随机信号实验报告

合集下载

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码

《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。

2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。

3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。

4、方差定义为随机过程的方差。

方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。

5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。

自相关函数可正,可负,其绝对值越大表示相关性越强。

6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。

哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号实验报告(模板)(1)

随机信号实验报告(模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。

二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。

② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。

在已知均值和均方值的前提下,方差就很容易求得了。

④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。

对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。

在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。

⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机信号分析实验报告

随机信号分析实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电子与信息工程学院班级:姓名:学号:指导教师:实验时间:实验一、各种分布随机数的产生(一)实验原理1.均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M c y y n n +=+My x n n 11++= 为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ My x n n 11++= 式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+ My x n n 11++= 用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

2.随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

北理工随机信号分析实验报告

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

随机信号分析资料报告实验

随机信号分析资料报告实验

实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。

二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数:(1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

随机信号实验报告

随机信号实验报告

班级:姓名:学号:指导老师:时间:一、信号基本参数1.均值及方差由上图可以看出,该语音信号的能量不是很大,因其均值在0.12左右,方差在0.02左右,故波动不是很大;当加入信噪比为5的白噪声后,其均值明显增大,在0.48左右,说明噪声的能量远大于信号的能量,其方差在0.13左右,故波动很大。

由此看出,白噪声携带能量加大,且波动加大。

2.正态概率分布函数上图为语音信号各点的幅度的概率分布,它与语音信号分布差不多,它放映的是语音信号在各点的能量大小。

当语音信号在某时刻幅值越大,则其概率越大,反之,则越小。

3.自相关上图可以看出,该语音信号的自相关不是很大,因此该语音信号前后相关性不是很大,因此,在信号处理及通信中对信号处理要求不是很高;当加入噪声后,可以看出自相关有明显减小的痕迹,所以白噪声的自相关不大。

4.互相关上图为两个不同的语音信号的互相关,可以看出在前半段完全没有相关性,而在后半段有一定的相关性;当加入白噪声后,互相关增强,且前半段也没有相关性,说明有一语音信号前半段没有信号。

由两图比较可得,高斯白噪声的互相关较大。

二、信号加噪及提取5.信号加入确定噪声后加入确定噪声sin(17500*t)后,时域图上可以看出,振幅较小的语音信号完全被噪声淹没,从回放的声音中可以听到刺耳的噪声信号,从频谱图中也可以看出,在1800Hz左右,有明显的高峰,所含的能量远大于语音信号。

因此,可以用带阻滤波器滤除该噪声信号。

6.去除确定噪声信号sin()从上面两图可以看出,去噪后的频谱中没有高峰突起,确实去掉了噪声信号,从回放的声音中,也听不到刺耳的声音,是比较清晰地声音。

从频谱图中可以明显看到有凹下去的部分,是因为不是理想滤波器,必定会滤掉临近的很小的一部分信号,但并不会语音信号造成太大的影响。

采用的是巴特沃斯带阻滤波器,fp=1700Hz,fs=100Hz,当增大fs后,可以明显看到凹下去的部分增大;而改变fp后,就不能滤掉噪声信号。

随机信号模块实验报告(一)

随机信号模块实验报告(一)

随机信号实验报告(一)学号: 姓名:熟悉Matlab 的随机信号处理相关命令(一)一、实验目的:1、掌握随机信号的简单分析方法。

2、熟悉语音信号的简单变换的分析方法及其编程 。

二、实验原理:1、声音的录入与读取在matlb 中实现对语音信号的读取可以用wavread 函数,如b=wavread('211.wav');括号中为语音信号的存储路径。

还可用sound 函数对录入的声音信号进行发声;用plot 函数把声音信号图谱绘制下来。

这是对声音信号的最基本处理。

2、时域与频域的简单分析语音信号是个随机信号,在matlab 中对随机信号可以有以下分析。

如概率密度分布,如果F X (x,t )对x 的一阶导数存在,则定义xt x F t x f X x ∂∂=),(),( 为随机过程X (t )的一维概率密度。

3、相关性与功率谱自相关估计,同一序列在不同时刻的取值之间的相关程度,自相关函数和功率谱密度函数是一对傅里叶变换。

互相关估计则是两个函数在同一时刻的不同取值之间的相关程度。

互相关函数是两个随机过程联合统计特性中重要的数字特征,它的定义为dxdy t t y x xyft Y t X E t t R xyXY ),,,()]()([),(212121⎰⎰∞∞-∞∞-==在频域要先对信号进行傅里叶变换,然后分析其频谱特性、相位等三、实验内容:对语音信号的读取,此为时域波形这是一个随机信号,横轴为时间t ,范围在0~350000 s 纵轴为声音幅度,范围在-0.25~0.25。

