基于结构特征的碎纸片的拼接复原问题

合集下载

碎纸片的拼接还原研究

碎纸片的拼接还原研究

碎纸片的拼接复原摘要碎纸片的拼接复原是一门借助计算机,把大量碎纸片重新拼接成初始纸张的技术。

针对问题一,本文首先利用碎纸片图像灰度矩阵的边缘矩阵,建立了两个碎纸片之间的匹配度函数,求得了每一张图片之间左右边缘匹配度矩阵。

然后根据左边边缘位置的碎片的左边空白部分最多的特点,确定了左边位置的碎纸片。

接着根据拼接碎纸片的拼接复原时,所有碎纸片匹配度之和取极大值的原则,采用贪心算法,得到了所有碎纸片的初始位置,拼接复原了附件1和附件2中纸片。

针对问题二,由于附件3碎片数量太多,并且碎片的拼接复原,是一个以碎纸片总匹配度为目标函数的组合优化问题。

所以本文采用遗传算法将碎纸片的编号作为基因,并将基因均匀分成19段,按顺序每一段对应一个初始纸片列位置,进行了求解。

然后,根据边缘碎纸片某些边的空白部分多的特征,对初始基因进行了优化。

接着,根据碎纸片的黑色像素密度不同的特点,将碎纸片分成三类,根据同类纸片优先匹配的原则,对遗传算法的运行过程进行了优化,拼接复原了附件3和附件4中纸片。

针对问题三,随着碎纸片量的增多,计算量急剧增加。

在上述拼接复原碎纸片的基础上,又引进了同行位置碎纸片的上部(或下部)空白位置宽度相近的聚类思想。

先对每个类内部拼接,在合并所有类并做一次整体拼接。

由于时间有限,我们未能完成最后一次的整体的拼接,但我们会在比赛后继续探究。

关键词:边缘矩阵匹配度函数遗传算法聚类一、问题重述碎片拼接实际用途已经越来越广泛,传统上拼接复原工作由人工完成,碎片拼接的准确率较高,但效率很低。

并且当碎片数量很大时,人工短时间内拼接出来几乎是不可能的。

所以开发碎纸的拼接技术,以提高拼接复原效率已成为越来越多人的期望。

现在,在碎纸片是规则的情况下,题目要求我们在以下条件建立碎纸片拼接复原模型和算法。

1.来自同一页印刷文字文件(中文、英文各一页)的碎纸机破碎纸片(仅纵切)拼接复原,并将附件1和附件2复原。

2.对碎纸机既纵切又横切文件的情形,将碎纸片拼接完整。

碎纸片的拼接复原分析最终

碎纸片的拼接复原分析最终

碎纸片的拼接复原分析最终引言碎纸片的拼接复原是一项有趣且具有挑战性的任务。

无论是为了还原重要文件还是拼接有意义的图像,我们都需要使用各种技巧和方法来完成这项任务。

本文将介绍一种基于分析的碎纸片拼接复原方法,通过对碎纸片的形状、颜色和纹理等特征进行分析,最终达到拼接复原的目标。

碎纸片的特征提取在进行碎纸片的拼接复原之前,首先需要提取碎纸片的特征。

这些特征包括碎纸片的形状、颜色和纹理等。

形状特征提取为了提取碎纸片的形状特征,可以通过计算碎纸片的边界和角度来获得。

首先,使用图像处理技术,如Canny边缘检测算法,将碎纸片的边缘提取出来。

然后,使用霍夫变换来检测碎纸片的直线和角点,从而计算出角度和边界。

颜色特征提取碎纸片的颜色特征可以通过计算图像的颜色直方图来得到。

颜色直方图表示了图像中每个颜色的像素数量。

我们可以使用像素级别的颜色分布来比较不同碎纸片的颜色特征,并找到相似的碎纸片来进行拼接。

纹理特征提取碎纸片的纹理特征可以通过计算图像的纹理描述符来得到。

纹理描述符是用于描述图像纹理的数值特征。

其中,最常用的纹理描述符包括灰度共生矩阵(GLCM)和局部二值模式(LBP)。

通过计算碎纸片的纹理描述符,我们可以比较不同碎纸片之间的纹理相似度,并选择相似的碎纸片进行拼接。

碎纸片的拼接策略在完成碎纸片特征提取后,接下来需要制定碎纸片的拼接策略。

拼接策略将基于碎纸片的特征相似度和拼接的整体目标来确定。

相似度匹配根据碎纸片的形状、颜色和纹理特征,我们可以计算两个碎纸片之间的相似度。

一种常用的相似度计算方法是使用余弦相似度,它衡量两个向量之间的夹角。

通过计算碎纸片之间的相似度,我们可以找到最相似的碎纸片来进行拼接。

拼接顺序在进行碎纸片的拼接时,需要制定一个拼接顺序。

一种常用的策略是首先选择与已拼接部分最相似的碎纸片进行拼接,然后逐渐增加已拼接部分的面积,直到最终完成拼接。

拼接约束为了保证拼接的准确性,我们需要制定一些拼接约束。

基于规则碎纸片文字特征的拼接复原算法

基于规则碎纸片文字特征的拼接复原算法

基于规则碎纸片文字特征的拼接复原算法承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):中国人民解放军第三军医大学参赛队员(打印并签名) :1. 王家*2. 黄嘉*3. 邵*指导教师或指导教师组负责人(打印并签名):周*(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于规则碎纸片文字特征的拼接复原算法摘要目前对于碎纸片的拼接问题,大多数方法是基于不规则碎纸片的几何边缘特征进行拼接,而本题是基于规则碎纸片的文字特征进行的。

