值
电流变化
瞬间电流很快下降,经过一段时间 后,达到一个比较稳定的电流值, I2=0.15mA ???
腐蚀极化图
+E EeC
β
假定任何电流下,阴极阳极的极 化率为常数,称为Evans图(U. R. Evans)。 S所对应的电位Emix,称为混合电 位。由于Emix电位下的金属处于 腐蚀状态,故混合电位就是金属 的自腐蚀电位Ecorr,对应的电流 称为腐蚀电流,用Icorr表示。 I 腐蚀电位是一种不可逆非平 衡电位,需由实验测得,腐蚀 电流表示金属腐蚀的速率,对 于均匀腐蚀和局部腐蚀都适用。
CA
PA E A E A 100% 100% 100% e e PC PA PR EC E A ER EC E A
PR ER ER 100% 100% 100% e e PC PA PR EC E A ER EC E A
S2O62 +2e 2SO42
3.溶液中中性分子的还原反应 吸氧反应 氯的还原反应
如:
O2 +H2O+4e 4OH Cl2 2e 2Cl
4.不溶性化合物的还原反应
如:
Fe(OH)3 +e Fe(OH)2 OH
电路接通
腐蚀电池接通前后电位变化
过电位
电极电位的偏离值称为极化值。 通常引入一新术语--过电位或超电位(取正值)来表征电 极极化的程度。
第 2 章 腐蚀电化学原理简介
形成腐蚀电池确实对腐蚀有加速作用。在腐蚀控制工作中仍 然要注意防止形成腐蚀电池,或减小腐蚀电池的推动力。
中国民航大学 理学院
2010/8/14
10
2.1.2 腐蚀电池的类型
◦ 按组成腐蚀电池的阴极、阳极的大小:
宏观腐蚀电池:阳极区和阴极区尺寸较大,区分明显,多数
什么是正极和负极,什么是阴极和阳极? 什么情况下正极是阳极,什么情况下正 极是阴极?
A
e
k
+
Cu 2H+
Zn
Zn2+
SO42-
中国民航大学 理学院
2010/8/14
4
总反应(电池反应) = 阳极反应 + 阴极反应 Zn+2H+→Zn2++H2↑
形 成 回 路
电流的流动 金属中:电子从阳极流向阴极。 溶液中:离子迁移。阳离子从阳极区向阴极区迁移,阴离子从 阴极区向阳极区迁移。 阳极:发生氧化反应 阴极:发生还原反应
腐蚀电池不做有用功,只造成金属的腐蚀。
腐蚀电池的电极反应、电池反应和推动力与一般原电池相同。
两个电极反应,阳极反应造成金属溶解(或腐蚀),阴极反 应是环境中的氧化剂(习惯上称去极化剂)的还原反应。
两个电极反应是共轭关系,即阳极失去的电子等量地被阴极 反应消耗。
金属的腐蚀速度、阴极去极化剂的还原速度和通过的电流之 间符合法拉第定律。
情况下肉眼可辨。
1. 电偶电池:两种不同的金属短路接触,浸入连续的电解质溶液中。 如钢铁部件用铜铆钉连接,连接区存有积水的情况。
中国民航大学 理学院
2010/8/14
第二章 金属电化学腐蚀原理
第二章 金属电化学腐蚀原理
§2.2 电化学腐蚀原理
2.2.3 腐蚀电池的类型
1. 宏观腐蚀电池 (2)浓差电池 同一种金属浸入同一种电解质溶液中,若局部的浓度不同,即可形成腐蚀 电池。如船舷及海洋工程结构的水线区域,在水线上面钢铁表面的水膜中 含氧量较高;在水线下面氧的溶解量较少,加上扩散慢,钢铁表面处含氧 量较水线上要低得多。含氧量高的区域,由于氧的还原作用而成为阴极, 溶氧量低的区域成为阳极而遭到腐蚀。由于溶液电阻的影响,通常严重腐 蚀的部位离开水线不远,故称水线腐蚀。
第二章 金属电化学腐蚀原理
§2.1 腐蚀的基本概念