波形是关于x 轴对称的。

此图没有定义范围,是把录入的语音信号全程显示出来。

语音信号的相位分布进行了4096点傅里叶变换,横轴为采样点数,纵轴为信号在此点的相位。

范围集中于-3~3之间。

变换采样点数不一样,波形就会不一样。

概率密度分布直方图信号的概率密度类似正态分布,定义了-3~3之间的概率密度,密度最大在0附近可达450。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_ 班级:_ 学号:专业:目录实验一随机序列的产生及数字特征估计2实验目的 2实验原理 2实验内容及实验结果 3实验小结 6实验二随机过程的模拟与数字特征7实验目的7实验原理7实验内容及实验结果8实验小结11实验三随机过程通过线性系统的分析12实验目的12实验原理12实验内容及实验结果13实验小结17实验四窄带随机过程的产生及其性能测试18实验目的18实验原理18实验内容及实验结果18实验小结23实验总结23实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数:1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

随机信号实验报告(微弱信号的提取)

随机信号实验报告(微弱信号的提取)

微弱信号的检测提取及分析1.实验目的⑴了解随机信号分析理论如何在实践中应用。

⑵了解随机信号自身的特性,包括均值(数学期望)、方差、概率密度、相关函数、频谱及功率谱密度等。

⑶掌握随机信号的检测及分析方法。

⒉实验原理⑴随机信号的分析方法在信号系统中,我们可以把信号分成两大类——确知信号和随机信号。

确知信号具有一定的变化规律,因而容易分析,而随机信号无确知的变化规律,需要用统计特性进行分析。

我们在这里引入了随机过程的概念。

所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程可分为平稳的和非平稳的、遍历的和非遍历的。

如果随机信号的统计特性不随时间的推移而变化,则随机信号是平稳的。

如果一个平稳的随机过程它的任意一个样本都具有相同的统计特性,则随机过程是遍历的。

我们下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,我们可以取随机过程的一个样本来描述随机过程的统计特性。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,它们能够对随机过程作完整的描述。

但是由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

以下算法都是一种估计算法,条件是N要足够大。

⑵微弱随机信号的检测及提取方法因为噪声总是会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下微弱信号的提取又是信号检测的难点,其目的就是消除噪声,将有用的信号从强噪声背景中提取出来,或者用一些新技术和新方法来提高检测系统输出信号的信噪比。

噪声主要来自于检测系统本身的电子电路和系统外的空间高频电磁场干扰等,通常从两种不同的途径来解决:①降低系统的噪声,使被测信号功率大于噪声功率,达到信噪比S /N > 1 。

②采用相关接收技术,可以保证在被测信号功率< 噪声功率的情况下,仍能检测出信号。

随机信号分析实验百度

随机信号分析实验百度

《随机信号分析》试验报告班级班学号_______________姓名_________________实验一1、熟悉并练习使用下列 Matlab 的函数,给出各个函数的功能说明和内部参数 的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为 0,方差为 1 的正态分布1) Y = randn产生一个伪随机数 2) Y = randn(n) 产生 n x n 的矩阵, 的正态分布其元素服从均值为0,方差为 13)Y = randn(m,n)产生 m x n 的矩阵, 的正态分布其元素服从均值为0,方差为 14) Y= randn([m n]) 产生 m x n 的矩阵, 的正态分布其元素服从均值为0,方差为 1选择( 2)作为例子,运行结果如下: >> Y = randn(3)1.3005 0.0342 0.97920.2691 0.9913 -0.8863 -0.1551 -1.3618 -0.3562生成n 々随机矩阵,其元素在(0, 1)内 生成mxn 随机矩阵 生成m x n 随机矩阵生成mxn 和x …随机矩阵或数组 生成m x n 和x …随机矩阵或数组 生成与矩阵 A 相同大小的随机矩阵 选择( 3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.05790.0099 0.1987 0.19883)normrnd()产生服从均值为mu 标准差为sigma 的随机数, mu 和sigma 可以为向量、矩阵、或多维数组。