我们首先提取各碎纸片的像素边缘特征,然后通过寻找最大匹配率和少量人工干预,得到碎片拼接方案。

基于边缘特征的碎纸片拼接复原

基于边缘特征的碎纸片拼接复原

基 于 纵 向规 则 切 割 特 性 :两 相邻 图 片边 界 上 的相 同行 的文 字具有连续性,边 缘矩 阵的匹配度最高。建立边界 匹配模型 的 具体步骤如下:
将第 i 张碎片的右边界 一 。 { f } 与第 j 张( i = 1 , 2 , …, n 且i 不 等于J )碎片的左边界 { _ , } 匹配,即求第 i 张碎片的右边界
疆 f ) , { f ) , 其意义如图 1 所示。 其中 f } , { f ) 分别代表由上、 若灰度值矩阵P { f ) 中某个元素灰度值P { f 。 等于 2 5 5 ,则在 下边缘至 中间像素点由黑过度到 白或者 由白过度到黑 的距离 ,
当第一行为 白时 T取正 ,为黑时 T取负,如图 1 :
矩阵的第 m行第 n列的元素。 中 z为字高像素行 ,C为行距像素行 ,如图 2 :
f f }


l , )
6 > 1 , 。 6 。 : … 6 6 > 2 。 6 , : … 6 > 2 , { f ) = ; 。. j b { i } m , 6 { f ) m , :… 6

的碎 纸机 破碎 纸片
_ I口 ,。 Nhomakorabean { l } 崩 , :… a { f j
由于纵切碎纸片 的长度特 征 ( 碎片长度 与原始文件长度相 等 ),其边缘像素点信息量丰富 。因此本文采取二值化对图像 进行 了处理 ,得到 的图片像素点取值 ( 0 ,1 ),其 中 0和 1 分 别表示颜色的黑与 白。Ⅲ { f . 中相 同位 置上 的元素 赋值 1 ,否 则赋值 0 。其 中‰ { f
P =r ai n{ pf _ l , pf , 2 . , pl , ,

碎纸片复原

碎纸片复原

关于碎纸片的自动拼接复原的数学模型问题摘要本文根据碎纸片内的文字特征、图片像素特征特点提出了基于文字特征的文档碎纸片自动拼接复原模型。

根据碎纸拼接模型提出了基于MATLAB[1]语言为核心的自动拼接算法,并用该算法的程序对碎纸机碎纸的实际例子进行了拼接实验。

对这类边缘相似的碎纸片的拼接,理想的计算机拼接过程应与人工拼接过程类似,即拼接时不但要考虑待拼接碎纸片边缘是否匹配,还要判断碎片内的字迹断线或碎片内的文字内容是否匹配。

然而由于理论和技术的限制,让计算机具备类似人类那种识别碎片边缘的字迹断线、以及理解碎片内文字图像含义的智能几乎不太可能。

但是利用现有的计算机技术,完全可以获取碎片文字所在行的几何特征信息,比如文字行的行高、文字行的间距等信息。

拼接碎片时如利用这些信息进行拼接,其拼接效率无疑比单纯手工拼接要高。

针对问题一,由于碎纸片数量比较少且只有纵向切割,采用比较简单的二值模型进行碎纸配对。

由于图像都具有三颜色RGB,扫描之后的碎纸片需要对其进行灰度处理得到一张灰度值图像,若定义原点之后,每一个像素点都具有X、Y坐标值,碎纸片的灰度值可构成一个二维矩阵。

二维矩阵的每一个元素都代表着碎纸片的特征值,根据图片每一个灰度值的大小即可判断出碎纸图片边界特性。

对于一个选定的纸片,将每一个待拼接碎纸片的二维矩阵的最左一列与其二维矩阵的最右一列进行差值比较,再求把所有的差值求和,生成一个相应的矩阵。

将该矩阵的最小值来作为相似度矩阵的判断条件,以此便可求出该图片是否能够成功拼接。

最后利用加权平均的融合方法进行图像无缝平滑,得到无缝拼接[2]图像。

针对问题二:根据附件3和附件4给出的碎片资料可以看出,碎片除了有纵向切割之外还有横向切割,这给单一的拼接算法带来了一定的困难。

本文根据图片的质量与清晰度可以将问题简化,将附录所给出的碎纸片用简单的算法进行分组归类,使得拼接问题变得单一化,先使用第一问的模型进行纵向拼接成11行之后,再以第一问的模型进行横向拼接。

碎纸片的拼接复原分析(最终)甄选范文

碎纸片的拼接复原分析(最终)甄选范文

碎纸片的拼接复原分析(最终).(优选)基于多耦合规则的人机交互拼接模型摘要随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

本题就是求解破碎文件自动拼接问题,实际上就是通过数字处理技术将碎纸信息转化成计算机可以识别的数字图像信息,然后利用计算机进行相应的处理从而实现对这些碎纸片的全自动或半自动拼接还原。

题目共分为三个问题,第一个问题是对同一页单面印刷文字文件仅纵切的碎纸片进行拼接复原。

第二个问题是对同一页单面印刷文字文件既纵切又横切的碎纸片进行拼接复原。

第三个问题是对同一页双面打印文件既纵切又横切的碎纸片拼接复原问题。

前两个问题的文件又分为中英文两种情况。

三个问题由简到难,层层深入。

在求解问题过程中,首先利用图论概念与定义描述了图片的拼接问题,将问题转化为最优树寻找问题。

根据对中、英字符的分析,总结出中、英字符在书写上的异同,分别建立基线耦合、字宽耦合、边缘耦合、字符耦合、双边耦合、三边耦合等六种耦合拼接准则,尽量使得每一块碎片都有多种可用的耦合拼接方式。

将耦合准则根据关联程度进行优先级排序,每一块碎片的信息依次按照耦合准则优先级进行量化,从而多方式量化每一块碎片之间拼接的耦合程度,进而实现了碎片的自动最优拼接。

本题所建立的耦合准则拼接算法只需要随机选取一块碎片作为种子,经过不同耦合方式的筛选,可找到与之某一边具有较高耦合度的另一块碎片,拼接成为一块具有较大可信度的图像,再通过人工识别,判断所得的图片是否正确,并建立确定拼接集和排除拼接集,实现拼接图像的进化,再与用户交互。

对于碎片拼接过程的提出了交互审查式、人机交互式和混合式三种模式,并建立了包括拼接模式、拼接识别、拼接控制、信息显示等多种用户指令在内的指令库,即可通过简单的人工指令对程序进行控制,进而利用计算机对碎片进行正确的复原。