2.1.2 金属腐蚀的分类
2. 按腐蚀的形式分类:
2)局部腐蚀(localized corrosion) (2)有应力条件下的腐蚀形态:
b. 腐蚀疲劳(corrosion fatigue):金属在交变循环应力和腐蚀介质共同作用下 发生的破坏。 特点:最易发生在能产生孔蚀的环境中,蚀孔引起应力集中;对环境没有选择性, 氧含量、温度、pH值、溶液成分均可影响腐蚀疲劳 实例:海水中高铬钢的疲劳强度只有正常性能的30%--40%。 c. 氢损伤(hydrogen damage):由于氢的存在或氢与材料相互作用,导致材 料易于开裂或脆断,并在应力作用下发生破坏的现象。 氢损伤的三种形式:氢鼓泡、氢脆、氢蚀。
第二章 金属电化学腐蚀原理
§2.2 电化学腐蚀原理
金属与环境介质发生电化学作用而引起的破坏过程称 为电化学腐蚀。主要是金属在电解质溶液、天然水、海
水、土壤、熔盐及潮湿的大气中引起的腐蚀。它的特点
是在腐蚀过程中,金属上有腐蚀电流产生,而且腐蚀反应 的阳极过程和阴极过程是分区进行的。 金属的电化学腐蚀基本上是原电池作用的结果。
第2章—电化学腐蚀原理(二)
2.8.1 析氢腐蚀的阴极过程步骤 在酸性溶液中,析氢过程步骤: (1)水合氢离子向阴极表面扩散并脱水: H3O+ → H+ + H2O (2)H+与电极表面的电子结合放电,形成吸附氢原子: H+ + e→Hads (3)吸附态氢原子通过复合脱附,形成H2分子: Hads + Hads → H2 或发生电化学脱附,形成H2分子: Hads + H+ + e → H2 (4)H2分子形成氢气泡,从电极表面析出。 各过程连续进行,最慢的过程控制整个反应过程。 通常(2)过程为控制过程。
电流通过腐蚀电池时,阳极的电极电位向正方向移动(升 高)的现象,称为阳极极化。 电流流过腐蚀电池时,阴极的电极电位向负方向移动(降 低)的现象,称为阴极极化。 (1)电化学极化或活化极化 在金属阳极溶解过程中,由于电子从阳极流向阴极的速度 大于金属离子放电离开晶格进入溶液的速度,因此阳极的正 电荷将随着时间发生积累,使电极电位向正方向移动,发生 电化学阳极极化。 由于电子进入阴极的速度大于阴极电化学反应放电的速度, 因此电子在阴极发生积累,结果使阴极的电极电位降低,发 生电化学阴极极化。
(1)构成腐蚀电池,即阴、阳极区之间存在电位差;
(2)存在着维持阴极过程进行的物质,即阴极去极化剂。
2.6 腐蚀电池的电极过程
2.6.1 阳极过程
(1)金属原子离开晶格转变为表面吸附原子:
M晶格 → M吸附 (2)表面吸附原子越过双电层进行放电转变为水化阳离子: M吸附+mH2O → Mn+•mH2O + ne (3)水化金属离子Mn+•mH2O从双电层溶液侧向溶液深处迁移。
2.8.2 析氢腐蚀发生的条件与特征
第2章—电化学腐蚀原理(二)讲解
O2 + e →
O
2
O
2
+ H+ → HO2
HO2
HO
2
+
e
→
HO
2
+ H+ → H2O2
H2O2 + H+ + e → H2O + HO
HO + H+ + e → H2O
2.9.2 扩散控制——浓差极化
J
D(
dC dx
)x0
id nFJ
id=nFD(
dC dx
)
x0
nFD
化腐蚀,或称析氢腐蚀。
析氢腐蚀反应类型: 在酸性溶液中,反应物来源于水合氢离子(H3O+),它在阴极 上放电,析出氢气:H3O+ + 2e → H2 + 2H2O
