随机信号分析实验报告二 2
随机信号分析实验报告
《随机信号分析》实验报告二班级_______学号______姓名_______实验二高斯噪声的产生和性能测试1.实验目的(1)掌握加入高斯噪声的随机混合信号的分析方法。
(2)研究随机过程的均值、相关函数、协方差函数和方差。
⒉实验原理(1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。
(2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。
⒊实验报告要求(1)简述实验目的及实验原理。
(2)采用幅度为1,频率为25HZ的正弦信号为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。
试求随机过程的均值、相关函数、协方差函数和方差。
用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。
(3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。
(4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。
(5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。
4、源程序及功能注释(逐句注释)(1):clear all;clc;t=0:320;x=sin(2*pi*t*25);x1=wgn(1,321,0);z=x+x1;y=trapz(t,z);%y=int(z,x,0,t);subplot(3,2,1),plot(z);title('随机信号序列')meany=mean(z);subplot(3,2,3),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(3,2,4),plot(t,vary,'.');title('随机信号方差')cory=xcorr(z,'unbiased');%自相关函数subplot(3,2,2),plot(cory);title('随机信号自相关函数')covv=cov(y);subplot(3,2,5),plot(t,covv,'.');title('随机信号协方差')(2):t=[0:0.0005:0.045];X1=sin(2*pi*25*t);%正弦subplot(3,4,1);plot(t,X1);gridtitle('正弦函数序列');X2=randn(1,length(t)); %产生均值为0,方差σ^2=1,标准差σ=1的正态分布的随机数或矩阵的函数高斯随机信号%X2=normrnd(2,0.04); %高斯随机序列均值,标准差subplot(3,4,2);plot(t,X2);title('高斯噪声序列');X=X1+X2; %混合随机信号X(t)subplot(3,4,3);plot(t,X);gridtitle('混合随机信号');meany1=mean(X1); %原信号的均值subplot(3,4,6),plot(t,meany1);title('原信号均值');vary1=var(X1); %原信号的方差subplot(3,4,7),plot(t,vary1);title('原信号方差');cory1=xcorr(X1,'unbiased'); %原信号的自相关函数subplot(3,4,8),plot(cory1);title('原信号自相关函数');meany=mean(X); %混合信号的均值subplot(3,4,10),plot(t,meany);title('混合信号均值');vary=var(X); %混合信号的方差subplot(3,4,11),plot(t,vary);title('混合信号方差')cory=xcorr(X,'unbiased'); %混合信号的自相关函数subplot(3,4,12),plot(cory);title('混合信号自相关函数')covy=cov(X1,X); %协方差subplot(3,4,4),plot(covy);title('协方差');[f1,xi]=ksdensity(X1); %原信号的概率密度subplot(3,4,5);plot(xi,f1);title('原信号的概率密度分布)');[f2,xi]=ksdensity(X); %混合信号的概率密度subplot(3,4,9);plot(xi,f2);title('混合信号概率密度分布');(3):clcclear allclose allA = imread('dadian.jpg'); % 读入图像V=0.01;Noisy=imnoise(A,'gaussian',0,V);subplot(1,2,1),imshow(A),title('原图像');subplot(1,2,2),imshow(Noisy),title('加噪后图像'); (4):clcclear allclose allt=0:320;A = wavread('alert.wav'); % 读入音频x = double(A);y=awgn(x,2,0.04);%x1 = double(z);%y=x+x1;subplot(2,3,1),plot(y);title('随机信号序列')meany=mean(y);subplot(2,3,2),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(2,3,3),plot(t,vary,'.');title('随机信号方差')cory=xcorr(y,'unbiased');%自相关函数subplot(2,3,4),plot(cory);title('随机信号自相关函数')fy=fft(y);ym=abs(fy);subplot(2,3,5),plot(ym);title('随机信号频谱图')fz=fft(cory);zm=abs(fz);subplot(2,3,6),plot(zm);title('随机信号功率谱密度图')5. 实验总结(手写)可给出实验过程中遇到的问题、解决方法、自己的收获、可否有改进办法等。