利用耦合准则拼接算法及人机交互过程实现了碎片复原过程的简化。

且本题所建立的模型可广泛应用与解决一维、二维、双面等问题。

碎纸片的拼接还原研究

碎纸片的拼接还原研究

碎纸片的拼接复原摘要碎纸片的拼接复原是一门借助计算机,把大量碎纸片重新拼接成初始纸张的技术。

针对问题一,本文首先利用碎纸片图像灰度矩阵的边缘矩阵,建立了两个碎纸片之间的匹配度函数,求得了每一张图片之间左右边缘匹配度矩阵。

然后根据左边边缘位置的碎片的左边空白部分最多的特点,确定了左边位置的碎纸片。

接着根据拼接碎纸片的拼接复原时,所有碎纸片匹配度之和取极大值的原则,采用贪心算法,得到了所有碎纸片的初始位置,拼接复原了附件1和附件2中纸片。

针对问题二,由于附件3碎片数量太多,并且碎片的拼接复原,是一个以碎纸片总匹配度为目标函数的组合优化问题。

所以本文采用遗传算法将碎纸片的编号作为基因,并将基因均匀分成19段,按顺序每一段对应一个初始纸片列位置,进行了求解。

然后,根据边缘碎纸片某些边的空白部分多的特征,对初始基因进行了优化。

接着,根据碎纸片的黑色像素密度不同的特点,将碎纸片分成三类,根据同类纸片优先匹配的原则,对遗传算法的运行过程进行了优化,拼接复原了附件3和附件4中纸片。

针对问题三,随着碎纸片量的增多,计算量急剧增加。

在上述拼接复原碎纸片的基础上,又引进了同行位置碎纸片的上部(或下部)空白位置宽度相近的聚类思想。

先对每个类内部拼接,在合并所有类并做一次整体拼接。

由于时间有限,我们未能完成最后一次的整体的拼接,但我们会在比赛后继续探究。

关键词:边缘矩阵匹配度函数遗传算法聚类一、问题重述碎片拼接实际用途已经越来越广泛,传统上拼接复原工作由人工完成,碎片拼接的准确率较高,但效率很低。

并且当碎片数量很大时,人工短时间内拼接出来几乎是不可能的。

所以开发碎纸的拼接技术,以提高拼接复原效率已成为越来越多人的期望。

现在,在碎纸片是规则的情况下,题目要求我们在以下条件建立碎纸片拼接复原模型和算法。

1.来自同一页印刷文字文件(中文、英文各一页)的碎纸机破碎纸片(仅纵切)拼接复原,并将附件1和附件2复原。

2.对碎纸机既纵切又横切文件的情形,将碎纸片拼接完整。

基于计算机处理的碎纸片拼接复原的研究

基于计算机处理的碎纸片拼接复原的研究
有 文 字 的纸 切 割而 成 ,在 图 片边 沿 处存 在 大 量 的字 迹 断线 , 因此 可 以 以 这 些 字迹 断 线 为 拼 接 依 据 对 图片 进 行 拼 接 。 图像 预 处 理 的 目 的 是 将 碎 纸 片 表 示 为 适
图 1
广Байду номын сангаас
【 关键词 l特征线模型 聚类分析 欧氏距离
ma g e&Mu l t i me d i a T e c h n o l o g y・ 图像与 多媒体技术
基 于计算机处 理的碎纸片拼接复原的研 究
文/ 林 良枫 梁爽
2 . 1 图像 预 处 理
本次研 究 的案例 是将 一张 单面 中文 打印 的 A4纸 被碎 纸机 切割 成 l 1行、l 9列 。由于 经过碎纸机切割 的 A4纸 ,形状相对来 说比较 规则 ,而且 需要拼接的图片是由一张完整的带
通过信息加密 、数字签 名、数字证书、身份认 证等措施实现信息 的机密性 、完整性、身份的 真实性和操作 的不可否认性等 问题 。
3 . 5 系统 测 试
批系统。
( 5 ): 亡商部 门将 全部证 照一并 发放给 申 报人。
3 . 3 数 据 交换
子 政 务 中 的 应 用 … .电 脑 知 识 与 技
术, 2 0 0 9( 3 5 ) : 1 0 4 .
以 “内 资 公 司 设 立 登 记 ” 审 批 为 例 在 并 联审批系统和工商 、质监 、地税和公安部 门系
[ 3 】李天尘 . 基于 S O A 的并联 审批 平 台的设计 及 实现 [ D 】 . 上海 交通 大学 , 2 0 1 3 , 1 卜1 2 . [ 4 】李建 华 . 公 钥基础设施 ( P K I )理论及应 用 【 M 】 .北 京 :机 械 工 业 出 版 社 , 2 0 1 0 , 1 0 2 —

碎纸片的拼接复原_徐雅平

碎纸片的拼接复原_徐雅平

3)将具有 最 佳 相 似 度 碎 纸 片 对 象 X1 和 Xi 进 行 拼 接,作为新的对象 X1,并将 Xi 从集合 X 中删除。
4)重复执行步骤2和步骤3, 直 至 拼 接 后 的 Xi 最 右 侧的像素矩阵表示空白区域,即都为1。则在水 平 方 向 上
从右至左,继续重复执行步骤2 (此时相似度比 较 略 作 调
另外,对应原图中相邻两个碎纸片对象边界之间的 破碎字符具有一定的相似性。
因而,我们提出了以两个碎纸片图片对象左右侧边 界上像素之间的相似度比 较 为 基 础, 以 最 左 侧/最 右 侧 碎 纸片图片对象边界的白色区域作为终止比较判断的条件 的自动拼接复原方法。
模型假设 根据对问题一的分析,我们对其假设如下: 1)原 图 最 左 侧 边 界 部 分 为 空 白 无 字 符 区 域 ; 2)原 图 最 右 侧 边 界 部 分 为 空 白 无 字 符 区 域 ; 3)对原图有字 符 内 容 区 域 进 行 纵 切, 被 分 开 的 两 个 碎纸片对象的切口边界部分存在破碎字符。 符号约定 X:表 示 图 片 像 素 矩 阵 对 象 集 合 ; Xi:表 示 集 合 中 第i个 矩 阵 对 象 ;
·7 9 ·
第 14 卷 第 5 期 2013 年 10 月
碎纸片的拼接复原 Computer-aided Paper Fragments Reassembly
No.5Vol.14 Oct.2013
N:表示集合 X 的大小; Xi.left:表示 Xi 的最左侧列矩阵; Xi.right:表示 Xi 的最右侧列矩阵; (二 )模 型 建 立 和 求 解 对于问题一,其简要的模型建立和求解的过程可用 图1表示:
第 14 卷 第 5 期 2013 年 10 月