(2)R = normrnd (mu,sigma,v ) 产生服从均值为 mu 标准差为 sigma 的随机数,v 是一个行向量。

如果v 是一个1 X 2的向量, 则R 为一个1行2列的矩阵。

如果v 是1X n 的, 那么R 是一个n 维数组(3)R = normrnd (mu,sigma,m,n ) 产生服从均值为 mu 标准差为 sigma 的随机数,2)rand()(1)Y = rand(n) (2)Y = rand(m,n) (3)Y = rand([m n])(4) Y = rand(m,n,p,…) (5) Y = rand([m n p …]) (6) Y = rand(size(A)) 0.3529 0.81320.1389 0.2028 0.6038 0.2722 0.0153 0.7468产生服从正态分布的随机数(1)R= normrnd(mu,sigma)标量m和n是R的行数和列数。

随机信号分析报告实验:随机过程通过线性系统地分析报告

随机信号分析报告实验:随机过程通过线性系统地分析报告

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)随机信号分析实验报告——基于MATLAB语言姓名: _班级: _学号:专业:目录实验一随机序列的产生及数字特征估计 .. 2 实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试18 实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。

定理 1.1 若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.M ATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

随机信号分析实验报告

随机信号分析实验报告

.随机信号分析实验报告实验一 各种分布随机数的产生一、 实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。

利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。

有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。

二、 实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。

三、 实验原理1. 均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。

最简单的方法是加同余法)(mod 1M c y y n n +=+M y x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产生的伪随机数效果不好。

另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ M y x n n 11++=式中,a 为正整数。

用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+ M y x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。

常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。

Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。

Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。

2. 随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)➢背景: (2)➢实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)➢实验设计: (4)➢实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。

理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。

在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。

关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的➢背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。

定义2:不同频率、不同强度无规则地组合在一起的声音。

如电噪声、机械噪声,可引伸为任何不希望有的干扰。

第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。

而第二种定义则相对抽象一些,大部分应用于机械工程当中。

在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。

为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。

➢实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。

三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。

确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。

然而白噪声在数学处理上比较方便,所以它在通信系统的分析中有十分重要的作用。

一般地说,只要噪声的功率谱密度的宽度远大于它所作用的系统的带宽,并且在系统的带内,它的功率谱密度基本上是常数,就可以作为白噪声处理了。

理想白噪声(高斯白噪声)的服从均值0X m =,方差2()D X σ=一维正态分布,其概率密度函数为:22())2x f x σ=-白噪声的功率谱密度为:()2n N S f =其中0N 为单边功率谱密度。

白噪声的自相关函数:()()2N R τδτ=白噪声的自相关函数是位于0τ=处,强度为02N的冲击函数。

这表明白噪声在任何两个不同的瞬间的取值是不相关的。

同时也意味着白噪声能随时间无限快的变化,因为它含一切频率分量而无限宽的带宽。

若一个具有零均值的平稳随机过程,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。

理想白噪声通过现行滤波器后便成为带限白噪声。

设滤波器的单位冲击响应为()h t ,其对应的傅里叶变换为()H ω ,则带限白噪声的各个参量如下带限白噪声的均值:()(0)Y X X m m h t m H =*=带限白噪声的自相关函数为:()()*()*()Y R R h h ττττ=-带限白噪声的功率谱密度为:20()()2Y N S f H ω=四、实验的设计与结果➢ 实验设计:(1)用MATLAB 或C/C++软件编写仿真程序,框图如下:图2 白噪声通过低通滤波器框图 图1 白噪声通过低通滤波器框图(2)产生一个高斯白噪声作为输入信号。