在中性或碱性溶液中,则是水分子直接接受电子析出氢气: 2H2O + 2e → H2 + 2OH-
2.8.1 析氢腐蚀的阴极过程步骤
在酸性溶液中,析氢过程步骤: (1)水合氢离子向阴极表面扩散并脱水: H3O+ → H+ + H2O (2)H+与电极表面的电子结合放电,形成吸附氢原子: H+ + e→Hads (3)吸附态氢原子通过复合脱附,形成H2分子: Hads + Hads → H2 或发生电化学脱附,形成H2分子: Hads + H+ + e → H2 (4)H2分子形成氢气泡,从电极表面析出。 各过程连续进行,最慢的过程控制整个反应过程。
2.9.2 耗氧腐蚀的步骤
耗氧腐蚀可分为两个基本过程:氧
第二章 金属的电化学腐蚀
第二章金属的电化学腐蚀材料科学与工程学院金属材料系2.1、腐蚀原电池1 、腐蚀原电池:Zn + H2SO4= ZnSO4+ H2定义:只能导致金属材料破坏而不能对外界作功的短路原电池。
特点:腐蚀电池的阳极反应是金属的氧化反应,结果造成金属材料的破坏。
腐蚀电池的阴、阳极短路,即短路的原电池,电池产生的电流全部消耗在内部,转变为热,不对外做功。
腐蚀电池中的反应是以最大限度的不可逆方式进行。
HCl 溶液Zn Cu A KZn Cu HCl 溶液Cu Cu Cu Zn (a)Zn 块和Cu 块通(b)Zn 块和Cu 块直(c)Cu 作为杂质分过导线联接接接触(短路)布在Zn 表面阳极Zn: Zn → Zn 2++2e (氧化反应)阴极Cu: 2H ++2e → H 2 ↑(还原反应)腐蚀电池的构成2、腐蚀电池的工作过程通常规定凡是进行氧化反应的电极称为阳极;进行还原反应的电极就叫做阴极。
由此表明,作为一个腐蚀电池,它必需包括阴极、阳极、电解质溶液和电路四个不可分割的部分。
而腐蚀原电池的工作历程主要由下列三个基本过程组成:1、阳极过程:金属溶解,以离子的形式进入溶液,并把当量的电子留在金属上;通式:Me→Mn n++ne产物有二种:可溶性离子,如Fe-2e=Fe2+不溶性固体,如2Fe+3H2O=Fe2O3+6H++6e2、阴极过程:从阳极过来的电子被电解质溶液中能够吸收电子的氧化性物质所接受;3、电流的流动:金属部分:电子由阳极流向阴极;溶液部分:正离子由阳极向阴极迁移。
腐蚀原电池工作时所包括的上述三个基本过程既是相互独立,又是彼此紧密联系的。
只要其中一个过程受到阻碍不能进行,则其他两个过程也将受到阻碍而不能进行。
整个腐蚀电池的工作势必停止,金属的电化学腐蚀过程当然也停止了。
3、电化学腐蚀的次生过程在阳极区和阴极区周围,溶液浓度会发生变化,PH值变化生成难溶性物质.在阳极区附近由于金属的溶解金属离子的浓度增高了,而在阴极区附近由于氢离子的放电或水中溶解氧的还原均可使溶液的pH值升高。
高考化学复习-金属的电化学腐蚀与防护
金属的电化学腐蚀与防护知识与技能目标(1)知道金属腐蚀的两种类型(化学腐蚀和电化学腐蚀)。
(2)能解释金属发生电化学腐蚀的原因,认识金属腐蚀的危害。
(3)掌握化学腐蚀与电化学腐蚀的比较 (4)掌握影响金属腐蚀快慢的比较 一、金属的电化学腐蚀 (一)金属腐蚀:1、定义:是指金属或合金跟接触的气体或液体发生氧化还原反应而腐蚀损耗的过程。
2、本质:M – ne- → Mn+(氧化反应)3、类型:化学腐蚀——直接反应 电化学腐蚀——原电池反应 (二)化学腐蚀1、定义:金属与接触到的干燥气体(如 、 、 等)或非电解质液体(如 )等直接发生化学反应而引起的腐蚀。