碎纸片拼接复原解题思路

碎纸片拼接复原解题思路

碎纸片拼接复原解题思路一、背景介绍碎纸片拼接复原是一项需要巧妙操作和观察力的游戏。

在这个游戏中,玩家需要拼接一些碎纸片,使其还原成完整的图案。

这个任务名称为“碎纸片拼接复原解题思路”。

二、游戏规则碎纸片拼接复原的游戏规则一般如下: 1. 给定一些碎纸片,每个碎纸片上都有一部分图案。

2. 碎纸片上的图案可能是图片、文字、颜色等。

3. 玩家需要根据碎纸片上的图案,将其拼接在一起还原成一个完整的图案。

4. 拼接时,碎纸片之间必须符合一定的拼接规则,比如图案的延续、颜色的衔接等。

三、解题思路要解决碎纸片拼接复原的问题,可以采取以下的思路: ### 1. 观察碎纸片首先,我们需要仔细观察每一个碎纸片,分析其图案、颜色以及可能的拼接方式。

这可以帮助我们理解整个图案的构成和拼接规则。

2. 找出连接点接下来,我们需要找出能够将两个碎纸片连接在一起的连接点。

连接点可能是某个图案的延续,或者是两个图案相衔接的部分。

通过找出连接点,我们可以确定碎纸片之间的拼接方式。

3. 确定连接顺序在找到连接点后,我们需要确定碎纸片的连接顺序。

这可以通过观察碎纸片上的图案延续和颜色衔接来判断。

我们可以先找到一个碎纸片,然后找到与之相连的碎纸片,并将其拼接在一起。

然后,再找到与已经拼接好的碎纸片相连的碎纸片,逐步拼接完成整个图案。

4. 拼接碎片根据确定的拼接顺序,我们可以开始拼接碎纸片了。

将每个连接点对齐,确保拼接的效果与原图案尽可能接近。

可以使用胶水或其他粘合剂来固定碎纸片,以确保它们不会松动。

四、技巧和注意事项在解决碎纸片拼接复原问题时,还需要注意以下几个技巧和注意事项: 1. 仔细观察:细心观察碎纸片上的图案和连接点,可以帮助我们找到正确的拼接方式。

2. 缓存碎片:将已经拼接好的碎纸片暂时存放在一边,以便于找到下一个相连的碎纸片。

3. 小步拼接:将拼接过程分成小步骤,逐步完成拼接,可以降低出错的概率。

4. 调整拼接角度:如果遇到无法拼接的情况,可以尝试旋转碎纸片,调整拼接角度,找到合适的连接点。

碎纸片的拼接复原数学建模论文

碎纸片的拼接复原数学建模论文

碎纸片的拼接复原摘要破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,拼接复原工作由人工完成,虽准确率高,但效率很低。

特别是当碎片数量巨大,人工拼接难以完成任务。

因此随着计算机信息技术的发展,开发一个碎纸片的自动拼接技术,并建立简便的拼接复原模型,提高拼接复原效率,具有重要的实现意义。

文章通过对所给的附件图片数据进行分析研究,在综合考虑了碎片边缘的尖点特征、尖角特征、面积特征等几何特征下,我们将图片读入电脑,并进行二值化转换,考虑边界值的匹配,建立了图片边界匹配模型。

依据模型,只要边界能匹配上就可以拼接,并依次解决了如下问题。

对于问题一,由于给定图片来自同一页印刷文字文件仅纵切破碎纸片,针对附件1、附件2给出的碎片数据,建立了碎纸片拼接复原的边界匹配模型。

根据模型,我们首先对附件1、附件2中的图片用Matlab软件进行二值转化,得到一个储存图片的二值灰度矩阵,并利用边界相关性比较法判断矩阵中两边界变量是否能匹配得上,如果匹配得上就拼接在一起,按此算法,附件1、附件2中的碎纸片就能拼接成功,具体的算法结果见附录中的附件1、附件2。

对于问题二,由于碎纸机既有纵切又有横切的情形,算法的设计上要相对复杂一些,我们在前面模型的基础上进行了修改和补充,对图片的上下左右的边界都进行了边界提取。

首先,我们选将图片作二值转换,分别用矩阵进行保存,然后任迁一个,对其余的进行全程扫描,按照问题一中的边界匹配模型,逐一对其边界进行扫描匹配,其间,有些矩阵的边界数据可能一样(如空白时),我们便跳出模型,进行适当的人工干预,干预完成,再进入模型进行迭代,按此方法便可拼接成功,具体的算法结果见附录中的附件3。

对于问题三,根据现实问题中的双面打印文件的碎纸片拼接复原问题,由于多了双面的问题,在算法的设计上,我们考虑了正反两的边界匹配,在原有模型的基础上,将问题一和问题二的模型相结合,建立一个新的双面碎纸片拼接模型。

碎纸片的拼接复原

碎纸片的拼接复原

碎纸片的拼接复原作者:平安左帅平静来源:《青年生活》2020年第28期摘要:本文利用各碎纸片的灰度值矩阵相似程度进行匹配,解决了同页纵切、同页横纵切不同情况的碎纸片拼接复原问题。

