随机信号分析实验报告(基于MATLAB语言)

合集下载

随机信号分析实验报告

随机信号分析实验报告

《随机信号分析》实验报告二班级_______学号______姓名_______实验二高斯噪声的产生和性能测试1.实验目的(1)掌握加入高斯噪声的随机混合信号的分析方法。

(2)研究随机过程的均值、相关函数、协方差函数和方差。

⒉实验原理(1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。

(2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。

⒊实验报告要求(1)简述实验目的及实验原理。

(2)采用幅度为1,频率为25HZ的正弦信号为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。

试求随机过程的均值、相关函数、协方差函数和方差。

用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。

(3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。

(4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。

(5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。

4、源程序及功能注释(逐句注释)(1):clear all;clc;t=0:320;x=sin(2*pi*t*25);x1=wgn(1,321,0);z=x+x1;y=trapz(t,z);%y=int(z,x,0,t);subplot(3,2,1),plot(z);title('随机信号序列')meany=mean(z);subplot(3,2,3),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(3,2,4),plot(t,vary,'.');title('随机信号方差')cory=xcorr(z,'unbiased');%自相关函数subplot(3,2,2),plot(cory);title('随机信号自相关函数')covv=cov(y);subplot(3,2,5),plot(t,covv,'.');title('随机信号协方差')(2):t=[0:0.0005:0.045];X1=sin(2*pi*25*t);%正弦subplot(3,4,1);plot(t,X1);gridtitle('正弦函数序列');X2=randn(1,length(t)); %产生均值为0,方差σ^2=1,标准差σ=1的正态分布的随机数或矩阵的函数高斯随机信号%X2=normrnd(2,0.04); %高斯随机序列均值,标准差subplot(3,4,2);plot(t,X2);title('高斯噪声序列');X=X1+X2; %混合随机信号X(t)subplot(3,4,3);plot(t,X);gridtitle('混合随机信号');meany1=mean(X1); %原信号的均值subplot(3,4,6),plot(t,meany1);title('原信号均值');vary1=var(X1); %原信号的方差subplot(3,4,7),plot(t,vary1);title('原信号方差');cory1=xcorr(X1,'unbiased'); %原信号的自相关函数subplot(3,4,8),plot(cory1);title('原信号自相关函数');meany=mean(X); %混合信号的均值subplot(3,4,10),plot(t,meany);title('混合信号均值');vary=var(X); %混合信号的方差subplot(3,4,11),plot(t,vary);title('混合信号方差')cory=xcorr(X,'unbiased'); %混合信号的自相关函数subplot(3,4,12),plot(cory);title('混合信号自相关函数')covy=cov(X1,X); %协方差subplot(3,4,4),plot(covy);title('协方差');[f1,xi]=ksdensity(X1); %原信号的概率密度subplot(3,4,5);plot(xi,f1);title('原信号的概率密度分布)');[f2,xi]=ksdensity(X); %混合信号的概率密度subplot(3,4,9);plot(xi,f2);title('混合信号概率密度分布');(3):clcclear allclose allA = imread('dadian.jpg'); % 读入图像V=0.01;Noisy=imnoise(A,'gaussian',0,V);subplot(1,2,1),imshow(A),title('原图像');subplot(1,2,2),imshow(Noisy),title('加噪后图像'); (4):clcclear allclose allt=0:320;A = wavread('alert.wav'); % 读入音频x = double(A);y=awgn(x,2,0.04);%x1 = double(z);%y=x+x1;subplot(2,3,1),plot(y);title('随机信号序列')meany=mean(y);subplot(2,3,2),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(2,3,3),plot(t,vary,'.');title('随机信号方差')cory=xcorr(y,'unbiased');%自相关函数subplot(2,3,4),plot(cory);title('随机信号自相关函数')fy=fft(y);ym=abs(fy);subplot(2,3,5),plot(ym);title('随机信号频谱图')fz=fft(cory);zm=abs(fz);subplot(2,3,6),plot(zm);title('随机信号功率谱密度图')5. 实验总结(手写)可给出实验过程中遇到的问题、解决方法、自己的收获、可否有改进办法等。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机信号分析实验报告