(3)设计一个低通滤波器和一个带通滤波器。

要求低通滤波器的通带为0KHz-2KHz 、通带衰减小于1dB 、阻带衰减大于35dB 。

带通滤波器的通带为10KHz-20KHz 、通带衰减小于1dB 、阻带衰减大于35dB 。

(4)首先计算白噪声的均值、均方值、方差、概率密度、频谱及功率谱密度、自相关函数。

然后分别经低通滤波、带通滤波器后,计算它们的均值、均方值、方差、概率密度、频谱及功率谱密度。

(5)用图形来表示计算结果。

(6)思考:什么时候白噪声变为带限白噪声?➢ 实验结果:(1)利用MATLAB 自带的函数产生的高斯白噪声图像如下020040060080010001200-4-3-2-101234高斯白噪声波形t幅值(V )图3 高斯白噪声波形(2)所设计的滤波器的图形如下:05001000150020002500300035004000450050000.20.40.60.811.21.4低通滤波器的幅频响应f / HzH (w )图4 低通滤波器幅频响应0.511.522.533.544.55x 104带通滤波幅频响应f / HzH (w )图5 带通滤波器幅频响应(3)实验结果:❖ 高斯白噪声的概率密度、频谱及功率谱密度、自相关函数的图形:◆ 高斯白噪声自相关函数图形为:-200-150-100-50050100150200-0.200.20.40.60.811.2白噪声的自相关函数时间:t图6 白噪声自相关函数◆ 高斯白噪声功率谱密度图形为:05001000150020002500300035004000450050001234567-6白噪声的功率谱幅值( W / H z )f / Hz图7 白噪声功率谱◆ 高斯白噪声的概率密度图形为:-5-4-3-2-101234500.050.10.150.20.250.30.350.4xf (x )白噪声的一维概率密度图8 白噪声的一维概率密度◆ 高斯白噪声的频谱图形为:05001000150020002500300035004000450050001020304050607080白噪声频谱幅值(V )f / Hz图9 白噪声频谱❖ 低通带限白噪声通过低通滤波器后分析◆ 低通带限白噪声自相关函数图形为:-50-40-30-20-10010********-0.100.10.20.30.4白噪声通过低通滤波器的自相关函数时间:t图10 白噪声通过低通滤波器的自相关函数◆ 低通带限白噪声功率谱密度图形为:05001000150020002500300035004000450050001234567-6白噪声通过低通滤波器后的功率谱幅值(W / H z )f /Hz图11 白噪声通过低通滤波器后的功率谱◆ 低通带限白噪声概率密度函数图形为:-2.5-2-1.5-1-0.500.51 1.52 2.500.10.20.30.40.50.60.7白噪声通过低通滤波器的一维概率密度函数图像图12 白噪声通过低通滤波器后的概率密度◆ 低通带限白噪声频谱图形为:0500100015002000250030003500400045005000白噪声通过低通滤波器的频谱幅值(V )f / Hz图13 白噪声通过低通滤波器后的频谱❖ 带通带限白噪声通过低通滤波器后分析◆ 帯通带限白噪声的自相关函数图形:-200-150-100-50050100150200-0.2-0.15-0.1-0.0500.050.10.150.2白噪声通过带通滤波器后自相关函数时间:t图14 白噪声通过带通滤波器后的自相关函数00.51 1.522.533.544.55x 104-7白噪声通过带通滤波器后的功率谱f / Hz幅值(W / H z )图15 白噪声通过带通滤波器后的功率谱◆ 帯通带限白噪声的概率密度图形:-2-1.5-1-0.50.511.5白噪声通过带通滤波器后一维概率密度函数图像图16 白噪声通过带通滤波器后的概率密度00.51 1.522.533.544.55x 10410203040506070白噪声通过带通滤波器的频谱幅值( V )f / Hz图17 白噪声通过带通滤波器后的频谱五、实验结论在实验中绘制出白噪声的自相关函数的图像,发现在=0τ处,自相关函数是一个δ脉冲,说明只有在同一时刻它们才相关。

对应于功率谱,从图中可以发现高斯白噪声的功率谱无限宽,从而印证了理论的推导。

均值代表信号的平均值,均方值2[]E X 代表着平均功率,均值的平方2X m 代表直流功率,方差2σ代表交流功率高斯白噪声通过低通滤波器后,滤除掉了高频分量,只剩下低频分量。

同理,通过带通滤波器后,只保留了通频带内的频率分量。

通过滤波器之后,噪声的功率谱密度已经不是无限宽了,我们知道功率谱密度图像的面积代表着功率,此时功率可以计算出来,而且平均功率与滤波器的带宽成正比,从而噪声变成了能量有限的信号。