关键词:灰度值相似度模型;聚类;分区块匹配;模拟退火一、背景分析碎纸片的拼接主要依据各纸片边缘的灰度值,边缘灰度值相似程度高的纸片其拼接成功的可能性就较大。

分别针对同页纵切和同页横纵切不同情况的碎纸片进行分析复原。

要解决同页单面纵切的碎纸片拼接复原问题。

建立碎纸片拼接复原模型和算法,对中、英文各一页文件的碎纸片数据进行处理,得到灰度值矩阵,利用文件边缘的特性确定其最左边的碎纸片,根据筛选出的最左边碎纸片将其他碎纸片进行聚类处理。

最终找到边界灰度值相似程度较高的碎纸片进行匹配处理,完成拼接复原。

要解决同页单面横纵切的碎纸片拼接复原问题,碎纸片数量的增多为该问题加大了难度。

可将属于同一横向条状纸片的碎纸片进行聚类,模拟退火算法使碎纸片拼接复原成横向条状纸片,解决纵切产生的横向无序性问题。

再对横向条状纸片进行纵向排序,从而解决碎片由于横切产生的纵向无序性问题。

必要时,引入人工干预以帮助拼接顺利进行,提高拼接的效率和正确率。

二、模型假设及说明1.假设碎纸片的完整性良好,即:每个附件中的碎纸片都来自同一文件,且同一文件的所有碎纸片都存在与附件中。

2.假设每个碎纸片的边缘光滑,切割时无毛边产生。

3.假设切割产生的碎纸片尺寸完全相等,即每个碎纸片的灰度值矩阵形式相同。

三、模型的建立与求解3.1单面纵切碎纸片模型的建立与求解3.1.1图像的数据处理对碎纸片进行数据处理,将碎纸片的图像分别导入到 matlab 中,依次得到每个图像的灰度值矩阵,例如第2张碎纸片的灰度值矩阵C1:其中ai,j(n)意为编号为n的碎纸片的图形灰度值矩阵中第i行第j列的灰度值,满足{a|a∈[0,255]且a∈Z}。

3.1.2建立图像边界的灰度值相似度模型对于单面纵切的碎纸片复原问题,利用可拼接的两碎纸片相邻边界灰度值相似的原理,从首先确定的文件左边缘的碎纸片开始,其他碎纸片左边界的灰度值逐个与其右边界灰度值对比,找到最相似的碎纸片进行匹配,以此类推,使得破碎文件从左到右依次拼接复原。

碎纸片拼接复原的数学模型与优化

碎纸片拼接复原的数学模型与优化

碎纸片拼接复原的数学模型与优化作者:朱旭焦熹李亦凡来源:《读写算·素质教育论坛》2015年第01期摘要碎纸机裁出的碎纸片的拼接与复原技术是计算机算法与人工干预的结合,兼顾准确度与效率。

碎纸片的拼接与复原算法以采用了全新的向量间欧氏距离的匹配模型,在图片数据化处理的基础上,加之针对横向纵向双向切割的文档而编写的检测碎片是否在同一行的辅助程序,和针对英文文件的碎片进行行位置标识从而实现“行分类”的应用扩展程序;核心算法和辅助及扩展程序共同构成了碎纸片拼接复原的数学模型。

最终对单面中英文单向和双向实现了裁切的纸张都97%以上的复原,可以说复原模型是成功且有效的。

关键词碎纸拼接复原欧氏距离匹配元胞数组嵌套结构中图分类号:G642.3文献标识码:A 文章编号:1002-7661(2015)01-0004-02破碎纸张文件的拼接修复在司法物证的复原、历史文件的修复以及军事情报的获取的等多个领域都有重要的作用。

人工手工拼接的优势在于准确性高但耗时长,相比之下,计算机算法进行的拼接速度快也有能力实现大量破碎文件的拼接,而计算机为主后期加入人工干预的方法就有更强的实用性。

但是已有的计算机拼接方式是基于边界几何特征的拼接方法,并不适用于规则裁切的边缘形状相同的碎纸片。

本文将针对规则裁切的印有文字的纸张进行全自动和半自动的拼接复原模型建立,利用此类纸张特有的规整性,运用图片信息数据化、矩阵化,使用向量的欧氏距离测定进行匹配还原。

一、建模思路1.图片数据化处理计算机拼接以图片的数据化和数据匹配为核心,实现量化处理。

碎纸片经过扫描后成为图片形式的数据,通过一定的降噪和对齐处理之后就可以用Matlab以像素为单位转换成为矩阵,对矩阵的边界向量进行匹配,最终得到完整有序的整体矩阵,重新生成为图片。

复原的关键点在于图片信息的读取与处理。

利用Matlab可将图片中的实体信息转化为矩阵中的数量信息,矩阵的每一个元素分别代表一个像素点上的颜色信息,预设所有的材料均为黑白印刷,暂不考虑由三维向量构成的彩色像素点。

基于角边特征的纸质碎片自动拼接复原算法

基于角边特征的纸质碎片自动拼接复原算法

基于角边特征的纸质碎片自动拼接复原算法
纸质碎片拼接复原是指通过对纸质碎片进行拼接,复原出原始图像或文本的过程。

在文化遗产保护、证据鉴定等领域具有重要的应用价值。

本文介绍一种基于角边特征的纸质碎片自动拼接复原算法,该算法能够自动识别碎片之间的拼接关系,并实现高效准确地拼接复原。

算法的基本思路是通过提取碎片之间的角边特征来确定它们之间的拼接关系。

具体而言,算法首先对每个碎片进行图像预处理,包括灰度化、二值化、边缘检测等操作,以提取出碎片的角边特征。

然后,算法对每对碎片计算它们之间的角度差和边缘特征相似度,并根据这些特征值来判断它们是否具有拼接关系。

算法通过遍历所有可能的拼接组合,选择最优的拼接方案,完成纸质碎片的复原。

在角边特征的提取过程中,算法采用了多种经典的图像处理方法。

算法对图像进行灰度化处理,将彩色图像转换为灰度图像。

然后,算法对灰度图像进行二值化处理,将图像转换为黑白二值图像。

接下来,算法通过边缘检测算法(如Sobel算子、Canny算子等)提取出碎片的边缘特征,以便后续计算角度差和边缘特征相似度。

在拼接复原的过程中,算法通过遍历所有可能的拼接组合,选择最优的拼接方案。

为了提高算法的效率,可以采用一些优化策略,比如动态规划、剪枝等。

在拼接复原的过程中,算法还可以利用一些先验信息,比如碎片的形状、纹理等,来辅助拼接的判断和优化。

碎纸片的拼接复原(1)