如:钢管被原油中的 腐蚀,2、影响因素:与接触物质的氧化性越强、温度越高,化学腐蚀越 。
(三)电化学腐蚀:1、定义:不纯的金属跟电解质溶液接触时。
会发生 反应 的金属失去电子而被 。
如 在潮湿的空气中生锈。
[实验探究]:将经过酸洗除锈的铁钉,用饱和食盐水浸泡一下,放入下图具支试管中,观察导管中2、类型:⑴ 吸氧腐蚀:中性或酸性很弱或碱性条件下,易发生 腐蚀。
负极:2Fe - 4e- = 2Fe 2+正极:O 2 + 2H 2O + 4e-= 4OH -电池反应:2Fe+ O 2 +2 H 2O =2Fe(OH)2 进一步反应:4Fe(OH)2 +O 2 + 2H 2O = 4 Fe(OH)32Fe(OH)3+ x H 2O =Fe 2O 3·xH 2O+3 H 2O ⑵析氢腐蚀:当钢铁处于酸性环境中 负极:Fe - 2e - = Fe 2+正极:2H ++ 2e- =H 2↑电池反应:Fe + 2H +=Fe 2++ H 2↑食盐水 浸泡过 的铁钉⑶析氢腐蚀和吸氧腐蚀比较析氢腐蚀 吸氧腐蚀 条 件 水膜呈 水膜呈负极(Fe 极)电极反应正极(C 极)总反应联系3、化学腐蚀与电化学腐蚀的比较:例1、如图, 水槽中试管内有一枚铁钉,放置数天观察:⑴若液面上升,则溶液呈 性, 发生 腐蚀,电极反应式为:负极: 正极:⑵若液面下降,则溶液呈 性,发生 腐蚀, 电极反应式为:负极: 正极:例2、钢铁在锈蚀过程中,下列5种变化可能发生的是 ( ) ①Fe 由+2价转化为+3价 ②O 2被还原 ③产生H 2 ④F e (O H )3失水形成Fe 2O 3·H 2O ⑤杂质碳被氧化除去A . ①②B . ③④C . ①②③④D . ①②③④⑤ 二、金属的电化学防护 1、牺牲阳极的阴极保护法原电池的负极(阳极)的金属被腐蚀原电池的正极(阴极)的金属被保护⑴原理:形成原电池反应时,让被保护金属做 极,不反应,起到保护作用;而活泼金属反应受到腐蚀。
第2章1腐蚀的电化学基础电化学腐蚀热力学ppt课件
4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3↓
第二章 腐蚀的电化学基础电化学腐蚀热力学
§2.1 腐蚀原电池
蓝色、阳极
氧化反应; 正极(Anode): 电势高,电子流入,发生
还原反应。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
例2. 原电池 锌锰干电池结构
NH4Cl, ZnCl2和MnO2 浆状物 正极:石墨 (带铜帽) 负极:锌(外壳)
棕色、铁锈
蓝色、阳极 红色、阴极
第二章 腐蚀的电化学基础电化学腐蚀热力学
§2.1 腐蚀原电池
使用的指示剂的浓度应尽可能低,否则会干扰上述的电极过程。
2Fe - 4e → Fe2+ 阴极过程:4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3↓
例如,过多的K3[Fe(CN)6],可能发生Fe(CN)63-的还原,消耗 电子,提供阴极过程,而K3[Fe(CN)6]2的沉淀在阳极区,也可能使氧更 难于进入,加速阳极过程。因此K3[Fe(CN)6]的浓度应尽可能低,最好 只显示兰色而无沉淀。
溶解 氧化反应、阳极
氢气析出 还原反应、阴极
将Zn和Cu放入稀硫酸中并用导线相互连接,
就构成Zn-Cu原电池。于是在Zn电极上发生Zn
的溶解,而在Cu电极上析出氢气,两电极间有