随机信号分析实验报告
随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。
随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。
实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。
实验原理:随机信号可以分为离散随机信号和连续随机信号。
离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。
常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。
实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。
实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。
2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。
3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。
4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。
5.计算统计特性:计算随机信号的均值、方差等统计特性。
6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。
实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。
通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。
通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。
通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。
结论:本实验通过对随机信号的分析,加深了对随机信号的理解。
通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。
2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。
《随机信号分析与处理》实验报告完整版(GUI)内附完整函数代码
《随机信号分析与处理》实验报告指导教师:班级:学号:姓名:实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2,均匀分布白噪声在matlab 中,有x=rand (a ,b )产生均匀白噪声序列的函数,通过与语言信号的叠加来分析其特性。
3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。
4、方差定义为随机过程的方差。
方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。
5、自相关函数设任意两个时刻1t ,2t ,定义为随机过程X (t )的自相关函数,简称为相关函数。
自相关函数可正,可负,其绝对值越大表示相关性越强。
6.哈明(hamming)窗(10.100)121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰(10.101)B = 1.3Δf,A = -43dB,D= -6dB/oct.哈明窗本质上和汉宁窗是一样的,只是系数不同。
哈明窗比汉宁窗消除旁瓣的效果好一些而且主瓣稍窄,但是旁瓣衰减较慢是不利的方面。
概率论与随机信号分析2
电子科技大学中山学院学生实验报告学院: 电子信息学院 课程名称: 概率论与随机信号分析一、实验目的1.了解随机信号的产生方法;2.产生实际信号进行验证。
二、实验原理1.均匀分布随机数的产生:①将已有的随机数存入列表,需要时直接使用;②利用物理方法制成随机数发生器,如热噪声、雪崩二极管等;③利用数学方法,产生伪随机数,12(,,...,)n n n n k u f u u u ---=,④线性或混合同余法:()1(mod )/n n n n y Ay B N u y N -=+=选择合适的系数A,B 就可以产生均匀分布随机数U[0,1)。
2.任意分布随机信号的产生。
由均匀分布的随机数可以构造出任意F(x)分布的随机数,最基本的方法是逆变换法。
给定分布函数F(X)(严格单调),由他的反函数F -1()对均匀分布随机变量U 进行变换,可得X=F -1(U),则X 的分布函数正好是F(X)。
3.产生参数为λ的指数分布随机信号,F(x)=1-e -λx 。
产生均匀分布随机数{u i };x i =-lnu i /λ或x i =-ln(1-u i )/λ4.产生正态分布随机信号。
(1)累加近似法:产生12个相互独立的u 1,u 2,…,u 12;计算x j =∑u i -6(2)变换法:①产生两个相互独立的均匀分布随机数u 1,u 2 ②122222x u x u ππ⎧=⎪⎨=⎪⎩5.随机信号的概率统计:用直方图表示随机信号的分布情况,从形状上判断与理论曲线的关系。