碎纸片的拼接复原(1)

碎纸片的拼接复原摘要计算机辅助碎片拼接是模式领域中的一个典型问题,它是司法鉴定,文物修复等领域有着广泛的应用。

目前的研究都是针对不规则图片的复原,对规则图片的研究还有待实现。

本文主要是研究规则形图片的复原问题,规则形图片的拼接不能像不规则图片拼接那样考虑其形状等,所以我们考虑从边缘相似度方面进行处理。

对于问题一:基于余弦相似度的算法,先对图片进行数字化处理,利用matlab程序求出每个图片的灰度值,然后提取出每个图片的最左边缘和最右边缘的灰度值并进行归类处理。

根据灰度值,利用人工干预,挑选出完整拼接图的第一张图片和最后一张图片。

我们把挑选出来的第一张图片的最右边缘灰度值和剩下的图片的最左边缘灰度值采用了余弦相似度算法进行匹配,找到最大相似度匹配图片。

之后依次循环遍历找到所有图片的最大相似匹配图。

最后利用matlab图片拼接技术实现图片的复原。

5.1问题一模型的建立和求解本文主要是研究碎纸片的拼接问题,由附件分析可知,这些图片均为规则的,所以我们没有考虑图片的形状问题。

为了得到完整的碎纸片的拼接图,我们着重研究了碎纸片颜色分布特征。

5.1.1图片的数字化灰度值,实现图片的数字化。

灰度是根据matlab程序我们计算出每张图片的]1[指黑白图像中点的颜色程度,范围一般从0到255,白色为255,黑色为0。

5.1.2图片的预处理图片预处理的目的是提取碎纸片的边缘颜色分布特征向量,预处理的过程为:图像边缘灰度值的提取——灰度值进行分类图像边缘灰度值的提取:根据图片的数字化结果,我们把每张图片的第一列和最后一列的灰度值提取出来,作为这张图片的颜色分布特征,。

灰度值进行分类:根据提取出的灰度值,我们把每张图片的第一列灰度值归为一类,放入excel表格中,我们称为left表格,把每张图片的最后一列灰度值归为一类,也放入excel表格中,我们称为right表格。

5.1.3图片的提取一张完整的纸张的左右两边都有空白的地方即左右边界灰度值都为255,所以我们先进行人工选择,把这张纸的左右两边先挑选出来,根据灰度值分类,我们从left表格中找出灰度值全为255的那列,即为第一张图片,从right表格中找出灰度值全为255的那列,即为最后一张图片。

碎纸片的拼接复原

碎纸片的拼接复原



文字高度



文字间隔

仅横切碎片(中、英文) 英文字母的规格化处理
横、纵切中文
横、纵切英文
第一问
➢ 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片 (此时仅纵切),建立碎纸片拼接复原模型和算法,并针 对附件1、附件2给出的中、英文各一页文件的碎片数据进 行拼接复原。如果复原过程需要人工干预,请写出干预方 式及干预的时间节点。
1.文字行高的确定:
h1 h3
h2
我们定义:上方的汉字末端与文档上边缘距离为h1,相同的,下方汉 字末端与文档下边缘距离为h2。
2.分析:
A=

B=
定义:C=A(h1)-B(h1)。
分析:当C值越小时,说明A矩阵的h1与B矩阵的h1越接近,则说 明碎片A与碎片B在同文档中同一行的可能性越大。我们以此作为 依据,用来寻找在同行的碎片。 但是,在实际的操作中,我们的算法出现了较大的误差。通过对数 据和附件图片的分析,我们发现,由于某些特殊图片的存在,导致 我们的算法出现误差。在这里,我们又使用h2来进行条件约束,优 化我们的算法。
• 3.附件5给出的是一页英文印刷文字双面打印文件的碎片 数据。请尝试设计相应的碎纸片拼接复原模型与算法,并 就附件5的碎片数据给出拼接复原结果。如果复原过程需 要人工干预,请写出干预方式及干预的时间节点。
思路框图
边界碎片选取 左右边缘空白原则 左右边缘空白最宽原则
拼接合理度分析
最大契合 度函数
最小契合 度函数
总结:
➢图片信息处理 ➢确定最边缘碎片 • 定义边缘矩阵匹配度函数 ➢完成整篇文章的复原
图片信息处理:
• 我们将附件中的图片导入至MATLAB中,计算机会将文件 中的图像信息转化数字信息,以任意汉字做示意,其过程 如下:

碎纸片拼接复原的数学模型与优化

碎纸片拼接复原的数学模型与优化
2 0 1 0 ( 3 0) : 1 2 3 . 1 2 4
高职 院校应 定期对 指标 体系进 行考 核评 价 , 检查教 学管
理、 教 育教 学 、 师资 队伍 、 教学 研 究 、 硬 件建 设等 各 方面 是否
有 明显 的提 高或 改 善 ,并将 指 标改 进 的情 况与 学校 绩 效挂 钩, 并配 套制 定相 关激 励 措施 , 以助推 高职 院校 各 层面 开展 对标 管 理的 积极 性和 创造 力 。
人 工 手工 拼接 的优 势 在于 准确 性 高但耗 时长 , 相 比之 下 , 计
算 机 算法 进 行 的拼接 速 度快 也有 能 力实 现 大量 破碎 文 件 的 拼接, 而计 算机 为主 后期加 入人 工干 预 的方 法就 有更 强 的实
成为矩阵, 对矩阵的边界 向量进行匹配 , 最终得到完整有序
等) 或对 标合 作 , 根据 收集 的数据 和信 息并 进一步 分析 、 确 认 标杆 及对 标 管理 指标 。 ( 三) 比较指 标 , 分 析业 绩 差距 并采 取 改进 行动
( 五) 螺 旋式 持 续进 行对 标 管理
对标管理是一项基础管理工作 , 必须及时评价, 持续改
进。 通 过一 段 时 间的对 标 管理 工作 , 高职 院校 在 各项 指 标上
精、 更准、 更高 效 、 更科 学上 下功 夫 , 开展 新一轮 的对 标管 理 , 实 现新 的更大 飞跃 , 从 而不 断推进 高职 院校 教育 教学 工作 的
突 破和 提 升 。
参考文献:
整 改方 案 、 具体 实 施办 法 以及监 督 衡量 标准 , 分 析论 证 实施
方案的经济效益、 社会效益, 为后续的改进行动理清思路, 铺