随机信号分析实验报告

一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

本实验中算法都是一种估算法,条件是N要足够大。

2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。

噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。

②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。

对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。

对微弱信号检测与提取有很多方法,本实验采用多重自相关法。

多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。

即令:式中,是和的叠加;是和的叠加。

对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。

信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。

多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

随机信号分析实验百度

随机信号分析实验百度

《随机信号分析》试验报告班级班学号姓名实验一1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为0,方差为1的正态分布(1)Y = randn 产生一个伪随机数(2)Y = randn(n) 产生n×n的矩阵,其元素服从均值为0,方差为1的正态分布(3)Y = randn(m,n) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布(4)Y= randn([m n]) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布选择(2)作为例子,运行结果如下:>> Y = randn(3)Y =1.3005 0.0342 0.97920.2691 0.9913 -0.8863-0.1551 -1.3618 -0.35622)rand()(1)Y = rand(n) 生成n×n 随机矩阵,其元素在(0,1)内(2)Y = rand(m,n) 生成m×n 随机矩阵(3)Y = rand([m n]) 生成m×n 随机矩阵(4)Y = rand(m,n,p,…) 生成m×n×p×…随机矩阵或数组(5)Y = rand([m n p…]) 生成m×n×p×…随机矩阵或数组(6)Y = rand(size(A)) 生成与矩阵A 相同大小的随机矩阵选择(3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.0579 0.0099 0.1987 0.19880.3529 0.1389 0.6038 0.01530.8132 0.2028 0.2722 0.74683)normrnd()产生服从正态分布的随机数(1)R = normrnd(mu,sigma) 产生服从均值为mu,标准差为sigma的随机数,mu和sigma可以为向量、矩阵、或多维数组。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

基于matlab的数字信号精品实验报告

基于matlab的数字信号精品实验报告

语音信号处理与分析专业:通信工程班级: 081班姓名:祝健博学号: 2008026130 指导教师:许爽一、实验类型综合研究性实验二、实验目的1.掌握采样定理及FFT谱分析的基本原理及其利用Matlab的实现方法;2. 掌握数字滤波器的设计原理和方法;3. 学习用MATLAB编程实现语音数字滤波系统。

三、实验要求1. 利用Windows下的录音机设备采集语音信号;2. 对语音信号进行采样并混进加性噪声,作频谱分析;3. 通过频谱分析选择合适的滤波器性能指标,设计合适的数字滤波器,并对含噪音的语音信号进行数字滤波;4. 设计处理系统的用户界面(GUI),在所设计的系统界面上可以选择滤波器的参数,显示滤波器的频率响应,选择信号等。

四、数字滤波器的设计原理数字滤波器可以理解为是一个计算程序或算法,将代表输入信号的数字时间序列转化为代表输出信号的数字时间序列,并在转化过程中,使信号按预定的形式变化。

数字滤波器有多种分类,根据数字滤波器冲激响应的时域特征,可将数字滤波器分为两种,即无限长冲激响应(IIR)滤波器和有限长冲激响应(FIR)滤波器。

IIR数字滤波器具有无限宽的冲激响应,与模拟滤波器相匹配,所以IIR 滤波器的设计可以采取在模拟滤波器设计的基础上进一步变换的方法。

其设计方法主要有经典设计法、直接设计法和最大平滑滤波器设计法。

FIR数字滤波器的单位脉冲响应是有限长序列。

它的设计问题实质上是确定能满足所要求的转移序列或脉冲响应的常数问题,设计方法主要有窗函数法、频率采样法和等波纹最佳逼近法等。

在对滤波器实际设计时,整个过程的运算量是很大的。

设计阶数较高的IIR滤波器时,计算量更大,设计过程中改变参数或滤波器类型时都要重新计算。

设计完成后对已设计的滤波器的频率响应要进行校核。

要得到幅频、相频响应特性,运算量也是很大的。

平时所要设计的数字滤波器,阶数和类型并不一定是完全给定的,很多时候要根据设计要求和滤波效果不断地调整,以达到设计的最优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号分析实验报告——基于MATLAB语言姓名: _班级: _学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:y0=1,y n=ky n(mod N)⁄x n=y n N序列{x n}为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数F x(x),而R 为(0,1)均匀分布随机变量,则有X=F x−1(R)2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。

(3)其他分布的随机序列分布函数分布函数二项分布binornd 指数分布exprnd泊松分布poissrnd 正态分布normrnd 离散均匀分布unidrnd 瑞利分布raylrnd 均匀分布unifrnd X2分布chi2rnd3.随机序列的数字特征估计对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特征。

这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,……N-1。

那么,X(n)的均值、方差和自相关函数的估计为m̂X=1N∑x(n)N−1n=0σ̂X2=1N−1∑[x(n)−m̂X]2N−1n=0R̂X(m)=1N−|m|∑x(n)x(n+m) m=0,±1,±2⋯N−1n=0利用MATLAB的统计分析函数可以分析随机序列的数字特征。

(1)均值函数函数:mean用法:m = mean(x)功能:返回按1.3式估计X(n)的均值,其中x为样本序列x(n)。

(2)方差函数函数:var用法:sigma2 = var(x)功能:返回按(1.4)式估计X(n)的方差,其中x为样本序列x(n),这一估计为无偏估计。

(3)互相关函数函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。

option 选项可以设定为:'biased' 有偏估计'unbiased' 无偏估计'coeff' m = 0 时的相关函数值归一化为1'none' 不做归一化处理实验内容及实验结果1.采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。

改变样本个数重新计算。

程序代码:y=1;k=7;N=10^10;xn=[];for i=1:1000y=mod(y*k,N);x=y/N;xn=[xn x];endm=mean(xn)n=var(xn)me=0.5-mne=1/12-n实验结果:m = 0.4813n = 0.0847me= 0.0187ne= -0.00132.参数为λ的指数分布的分布函数为F X(x)=1−e−λx利用反函数法产生参数为0.5的指数分布随机数1000个,测试其方差和相关函数。