电流流动。在电池作用中发生金属氧化反应的
腐蚀与防护第2章
5
•
最常见的原电池是由中心碳棒(正电极),外围锌皮(负 电极)及两极间的电解质溶液(如NH4Cl)所组成的。当外 电路接通,灯泡即通电发光。
化学能
电能
正极——电位高——阴极 负极——电位低——阳极
6
• 电化学腐蚀过程由以下三个环节构成:
1)阳极过程 阳极是指在腐蚀原电池中发生氧化反应的电极。腐蚀电 池工作时,阳极上金属材料溶解,以离子形式进入溶液, 把电子留在阳极上,用以下通式表示:
27
非平衡电极电位:金属电极上可能同时存在两个或两 个以上不同物质参与的电化学反应,当动态平衡时, 电极上不可能出现物质交换和电荷交换均达到平衡的 情况,这种情况下的电极电位称为非平衡电极电位, 或不可逆电极电位。 稳定电极电位:在一个电极表面上同时进行两个不同 的氧化、还原过程,当平衡时仅仅是电荷平衡而无物 质平衡的电极电位称为稳定电极电位,也可称作开路 电位。
15
温差电池:金属的电位与介质温度有关。浸入腐蚀介 质中金属各部分,常由于所处介质环境温度不同,形 成温差腐蚀电池。 • 如,碳钢制造的热交换器,由于高温部位碳钢电位 低,为阳极,使得高温部位比低温部位腐蚀严重。
16
典型的微观腐蚀电池
微观腐蚀电池是由于金属表面的电化学不均匀性,使金属 材料表面存在微小的电位高低不等的区域造成的。微观电池 主要有以下几种: 1)化学成分不均匀引起的微电池 碳钢中的渗碳体 Fe3C ,工业纯锌中的铁杂质 FeZn7 ,铸铁 中的石墨等都是以阴极形式出现; 2)金属组织不同或结构不均匀性引起的微电池 双相合金或合金中析出第二相,多数第二相为阴极;晶粒 和晶界间电位有差异,一般晶界为阳极;
第二章 金属的电化学腐蚀第二部分
第二章金属的电化学腐蚀2.5 腐蚀极化图2.6 金属的钝化2.7 塔菲尔关系2.8 能斯特方程一、伊文思(Evans)极化图二、腐蚀电流三、腐蚀控制因素伊文思(Evans)极化图不考虑电位随电流变化细节,将两个电极反应所对应的阴极、阳极极化曲线简化成直线画在一张图上,这种简化了的图称为伊文思极化图伊文思(Evans)极化图↘在一个均相的腐蚀电极上,如果只进行两个电极反应,则金属阳极溶解的电流强度一定等于阴极还原反应的电流强度↘在实验室里,一般用外加电流测定阴、阳极极化曲线来绘制伊文思极化图伊文思(Evans)腐蚀图↘AB阳极极化曲线BC阴极极化曲线OG欧姆电位降CH欧姆、阴极极化总线↘阳极极化率Pa=tgβ阴极极化率Pc=tgα伊文思(Evans )腐蚀图↘考虑欧姆压降,腐蚀电流为I ’,↘阳极极化的电位降:ΔE a = E ’a –E 0a =I ’tgβ= I ’Pa阴极极化的电位降:ΔE c = E ’c –E 0c =I ’tg α= I ’Pc欧姆压降:ΔE r = I ’R腐蚀电池总压降:E 0c -E 0a = I ’(Pa+Pc+ R )腐蚀电流:腐蚀控制因素1)初始电位差与腐蚀电流的关系2)极化率与腐蚀电流的关系3)氢过电位与腐蚀速度的关系阴极析氢过电位:阴极电极材料表面状态不同金属表面上氢过电位不同。
腐蚀控制因素1)虽然锌的氢过电位比较铁的电位负,但由于氢过电位高,锌在还原性酸溶液中的腐蚀速度反而比铁小;2)如果在溶液中加入少量的Pt 盐,由于氢在析出的铂上的过电位比锌、铁都低,所以铁和锌的腐蚀速度都明显增加。
钝化现象1)实际情况中,一些较活泼的金属在某些特定的环境介质中,都具有较好的耐蚀性。