基于结构特征的碎纸片的拼接复原问题—课程设计论文

基于结构特征的碎纸片的拼接复原问题—课程设计论文

课程设计论文基于结构特征的碎纸片的拼接复原问题基于结构特征的碎纸片的拼接复原问题摘要碎纸自动拼接技术是图像处理与模式识别领域中的一个典型的应用,该技术通过扫描和图像提取技术获取一组碎纸片的形状、纹理及内容等信息,然后利用计算机进行相应理解从而实现对这些碎纸片的全自动或半自动拼接还原。

针对问题一,考虑到纵切的碎纸片所含有的信息量较大,利用图像处理中的信号匹配方法,结合左右两个碎纸片的灰度像素矩阵的边缘特征,建立基于结构特征的灰度匹配模型,对英文字母制定了灰度相似的配准规则,使待拼接的碎纸片边缘的对应行像素之差的平方和最小;而结合中文字符的横笔结构特征,对中文字制定了“横笔”匹配相似度的配准规则,并给出了最终的碎纸拼接图和拼接次序,拼接的正确率是100%。

针对问题二,对于既纵切又横切的情形,每一个纸片的边缘所含的信息量相对较少,故对中、英文碎片的拼接复原需各自建模分析。

首先利用“分而治之”的思想,将一个难以直接解决的大问题,分割成一些规模较小的相同问题。

对于中文碎片拼接复原,根据中文的方块特点,给出了中文的文字结构特征向量及其边缘像素的特征向量。

根据这些结构特征向量对所有的碎纸片进行粗分类,在此基础上设计了基于边缘特征的匹配规则集,对每一行从左到右在进行细匹配。

利用等距序列图像的快速拼接技术拼出左边第一列,基于灰度匹配,将图像转化为二值图像并对每行进行最优匹配。

先按照行配准,然后再进行列配准,最终匹配出误差最小的图像;对于英文碎片复原同样采取人工干预粗分类,粗匹配后,采用神经网络算法对碎片图像训练、学习构建BP网络对英文字母进行匹配识别,结合剪枝定界法实现英文碎片的拼接复原。

发现每行匹配率为78.85%,整篇匹配率大约为68.73%。

针对问题三,由于碎片数据均为双面打印文件,文字特征相同,仅用问题二中的方法产生的误差太大,仍沿用粗分类特点通过神经网络拼接、灰度匹配修正、人工干预,结合等距序列拼接技术实现单面拼接,然后验证反面的正确性并修正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于结构特征的碎纸片的拼接复原问题摘要碎纸自动拼接技术是图像处理与模式识别领域中的一个典型的应用,该技术通过扫描和图像提取技术获取一组碎纸片的形状、纹理及内容等信息,然后利用计算机进行相应理解从而实现对这些碎纸片的全自动或半自动拼接还原。

针对问题一,考虑到纵切的碎纸片所含有的信息量较大,利用图像处理中的信号匹配方法,结合左右两个碎纸片的灰度像素矩阵的边缘特征,建立基于结构特征的灰度匹配模型,对英文字母制定了灰度相似的配准规则,使待拼接的碎纸片边缘的对应行像素之差的平方和最小;而结合中文字符的横笔结构特征,对中文字制定了“横笔”匹配相似度的配准规则,并给出了最终的碎纸拼接图和拼接次序,拼接的正确率是100%。

针对问题二,对于既纵切又横切的情形,每一个纸片的边缘所含的信息量相对较少,故对中、英文碎片的拼接复原需各自建模分析。

首先利用“分而治之”的思想,将一个难以直接解决的大问题,分割成一些规模较小的相同问题。

对于中文碎片拼接复原,根据中文的方块特点,给出了中文的文字结构特征向量及其边缘像素的特征向量。

根据这些结构特征向量对所有的碎纸片进行粗分类,在此基础上设计了基于边缘特征的匹配规则集,对每一行从左到右在进行细匹配。

利用等距序列图像的快速拼接技术拼出左边第一列,基于灰度匹配,将图像转化为二值图像并对每行进行最优匹配。

先按照行配准,然后再进行列配准,最终匹配出误差最小的图像;对于英文碎片复原同样采取人工干预粗分类,粗匹配后,采用神经网络算法对碎片图像训练、学习构建BP网络对英文字母进行匹配识别,结合剪枝定界法实现英文碎片的拼接复原。

发现每行匹配率为78.85%,整篇匹配率大约为68.73%。

针对问题三,由于碎片数据均为双面打印文件,文字特征相同,仅用问题二中的方法产生的误差太大,仍沿用粗分类特点通过神经网络拼接、灰度匹配修正、人工干预,结合等距序列拼接技术实现单面拼接,然后验证反面的正确性并修正。

关键词:图像拼接,灰度配准,结构特征,配准规则,神经网络一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

拼接复原工作若由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

现试图开发碎纸片的自动拼接技术,以提高拼接复原效率。

我们需要建立数学模型解决以下问题:1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,写出干预方式及干预的时间节点。

2. 对于碎纸机既纵切又横切的情形,设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,写出干预方式及干预的时间节点。