在通过滤波器之后,信号的均方值、方差均变小,与上面它们所代表的物理意义相对应,说明信号的平均功率和交流功率都变小。

这也与信号通过滤波器的性质相吻合。

低通滤波器和带通滤波器都属于线性系统,高斯白噪声通过线性系统后,器输出的分布仍然服从高斯分布,这一点我们可以由三幅概率密度图形来得出。

通过MATLAB仿真和以上对带限白噪声的分析表明,我们发现其实真正的白噪声是不存在的,同时我们也验证了课本中的结论。

白噪声通过线性系统后已经不再是白噪声,输出端的信号(带限白噪声)的功率谱密度主要由系统的幅频特性决定。

在实际应用中当噪声的带宽远大于系统的带宽的时候,此时可以看成白噪声。

若一个具有零均值的平稳随机过程,其功率谱密度在某一个有限频率范围内均匀分布,而在此范围外为零,则称这个过程为带限白噪声。

六、参考文献[1] MATLAB7辅助信号处理技术与应用电子工业出版社[2] 王福杰,潘宏侠.MATLAB中几种功率谱估计函数的比较分析与选择[J] 电子产品可靠性与环境试验2009 12 第6期[3] 王凤瑛、张丽丽.功率谱估计及其MATLAB仿真[J]仿真技术:2006.3.[4] 高西全、丁玉美.数字信号处理西安:西安电子科技大学出版社2006.[4] 陈怀琛,吴大正.MATLAB及在电子信息课程中的应用(第二版)北京:电子工业出版社,2004年.七、附件程序一%产生高斯白噪声Fs=10000;Ns=1024;x=randn(Ns,1);%产生高斯白噪声t=0:Ns-1;figure(1)plot(t,x);grid ontitle('高斯白噪声波形')xlabel('t')ylabel('幅值(V)')x_mean=mean(x) %均值x_std=std(x) ; %标准差x_var=x_std.^2 %方差x_msv=x_var+x_mean.^2 %均方值%计算高斯白噪声的相关函数[x_c,lags]=xcorr(x,200,'unbi ased');%相关函数figure(2)plot(lags,x_c);%画出相关函数的图形title('白噪声的自相关函数') xlabel('时间:t');grid on% 利用pwelch函数计算功率谱nfft=1024;index=0:round(nfft/2-1);k=index.*Fs./nfft;window=boxcar(length(x_c)); [Pxx,f]=pwelch(x_c,window,0, nfft,Fs);x_Px=Pxx(index+1);figure(3)plot(k,x_Px);grid ontitle('白噪声的功率谱')Ylabel(' 幅值( W / Hz) '); Xlabel('f / Hz')%求高斯白噪声的一维概率密度[x_pdf,x1]=ksdensity(x); figure(4)plot(x1,x_pdf);%画出高斯白噪声的一维概率密度grid onxlabel('x')ylabel('f(x)')title('白噪声的一维概率密度')%求高斯白噪声的频谱f=(0:Ns-1)/Ns*Fs;X=fft(x);%对高斯白噪声进行傅里叶变换mag=abs(X); %取信号X的幅度figure(5)plot(f(1:Ns/2),mag(1:Ns/2)); %画出白噪声的频谱grid ontitle('白噪声频谱');ylabel('幅值(V)')xlabel('f / Hz');%利用双极性Z变换设计0-2kHz低通滤波器fp=2000;fs=2200;rp=0.5;rs=50;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;wap=tan(wp/2);was=tan(ws/2);Fs=1;[N,Wn]=buttord(wap,was,rp,rs ,'s');%估计所需滤波器的阶数[z,p,k]=buttap(N);[bp,ap]=zp2tf(z,p,k);[bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,Fs/2) ;[H,w]=freqz(bz,az,512,Fs*100 00);%计算数字滤波器的频率响应figure(6)plot(w,abs(H));%低通滤波器的频谱title('低通滤波器的幅频响应') xlabel('f / Hz')ylabel('H(w)')grid on%白噪声通过滤波器以及通过后y相关参数y=filter(bz,az,x);%白噪声通过滤波器y_mean=mean(y) %y的均值y_std=std(y); %标准差y_var=y_std.^2 %方差y_msv=y_var+y_mean.