2)Fe在不同浓度的硝酸中的腐蚀w < 30%:硝酸浓度上升,腐蚀速率增加w=30~40%:腐蚀速率最大w > 40%:硝酸浓度上升,腐蚀速率突然急剧降低—钝化w-80%:腐蚀速率又增加,—过钝化钝化现象1)金属或合金在某种条件下,由活化态转为钝态的过程称为钝化。
第二章,电化学腐蚀原理
一、基本概念
电位:真空中将单位正电荷从无穷远处移至该处所做的功(Фa 、Фb ) 电位差: △Фab = Фa -Фb 电极: 1、指在相互接触的两个导体相中,一个是电子导电相,另一个是离子
导电相,并且在相界面上有电荷转移,这样的一个体系,叫电极体系, 常简称电极(如:某参比电极)。 2、习惯上专指与离子导体接触的电子导体即电极材料(如石墨电极、 铂电极等); 3、专指某一特定电极反应(或)(如:氢电极(H+-e---1/2H2),氧电极 (O2+2H2O+4e---4OH-),铁电极(Fe-2e---Fe2+)等) 电极电位:金属/溶液之间的相间电位,即电极电位。 平衡电极电位/非平衡电极电位
阳极产物和阴极产物进一步相互作用的过程,结果生成沉淀
或腐蚀产物膜。
腐蚀电池工作示意图
4、腐蚀电池类型(types of cells)
(1)宏观腐蚀电池
(a)不同金属的接触电池(dissimilar electrode cells)----电偶腐蚀
(b)浓差电池(concentration cells)---盐浓 差、氧浓差等
1、电极电位(绝对的;无法测量)---金属浸在电解质溶 液中,会建立起双电层,使金属/溶液之间产生电位差,这 种电位差称为该金属/溶液系统的绝对电极电位。
2、电极电位(相对的;氢标电位SHE,可以测量,): 在任何温度下,任何一个电极与标准氢电极(Pt(镀铂 黑)/H2(1atm),H+(aH+=1))组成一个原电池,这个原电 池的电动势值即为该电极的相对电极电位值。
电化学腐蚀原理
1、金属自溶解; 2、腐蚀(微)电池; 3、电极电势;EMF (电动序);电偶序 4、E-pH图; 5、Nernst-方程; 6、腐蚀电位
高中化学:金属的电化学腐蚀知识点总结
高中化学:金属的电化学腐蚀知识点总结(1)金属腐蚀内容:(2)金属腐蚀的本质:都是金属原子失去电子而被氧化的过程(3)金属腐蚀的分类:化学腐蚀—金属和接触到的物质直接发生化学反应而引起的腐蚀电化学腐蚀—不纯的金属跟电解质溶液接触时,会发生原电池反应。
比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。
化学腐蚀与电化腐蚀的比较(4)、电化学腐蚀的分类:析氢腐蚀——腐蚀过程中不断有氢气放出①条件:潮湿空气中形成的水膜,酸性较强(水膜中溶解有CO2、SO2、H2S等气体)②电极反应:负极: Fe – 2e-= Fe2+正极: 2H++ 2e- = H2 ↑总式:Fe + 2H+= Fe2+ + H2 ↑吸氧腐蚀——反应过程吸收氧气①条件:中性或弱酸性溶液②电极反应:负极: 2Fe – 4e-= 2Fe2+正极: O2+4e-+2H2O = 4OH-总式:2Fe + O2+2H2O =2 Fe(OH)2离子方程式:Fe2++ 2OH- = Fe(OH)2生成的Fe(OH)2被空气中的O2氧化,生成Fe(OH)3,Fe(OH)2+ O2+ 2H2O == 4Fe(OH)3Fe(OH)3脱去一部分水就生成Fe2O3·x