3. 现实情形中可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果。

二、问题分析碎纸自动拼接复原技术在司法鉴定,历史研究等领域都有着广泛的应用。

近年来,随着德国斯塔西文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。

碎纸自动拼接技术是模式识别领域中的一个很典型的应用。

涉及数字图像处理,机器学习等多个学科,充分体现了当下多学科相互融合的学科特点,这也正说明了碎纸自动拼接本身具有一定的难度。

匹配技术是碎纸自动拼接技术的关键,它可以分为两个步骤:局部拼接和全局恢复。

局部拼接是指碎片两两之间的拼接问题,全局拼接是关于一组碎片之间的匹配问题。

局部匹配技术可以分为两类,一类比较具体,多对应图像低层像素或像素的集合,统称为图像匹配;另一类则比较抽象,主要与图像或目标的性质有关统称为广义匹配。

图像匹配包括模板匹配、目标匹配和动态模式匹配。

广义匹配包括关系匹配、线图同构和特征内容匹配。

特征内容匹配包括颜色匹配、纹理匹配、形状匹配和综合特征匹配等。

目前对碎纸拼接的研究,主要应用的是特征内容的匹配,本文应用其中的轮廓匹配。

碎纸拼接中的匹配技术,与传统匹配技术不同,它的特征都是未知的,没有先验知识可以参考,这也是碎纸拼接的难点。

对于传统破碎文件的拼接,更多的使用破碎纸片的边缘形状提取其轮廓曲线并利用计算机算法进行拼接,但现今越来越多的破碎纸片拼接问题中破碎纸片的边缘形状都近似相同,边缘形状拼接不再实用。

而对于边缘相似的破碎纸片的拼接,理想的计算机拼接过程应当与人工拼接的结果相同,但计算机无法完全的识别破碎纸片上带有的信息,所以对于现有算法只能近似完成破碎纸片的拼接。

针对问题一,因使用碎纸机对纸片进行纵切,每个纵切的纸片所含的信息量较大,所以对于问题一,利用左右两个纸片的边缘特征,可以制定灰度相似的配准规则,使得纸片边缘的对应行像素之差的平方和最小,拼接成功率将会更高。

针对问题二,使用碎纸机对纸片进行纵切且横切,问题变的复杂,由于纸片数量多,且碎纸片包含的信息少,用灰度匹配的话,一定会有较大的误差。

如果单纯考虑使用某种算法在解空间中进行遍历搜索最优匹配,算法的复杂度较高。

如何合理的减小误差又不至于增加太多的工作量,就需要找到恰当的算法和模型对问题一进行优化。

我们可以利用“分而治之”的思想,首先把所有的纸片按照其字符的结构特征(如行间距,列间距,字高,字宽,字间距等)进行粗分类,然后通过人工干预,拼出左边第一列,先按照行配准,然后在进行列配准。

对于每一行配准,我们可以刻画每个碎纸片的特征,分为结构特征和边缘像素特征。

对于碎纸片,我们在寻找某个边的待选碎片时,可以指定规则来提升效率,比如在左边匹配时,用行间距过滤掉不符合的碎片(也就是过滤掉不符合约束条件的取值范围),也就是剪枝定界法;如果带匹配的左边是有黑色数值的,再用目标碎片右边应该也有黑色数值,且出现的位值相近过滤掉图片;再用拼接好的图片中的字间距看看是否符合一个字的宽度等。

通过配准规则,结合字符的结构特征和边缘特征,我们应该可以得出第二问的配准图像。

针对问题三,碎片依然被纵切、横切成了209块。

但本题中还加入了正反两面,增加了问题的复杂性,不过建模的总体思想并没有变。

首先我们要通过配准规则,结合字符的结构特征和边缘特征对碎片进行一次拼接,但误差将会很大。

为更好的减小误差,我们可以结合灰度匹配和人工干预对已生成的图像进行修正。

三、符号说明四、模型假设结合本题实际,为了确保模型求解的准确性和合理性,我们排除了一些因素的干扰,提出以下几点假设:1.假设每条碎纸片都保持完整,无破损。

2.假设碎纸机切纸片的切口都较整齐。

3.假设同一页文件上文字的打印墨浓度相同。

4.假设同一页文件上文字的字体相同,同一页文件上文字只包含中文或者英文。

5.假设文件上文字颜色不受空气中水分等其他因素的影响.6.假设图像不许进行降噪、平滑滤波等预处理。

五、模型的建立与求解5.1模型建立前的准备5.1.1设置匹配准则集本题目并不是一个简单的图像拼接问题,所以我们设置包含灰度匹配、基于特征、BP神经网络、异或运算相结合的匹配准则集。

1.灰度匹配灰度匹配的基本思想:以统计的观点将图像看成是二维信号,采用统计相关的方法寻找信号间的相关匹配。

利用两个信号的相关函数,评价它们的相似性以确定同名点。

灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。

最经典的灰度匹配法是归一化的灰度匹配法,其基本原理是逐像素的把一个以一定大小的实时图像窗口的灰度矩阵,与参考图像的所有可能的窗口灰度阵列,按某种相似性度量方法进行搜索比较的匹配方法,从理论上说就是采用图像相关技术。

2.基于特征大多数完整文字文档的文字行方向和行间距平行且单一,如果碎片内的文字行在碎片边缘断裂,那么与它相邻的碎纸片在边缘处一定有相同高度、相同间距的文字行,凭此特征可以很容易得从形状相似的多碎片中挑选出相邻碎片。

因文字行的高度特征、间距特征的识别比字迹断线识别和文字图像的理解实现起来更容易些,利用碎片内文字行特征拼接相似的碎纸片理论上是可行的。

3.BP神经网络BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。

输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。

当实际输出与期望输出不符时,进入误差的反向传播阶段。

误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。

周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。

4.异或运算异或逻辑的真值表如图1所示,其逻辑符号如图2所示。

异或逻辑的关系是:当不同时,输出;当相同时,输出。

“”是异或运算符号,异或逻辑也是与或非逻辑的组合,其逻辑表达式为:由图1可知,异或运算的规则是0⊕0=0,0⊕1=11⊕0=1,1⊕1=0口诀:相同取0,相异取1事实上,XOR 在英文里面的定义为either one (is one), but not both,也即只有一个为真(1)时,取真(1)。

相关文档
最新文档