^2[y_pdf,y1]=ksdensity(y); figure(7)plot(y1,y_pdf);%y的一维概率密度grid ontitle('白噪声通过低通滤波器的一维概率密度函数图像');[y_c,lags1]=xcorr(y,200,'unb iased');%计算y的相关函数figure(8)plot(lags1,y_c);%画出y的相关函数的图形axis([-50,50, -0.1,0.5 ]); title('白噪声通过低通滤波器的自相关函数')grid on%计算y的频谱Y=fft(y);%对y进行傅里叶变换magY=abs(Y);figure(9)plot(f(1:Ns/2),magY(1:Ns/2)) ;%画出y的频谱grid ontitle('白噪声通过低通滤波器的频谱');ylabel('幅值(V)')xlabel('f / Hz');%y的功率谱nfft=1024;Fs=10000;index=0:round(nfft/2-1);ky=index.*Fs./nfft;window=boxcar(length(y_c)); [Pyy,fy]=pwelch(y_c,window,0 ,nfft,Fs);y_Py=Pyy(index+1);figure(10)plot(ky,y_Py);grid ontitle('白噪声通过低通滤波器后的功率谱')ylabel('幅值(W / Hz)')Xlabel('f /Hz')程序二%产生白噪声Fs=100000;Ns=1024;x=randn(Ns,1);%产生白噪声t=0:Ns-1;figure(11)plot(t,x);grid ontitle('高斯白噪声波形')xlabel('t')x_mean=mean(x) %均值x_std=std(x) ; %标准差x_var=x_std.^2 %方差x_msv=x_var+x_mean.^2 %均方值%计算高斯白噪声的相关函数%[x_c,lags]=xcorr(x,200,'unbia sed');%相关函数figure(12)plot(lags,x_c);%画出相关函数的图形title('白噪声的自相关函数')grid on% 利用pwelch函数计算功率谱%nfft=1024;index=0:round(nfft/2-1);k=index.*Fs./nfft;window=boxcar(length(x_c));[Pxx,f]=pwelch(x_c,window,0,n fft,Fs);x_Px=Pxx(index+1);figure(13)plot(k,x_Px);grid ontitle('白噪声的功率谱')ylabel('幅值(W / Hz)')Xlabel('f / Hz')%求白噪声的一维概率密度[x_pdf,x1]=ksdensity(x);figure(14)plot(x1,x_pdf);%画出白噪声的一维概率密度grid ontitle('白噪声的一维概率密度')%求高斯白噪声的频谱f=(0:Ns-1)/Ns*Fs;X=fft(x);%对白噪声进行傅里叶变换mag=abs(X); %取信号X的幅度figure(15)plot(f(1:Ns/2),mag(1:Ns/2));%画出白噪声的频谱grid ontitle('白噪声频谱');xlabel('f / Hz');%产生一个十阶IIR带通滤波器%通带为10KHz--20KHz,并得到其幅频响应Fs=100000[b,a]=ellip(10,0.5,50,[10000, 20000]*2/Fs);[H,w]=freqz(b,a,512);figure(16)plot(w*Fs/(2*pi),abs(H));title('带通滤波幅频响应');set(gcf,'color','white')xlabel('f / Hz');ylabel( 'H(w)');grid on%白噪声通过带通滤波器以及通过后y相关参数y=filter(b,a,x);%白噪声通过带通滤波器y_mean=mean(y) %y的均值y_std=std(y); %标准差y_var=y_std.^2 %方差y_msv=y_var+y_mean.^2[y_pdf,y1]=ksdensity(y);figure(17)plot(y1,y_pdf);%y的一维概率密度grid ontitle('白噪声通过带通滤波器后一维概率密度函数图像');[y_c,lags1]=xcorr(y,200,'unbi ased');%计算y的相关函数figure(18)plot(lags1,y_c);%画出y的相关函数的图形title('白噪声通过带通滤波器后自相关函数')grid on%计算y的频谱Y=fft(y);%对y进行傅里叶变换magY=abs(Y);figure(19)plot(f(1:Ns/2),magY(1:Ns/2)); %画出y的频谱grid ontitle('白噪声通过带通滤波器的频谱');ylabel('幅值( V )')xlabel('f / Hz');%y的功率谱nfft=1024;index=0:round(nfft/2-1);ky=index.*Fs./nfft;window=boxcar(length(y_c)); [Pyy,fy]=pwelch(y_c,window,0, nfft,Fs);y_Py=Pyy(index+1);figure(20)plot(ky,y_Py);grid ontitle('白噪声通过带通滤波器后的功率谱')Xlabel('f / Hz')ylabel('幅值(W / Hz)')。

相关文档
最新文档