三、实验内容与步骤程序代码:close allclear alln=500; %随机数数量x=rand(1,n);subplot(2,1,1);plot(x,'.');cc=sprintf('1.Random Numbers n=%d',n);title(cc);subplot(2,1,2);m1=mean(x); %均值c1=std(x); %标准差m=20; %直方图区间数hist(x,m); %绘制直方图grid oncc=sprintf('Histogram n=%d',n);title(cc);cc=sprintf('mean=%5.2f',m1);gtext(cc);cc=sprintf('C^2=%5.3f',c1*c1);gtext(cc);1、产生均匀分布随机数~U(0,1),并对其进行概率统计和参数估计,显示其均值、方差和概率分布图(运行以上程序可得如下图像):。
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号分析实验报告
实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
随机信号分析实验报告(基于MATLAB语言)
随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
随机信号分析报告实验
实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。
二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: (1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
随机信号分析实验报告
一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
本实验中算法都是一种估算法,条件是N要足够大。
2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。
噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。
②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。
对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。
对微弱信号检测与提取有很多方法,本实验采用多重自相关法。
多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。
即令:式中,是和的叠加;是和的叠加。
对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。
信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。
多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。
随机信号分析实验百度
《随机信号分析》试验报告班级班学号姓名实验一1、熟悉并练习使用下列Matlab 的函数,给出各个函数的功能说明和内部参数的意义,并给出至少一个使用例子和运行结果:1)randn()产生随机数数组或矩阵,其元素服从均值为0,方差为1的正态分布(1)Y = randn 产生一个伪随机数(2)Y = randn(n) 产生n×n的矩阵,其元素服从均值为0,方差为1的正态分布(3)Y = randn(m,n) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布(4)Y= randn([m n]) 产生m×n的矩阵,其元素服从均值为0,方差为1的正态分布选择(2)作为例子,运行结果如下:>> Y = randn(3)Y =1.3005 0.0342 0.97920.2691 0.9913 -0.8863-0.1551 -1.3618 -0.35622)rand()(1)Y = rand(n) 生成n×n 随机矩阵,其元素在(0,1)内(2)Y = rand(m,n) 生成m×n 随机矩阵(3)Y = rand([m n]) 生成m×n 随机矩阵(4)Y = rand(m,n,p,…) 生成m×n×p×…随机矩阵或数组(5)Y = rand([m n p…]) 生成m×n×p×…随机矩阵或数组(6)Y = rand(size(A)) 生成与矩阵A 相同大小的随机矩阵选择(3)作为例子,运行结果如下:>> Y = rand([3 4])Y =0.0579 0.0099 0.1987 0.19880.3529 0.1389 0.6038 0.01530.8132 0.2028 0.2722 0.74683)normrnd()产生服从正态分布的随机数(1)R = normrnd(mu,sigma) 产生服从均值为mu,标准差为sigma的随机数,mu和sigma可以为向量、矩阵、或多维数组。
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号分析实验报告
随机信号分析实验报告目录随机信号分析 (1)实验报告 (1)理想白噪声和带限白噪声的产生与测试 (2)一、摘要 (2)二、实验的背景与目的 (2)背景: (2)实验目的: (2)三、实验原理 (3)四、实验的设计与结果 (4)实验设计: (4)实验结果: (5)五、实验结论 (12)六、参考文献 (13)七、附件 (13)1理想白噪声和带限白噪声的产生与测试一、摘要本文通过利用MATLAB软件仿真来对理想白噪声和带限白噪声进行研究。
理想白噪声通过低通滤波器和带通滤波器分别得到低通带限白噪声和帯通带限白噪声。