H2O(铁锈主要成分)规律总结:金属腐蚀快慢的规律:在同一电解质溶液中,金属腐蚀的快慢规律如下:电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防腐措施的腐蚀防腐措施由好到坏的顺序如下:外接电源的阴极保护法>牺牲负极的正极保护法>有一般防腐条件的腐蚀>无防腐条件的腐蚀二、金属的电化学防护1、利用原电池原理进行金属的电化学防护(1)、牺牲阳极的阴极保护法原理:原电池反应中,负极被腐蚀,正极不变化应用:在被保护的钢铁设备上装上若干锌块,腐蚀锌块保护钢铁设备负极:锌块被腐蚀;正极:钢铁设备被保护(2)、外加电流的阴极保护法原理:通电,使钢铁设备上积累大量电子,使金属原电池反应产生的电流不能输送,从而防止金属被腐蚀应用:把被保护的钢铁设备作为阴极,惰性电极作为辅助阳极,均存在于电解质溶液中,接上外加直流电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际中的宏观腐蚀电池
• (1)异种金属浸于同种电解质溶液中形成的电池
两金属的电极电位不同,放电极电位 较低的金属将不断遭受腐蚀而溶 解.而电极电位较高的金属却得到保 护。这种腐蚀现象称为电偶腐蚀或异 种金属接触腐蚀。
实际中的宏观腐蚀电池
• (2)异种金属浸于不同电解质溶液内所形成的电池
锌为阳极,铜为阴 极,锌失去电子溶 解于溶液中,在铜 极上Cu2+接收电子 成为金属铜而析出。
0 -3.86 0 ≈65.52 -237.19
金属腐蚀
• 对于Mg, Cu和Au在含氧的潮湿环境中的反 应,标准条件下自由能变化G的情况为:
2.2.2 腐蚀原电池
• 电化学腐蚀是指金属材料和电解质接触时,由于 腐蚀电池作用而引起的金属材料腐蚀破坏,由于 实际中电化学腐蚀的环境十分普遍,因而电化学 腐蚀是金属材料腐蚀中最普遍的现象。
第二章 材料腐蚀原理
第二节 金属的电化学腐蚀
材料腐蚀原理
2.2 金属的电化学腐蚀
1 2
3 4
腐蚀倾向的热力学判据
腐蚀原电池 宏观与微观腐蚀电池
电极与电极电位
2.2.1 腐蚀倾向的热力学判据
绝大多数金属均处于热力学不稳定状态,有自动 发生腐蚀的倾向。 研究腐蚀现象需要从两个方面着手: 腐蚀的自发倾向大小,热力学原理 腐蚀进程的快慢,动力学理论。
丹聂耳电池结构示意图
宏观电池
• (3)同种金属与相同电解质溶液接触,但溶液的 浓度、温度、流动速度不同。 当局部的浓度或温度不同时,构成的腐蚀电池通 常称作浓差电池,可用Nernst方程计算:
如果溶液中各部分含氧量不同,就会因氧浓 度的差别产生氧浓差电池。与缺氧溶液接触 的金属表面电位较与富氧溶液接触的金属表 面电位低,其结果使与缺氧溶液接触的金属 表面的阳极溶解速度远大于与富氧溶液接触 的金属阳极溶解速度,产生局部腐蚀。
金属腐蚀的电化学历程
腐蚀电池:
阳极过程 阳极过程 阴极过程 电解质溶液和 连接阴极与阳 极的电子导体 电荷的传递 阴极过程 电荷传递 金属:电子从阳极流向阴极
溶液:离子的电迁移
腐蚀的阴极还原反应过程中能够吸收电子的氧化性物质D,被称为阴极去 极化剂(Depo1arizer)。其阴极过程又称为去极化过程。多数情况下H+和O2 起去极化剂的作用,它们在阴极上能够吸收电子而发生还原发应,生成 H2 和OH-等。
电化学腐蚀的次生反应
难溶性产物称为二次产物或次生产物(Secondary Product)。例如,铁和铜 在氯化钠溶掖中组成的腐蚀电池,就会发生次生过程,形成次生产物沉淀。
保护膜, 防止进一步腐蚀