程序代码:j=1:1999;y=1;k=7;N=10^10;xn=[];for i=1:1000y=mod(y*k,N);x=y/N;xn=[xn x];endy=(-2)*log(1-xn);n=var(y)c=xcorr(y,'coeff');plot(j-1000,c);实验结果:方差 n=3.7596自相关函数:3. 产生一组N(1,4)分布的高斯随机数(1000个样本),估计该序列的均值、方差、和相关函数。

程序代码: i=1:1000; j=1:1999;x=normrnd(1,2,1,1000); m=mean(x) n=var(x)c=xcorr(x,'coeff'); subplot(211); plot(i,x);title(‘随机序列’); subplot(212); plot(j-1000,c);title(‘自相关函数’);实验结果: 均值 m=1.0082 方差 n=3.8418-1000-800-600-400-200200400600800100000.10.20.30.40.50.60.70.80.91实验小结本次实验对随机数的生成做了练习。

具体来说,包括线性同余法,生成已知分布函数的随机数,rand 函数等,还有就是有关均值、方差、相关的调用函数。

01002003004005006007008009001000-5510随机序列-1000-800-600-400-20002004006008001000-0.500.51自相关函数实验二随机过程的模拟与数字特征实验目的1.学习利用 MATLAB模拟产生随机过程的方法。

2.熟悉和掌握特征估计的基本方法及其 MATLAB实现。

实验原理1.正态分布白噪声序列的产生MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。

函数:randn用法:x = randn(m,n)功能:产生 m×n的标准正态分布随机数矩阵。

如果要产生服从N(μ,σ2)分布的随机序列,则可以由标准正态随机序列产生。

如果X~N(0,1),则μ+σX~N(μ,σ)。

2.相关函数估计MATLAB提供了函数 xcorr用于自相关函数的估计。

函数:xcorr用法:c = xcorr(x,y)c = xcorr(x)c = xcorr(x,y,'opition')c = xcorr(x,'opition')功能:xcorr(x,y)计算 X (n)与 Y(n)的互相关,xcorr(x)计算 X (n)的自相关。

Option 选项可以设定为:'biased' 有偏估计。

'unbiased' 无偏估计。

'coeff' m =0时的相关函数值归一化为1。

'none' 不做归一化处理。

3.功率谱估计对于平稳随机序列 X (n),如果它的相关函数满足+∞∑|R X(m)|<∞m=−∞那么它的功率谱定义为自相关函数R X(m)的傅里叶变换:+∞S X(ω)=∑R X(m)e−jmωm=−∞功率谱表示随机信号频域的统计特性,有着重要的物理意义。

我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。

功率谱估计的方法有很多种,以下是两种通用谱估计方法。

(1)自相关法先求自相关函数的估计R X(m),然后对自相关函数做傅里叶变换。

ŜX(ω)=∑R̂X(m)e−jmωN−1m=−(N−1)其中N表示用于估计样本序列的样本个数。

(2)周期图法先对样本序列 x(n)做傅里叶变换X(ω)=∑x(n)N−1n=0e−jmω其中0≤n≤N−1,则功率谱估计为ŜX(ω)=1N|X(ω)|2MATLAB函数 periodogram实现了周期图法的功率谱估计。

函数:periodogram用法:[Pxx,w] = periodogram(x)[Pxx,w] = periodogram(x,window)[Pxx,w] = periodogram(x,window,nfft)[Pxx,f] = periodogram(x,window,nfft,fs)periodogram(...)功能:实现周期图法的功率谱估计。

其中:Pxx为输出的功率谱估计值;f为频率向量;w为归一化的频率向量;window代表窗函数,这种用法种对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,表 2.1列出了产生常用窗函数的MATLAB函数窗函数MATLAB函数窗函数MATLAB函数矩形窗boxcar Blackman窗blackman三角窗triang Chebyshev窗chebwinHanning窗hann Bartlett窗bartlettHamming hamming Kaiser窗kaiser nfft设定 FFT算法的长度;fs表示采样频率;如果不指定输出参数(最后一种用法),则直接会出功率谱估计的波形。

实验内容及实验结果1.按如下模型产生一组随机序列x(n)=0.8x(n−1)+ω(n)其中ω(n)是均值为1,方差为4的正态分布白噪声序列。

估计过程的自相关函数和功率谱。

程序代码:w=normrnd(1,4,1,1024);x(1)=w(1);i=2;while i<1025x(i)=0.8*x(i-1)+w(i); i=i+1; endR=xcorr(x);[S,W]=periodogram(x);subplot(3,1,1); plot(x);title('x(n)');axis tight; subplot(3,1,2); plot(R);title('R(m)');axis tight; subplot(3,1,3); plot(S);title('S(W)');axis tight;实验结果:2. 设信号为x (n )=sin (2πf 1n )+2cos (2πf 2n )+ω(n )其中f 1=0.05,f 2=0.12,ω(n )为正态分布白噪声序列,试在N=256和N=1024点时,分别产生随机序列x (n ),画出x (n )的波形并估计x (n )的相关函数和功率谱。

相关文档
最新文档