在仿真的过程中我们利用MATLAB工具箱中自带的一些函数来对理想白噪声和带限白噪声的均值、均方值、方差、功率谱密度、自相关函数、频谱以及概率密度进行研究,对对它们进行比较分析并讨论其物理意义。
关键词:理想白噪声带限白噪声均值均方值方差功率谱密度自相关函数、频谱以及概率密度二、实验的背景与目的背景:在词典中噪声有两种定义:定义1:干扰人们休息、学习和工作的声音,引起人的心理和生理变化。
定义2:不同频率、不同强度无规则地组合在一起的声音。
如电噪声、机械噪声,可引伸为任何不希望有的干扰。
第一种定义是人们在日常生活中可以感知的,从感性上很容易理解。
而第二种定义则相对抽象一些,大部分应用于机械工程当中。
在这一学期的好几门课程中我们都从不同的方面接触到噪声,如何的利用噪声,把噪声的危害减到最小是一个很热门的话题。
为了加深对噪声的认识与了解,为后面的学习与工作做准备,我们对噪声进行了一些研究与测试。
实验目的:了解理想白噪声和带限白噪声的基本概念并能够区分它们,掌握用MATLAB 或c/c++软件仿真和分析理想白噪声和带限白噪声的方法,掌握理想白噪声和带限白噪声的性质。
三、实验原理所谓白噪声是指它的概率统计特性服从某种分布而它的功率谱密度又是均匀的。
确切的说,白噪声只是一种理想化的模型,因为实际的噪声功率谱密度不可能具有无限宽的带宽,否则它的平均功率将是无限大,是物理上不可实现的。
随机信号分析 MATLAB实验2
随机信号分析与处理实验报告2实验二 随机信号处理的工程编程实现一、实验目的1、熟悉各种随机信号分析及处理方法。
2、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理1.正态分布:其概率密度为221()()exp ,0,122x m f x m σσπσ⎡⎤--==⎢⎥⎣⎦Matlab 中的功能函数为: x=normpdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normpdf(x,mu,sigma),可以简写为 x=normpdf(x);正态分布概率分布函数Matlab 中的功能函数为; x=normcdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normcdf(x,mu,sigma),可以简写为 x=normcdf(x). 2.均匀分布0-1分布,其概率密度为101()0x f x <<⎧=⎨⎩其他其概率密度y=unifpdf(x,a,b)计算在[a,b]区间上均匀分布概率密度函数在x 处的值,x,a ,b 为矢量或者标量;均匀分布概率分布函数y=unifcdf(x,a,b)计算在[a,b]区间上均匀分布概率分布函数在x 处的值,x,a ,b 为矢量或者标量。
3.指数分布:其概率密度为1()e x p (),2x f x μμμ=-= 其概率密度y=exppdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量;指数分布概率分布函数y=expcdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量.4.瑞利分布概率密度y=raylpdf(x,a)计算参数为a(δ)的瑞利分布概率密度函数在x 处的值,x,a 为矢量或者标量;瑞利分布概率f 分布函数y=raylcdf(x,a)计算参数为a(δ)的瑞利分布概率分布函数在x 处的值,x,a 为矢量或者标量。
北理工随机信号分析实验报告
本科实验报告实验名称:随机信号分析实验实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。
2、实现随机序列的数字特征估计。
二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=N y x n n /=序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯; 3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。
2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn 用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。
随机信号处理实验报告二
实验二 随机信号处理的工程编程实现030841103 钱进红一、实验目的1、熟悉各种随机信号分析及处理方法。
2、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理 1平滑滤波平滑滤波可以与中值滤波结合使用,对应的线性平滑器可以仅仅用低阶的低通滤波器(如果采用高阶的系统,则将抹掉信号中应该保存的不连续性)。
2、IIR 数字滤波器设计原理利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。
3、协方差设两个随机变量X 和Y ,定义: 为X 和Y 的协方差。
其相关函数为:)()(),cov(Y D X D Y X rxy=由此可见协方差的相关性与X 和Y 是密切相关的,表征两个函数变化的相似性4、互相关互相关函数定义为:如果X (t )与Y (t )是相互独立的,则一定是不相关的。
反之则不一定成立。
它是两个随机过程联合统计特性中重要的数字特征。
5、频率响应反映仪器对频率动态反应的重要参数。
时间序列经过滤波处理后,原来序列中各种频率振动的振幅会受到削弱。
各种频率振动过滤前后振幅之比值称为频率响应。
它反映输出信号随输入信号的频率变化而变化的情况。
6、白噪声的检测与分析白噪声信号是一个均值为零的随机过程,任一时刻是均值为零的随机变量。