2.2.3 宏观与微观腐蚀电池
• 根据组成腐蚀电池的电极大小、形成腐蚀电池的 主要影响因素和腐蚀破坏的特征,一般将腐蚀电 池分为两类:
G的负值的绝对值越大,该腐蚀的自发倾向就越大。
金属原子态和化合态自由能状况
腐蚀与环境的关系
• 例:判断那种情况下会发生腐蚀: (1)铜 Cu2+ + H2↑
0 0 ≈65.52 0
(2)铜在含有溶解氧的盐酸(pH=0,pO2=21278Pa)中:
Cu +1/2O2+ 2H+ Cu2+ + H2O
• 实质是浸在电解质溶液中的金属表面上进行阳极 氧化溶解的同时还伴随着溶液中去极化剂在金属 表面上的还原,其腐蚀破坏规律遵循电化学腐蚀 原理。
电化学腐蚀与化学腐蚀的比较
腐蚀原电池模型
只能导致金属材料破坏而不能对外做有用功的短路原电池 称为腐蚀原电池或腐蚀电池。
与铜接触的锌在硫酸中的溶解
在电解液中的两种金属不一定非要有导线连接才能组成 腐蚀电池,两种金属直接接触也能组成腐蚀电池。
腐蚀电池工作历程示意图
金属的腐蚀破坏将集中 出现在阳极区
阴极区只起了传递电荷的 作用。因此,除金属外, 其他电子导体,如石墨、 过渡族元素的碳化物和氮 化物,某些氧化物(如PbO2, MnO,Fe3O4)和硫化物(如 PbS, CuS,FeS)等,都可 成为腐蚀电池中的阴极。
腐蚀电池
腐蚀电池工作时所包含的上述三个基本过程既相互独立,又彼此紧密联
• • •
宏观腐蚀电池 微观腐蚀电池
2.2.3 宏观腐蚀电池
宏观电池可以分为: (1)异种金属浸于同种电解质溶液中形成的电池 两种或两种以上不同的金属相互接触(或用导线 连接起来)并处于某种电解质溶液中构成的腐蚀电池。 (2)异种金属浸于不同电解质溶液内所形成的电池
(3)同种金属与相同电解质溶液接触,但溶液的浓度、 温度、流动速度不同。
• 对于金属腐蚀和大多数化学反应来说,一般都是在恒温、恒压的敞 开体系条件下进行的,在这种情况下,用系统状态函数吉布斯(Gibbs) 自由能判据来判断反应的方向和限度较为方便。
吉布斯自由能用G表示、它被定义为物质系统的 焓减去它的绝对温度与熵的乘积。
G = H-TS
腐蚀倾向的热力学判据
• 对于等温、等压并且没有非膨胀功的过程,物质 系统的平衡态对应于吉布斯自由能G为最低的状 态
系。只要其中一个过程受到阻滞不能进行,则其他两个过程也将受到阻碍 而停止,从而导致整个腐蚀过程的终止。
按照现代电化学理论,金属电化学腐蚀能够持续进行的条件是溶液中存
在着可以使金属氧化的去极化剂,而且这些去极化剂的阴极还原反应的电 极电位要比金属阳极氧化反应的电极电位高。所以只要溶液中有去极化剂 存在,即使是不含(起阴极作用)杂质的纯金属也可能在溶液中发生电化学 腐蚀。
在这种情况下,阳极和阴极的空间距离可以很小,小到可以用金属的原
子间距计算,而且随着腐蚀过程的进行,数目众多的微阳极和微阴极不断 地随机交换位置,以至于经过腐蚀以后的金属表面上无法分辨出腐蚀电池 的阳极区和阴极区,在腐蚀破坏的形态上呈现出均匀腐蚀的特征。
电化学腐蚀的次生反应
• 腐蚀过程中,阳极反应和阴极反应的直接产物称为一次产物 (primary product) • 随着腐蚀的不断进行,电极表面附近一次产物的浓度不断增加。 阳极区附近金属离子的浓度增高,阴极区由于 H+放电和水中溶解 氧的还原而使pH值升高,溶液中产生了浓度梯度,一次产物发生 扩散,阴、阳极过程中的一次产物在扩散过程中相遇并生成难溶 化台物的过程称为腐蚀的次生过程。