而服从高斯分布的白噪声即称为高斯白噪声。
三、实验内容基于matlab 的随机语音信号的平滑滤波、IIR 高通/低通/带通/带阻滤波、概率密度、互相关、最大似然估计、产生白噪声并求其平均功率谱密度及自相关、求混合噪声自相关及平均功率谱密度。
四、实验结果及分析 1.平滑滤波由图知,经过平滑滤波后,原始信号的峰值变化减小了,信号的频谱变得平滑了很多。
说明平滑滤波对信号具有很好的平滑效果。
随机信号分析实验报告(基于MATLAB语言)
随机信号分析实验报告——基于MATLAB语言姓名:_ 班级:_ 学号:专业:目录实验一随机序列的产生及数字特征估计2实验目的 2实验原理 2实验内容及实验结果 3实验小结 6实验二随机过程的模拟与数字特征7实验目的7实验原理7实验内容及实验结果8实验小结11实验三随机过程通过线性系统的分析12实验目的12实验原理12实验内容及实验结果13实验小结17实验四窄带随机过程的产生及其性能测试18实验目的18实验原理18实验内容及实验结果18实验小结23实验总结23实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
四川大学随机信号分析实验报告
随机信号分析基础实验报告课程随机信号分析基础实验题目随机信号通过线性系统学生姓名笔墨东韵专业电子信息科学与技术一、实验目的1.理解白噪声通过线性系统后统计特性的变化规律。
2.熟悉几种常用的时间序列。
二、实验内容1.白噪声通过线性系统后的统计特性分析。
(1)白噪声通过低通系统后的统计特性变化:对比输入输出的波形,自相关函数,功率谱密度,功率,互相关函数等;(2)白噪声通过不同带宽的低通系统后的概率密度;(3)窄带随机过程的产生与特性分析。
(调制,滤波)2.典型时间序列模型分析。
(1)模拟产生AR,ARMA模型序列,画出波形,并估计其均值,方差,自相关函数,功率谱密度;*(2)模拟产生指定功率密度的正态随机序列。
三、实验设备Matlab软件四、实验步骤以及实验结果分析1.白噪声通过线性系统后的统计特性分析。
>>l=(0:length(a2)-1)*200/length(a>>l=(0:length(a2)-1)*200/length(a2.典型时间序列的模拟分析模拟产生AR,ARMA模型序列:五、实验收获(本次实验的感受,对你的哪方面技能或知识有提高。
)本次实验我们收获很多,不仅理解了白噪声通过线性系统后统计特性的变化规律,同时也熟悉了如何使用matlab求信号的波形,自相关函数,功率谱密度,功率,互相关函数等等的统计特性。
深刻地理解到了线性系统对白噪声的影响。
除此之外,我们也深入地了解了AR 和ARMA模型序列。
最重要的是让我们加深了对课本知识的理解。
总之,本次实验我们受益匪浅。
实验二 随机信号的仿真与分析
实验二随机信号的仿真与分析【实验目的】:1.利用计算机仿真随机信号,考察其数字特征,以此加深对满足各种分布的随机信号的理解2.熟悉常用的信号处理仿真软件平台:matlab.【实验环境】硬件实验平台:通用计算机软件实验平台:matlab6.5【实验任务】1.生成满足各种概率分布的仿真随机信号2.自己编写程序计算各种概率分布的仿真随机信号的各种特征3.撰写实验报告【实验原理】1.随机信号的产生和定义随机信号是随机变量在时间上推进产生的过程量,它同时具有过程性和不确定性。
定义如下:给定参量集T与概率空间(Ω, F, P),若对于每个Tt∈,都有一个定义在(Ω, F, P)上的实随机变量X(t)与之对应,就称依赖于参量t的随机变量族{}TttX∈),(为一(实)随机过程或随机信号。
2.高斯分布随机信号统计分布是正态分布(高斯分布)的随机信号为高斯分布随机信号。
高斯分布的随机变量概率密度函数满足下式:22()21()x mXf x eσ-=3. 均匀分布随机信号统计分布是均匀分布的随机信号为均匀分布随机信号。
均匀分布的随机变量概率密度函数满足下式:1(),X f x a x b b a=<<-4. 正弦随机信号给定具有某种概率分布的振幅随机变量A 、角频率随机变量Ω与相位随机变量Θ,(具体概率分布与特性视应用而定),以(时间)参量t 建立随机变量:)sin(),(Θ+Ω==t A s t W W t 。
于是,相应于某个参量域T 的随机变量族{}T t W t ∈,为正弦随机信号(或称为正弦随机过程)。
5. 贝努里随机信号贝努里随机变量X(s)基于一个掷币实验(s 表示基本结果事件):1表示s 为正面,0表示s 不为正面;s 不为正面的概率为P[X(s)=1]=p ,s 为正面的概率为P[X(s)=0]=q ,其中p+q=1。
若无休止地在t=n (n=0, 1, 2, …)时刻上,独立进行(相同的)掷币实验构成无限长的随机变量序列:,...}...,,,{,321n X X X X ,其中n X 与n 和s 都有关,应记为X(n,s),于是,⎩⎨⎧≠=====正面时刻,在正面时刻,在,,s n t s n t s n X X n 01),(而且有概率:q s n X P ps n X P ====]0),([]1),([其中, p+q=1。
随机信号分析实验报告
.随机信号分析实验报告实验一 各种分布随机数的产生一、 实验目的在很多系统仿真的过程中,需要产生不同分布的随机变量。
利用计算机可以很方便地产生不同分布的随机变量,各种分布的随机变量的基础是均匀分布的随机变量。
有了均匀分布的随机变量,就可以用函数变换等方法得到其他分布的随机变量。
二、 实验内容产生均匀分布的随机数、高斯分布的随机数和其它分布的随机数。
三、 实验原理1. 均匀分布随机数的产生原理产生伪随机数的一种实用方法是同余法,它利用同余运算递推产生伪随机数序列。
最简单的方法是加同余法)(mod 1M c y y n n +=+M y x n n 11++=为了保证产生的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。
加同余法虽然简单,但产生的伪随机数效果不好。
另一种同余法为乘同余法,它需要两次乘法才能产生一个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ M y x n n 11++=式中,a 为正整数。
用加法和乘法完成递推运算的称为混合同余法,即)(mod 1M c ay y n n +=+ M y x n n 11++=用混合同余法产生的伪随机数具有较好的特性,一些程序库中都有成熟的程序供选择。
常用的计算语言如Basic 、C 和Matlab 都有产生均匀分布随机数的函数可以调用,只是用各种编程语言对应的函数产生的均匀分布随机数的范围不同,有的函数可能还需要提供种子或初始化。
Matlab 提供的函数rand()可以产生一个在[0,1]区间分布的随机数,rand(2,4)则可以产生一个在[0,1]区间分布的随机数矩阵,矩阵为2行4列。
Matlab 提供的另一个产生随机数的函数是random('unif',a,b,N,M),unif 表示均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的行和列。
2. 随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系用显式表达,那么就可以利用一种分布的随机变量通过变换得到另一种分布的随机变量。
随机信号分析实验2
1.用Matlab程序编写一个数学期望为零方差为1的高斯随机过程样本, 并用直接估计法求自相关函数。
function self_relation(N)xn=random('norm',0,1,1,N);Rx=xcorr(xn,'biased');m=-N+1:1:N-1;plot(m,Rx)axis([-N+1,N-1,-0.5,1.5])clc;clear all;close all;subplot(2,1,1)self_relation(256)subplot(2,1,2)self_relation(1024)2.仿真一个数学期望为零, 方差为1 的高斯随机过程样本, 用FFT估计法求自相关函数function fft_self_relation(N)xn=random('normal',0,1,1,N);Xk=fft(xn,2*N);Rx=ifft(abs(Xk).^2/N);m=-N:1:N-1;plot(m,fftshift(Rx));axis([-N,N-1,-0.5,1.5])clc;clear all;close all;subplot(2,1,1)fft_self_relation(256)subplot(2,1,2)fft_self_relation(1024)3.FFT法求随机序列自相关函数clc;clear all;close all;N=256;f0=4;t=0:1:N-1;m=-N:1:N-1;xln=random('normal',0,1,N,8);Xlk=fft(xln,2*N);Rlx=ifft(abs(Xlk).^2/N);A=random('unif',0,1,1,8)*2*pi;for k=1:1:8x2n(:,k)=cos(2*pi*f0*t/N+A(k));endxn=xln+x2n;X2k=fft(x2n,2*N);R2x=ifft(abs(X2k).^2/N);Xk=fft(xn,2*N);Rx=ifft(abs(Xk).^2/N);subplot(3,1,1)plot(m,fftshift(Rlx))axis([-N,N-1,-0.5,1.5])subplot(3,1,2)plot(m,fftshift(R2x))axis([-N,N-1,-0.5,1.5])subplot(3,1,3)plot(m,fftshift(Rx))axis([-N,N-1,-0.5,1.5])4.直接法(周期图法)求随机序列的功率谱clc;clear all;close all;N=1024;fs=1000;t=(0:1:N-1)/fs;fai=random('unif',0,1,1,2)*2*pi;xn=cos(2*pi*30*t+fai(1))+3*cos(2*pi*100*t+fai(2))+randn(1,N);Sx=abs(fft(xn)).^2/N;f=(0:1:N/2-1)*fs/N;plot(f,10*log10(Sx(1:N/2)));5.用periodogram函数估计随机信号的功率该函数即为matlab提供周期图法频率普估计的函数clc;clear all;close all;N=1024;fs=1000;t=(0:1:N-1)/fs;fai=random('unif',0,1,2,8)*2*pi;xln=random('normal',0,1,N,8);for k=1:1:8xn(:,k)=cos(2*pi*30*t'+fai(1,k))+3*cos(2*pi*100*t'+fai(2,k))+xln(:,k) ;Sx(:,k)=periodogram(xn(:,k));endESx=mean(Sx,2);f=(0:1:N/2-1)*fs/N;subplot(2,1,1)plot(f,10*log10(Sx(1:N/2)));subplot(2,1,2)plot(f,10*log10(ESx(1:N/2)));6.用自相关函数估计随机函数的功率谱clc;clear all;close all;N=1024;fs=1000;t=(0:1:N-1)/fs;fai=random('unif',0,1,1,2)*2*pi;xn=cos(2*pi*30*t+fai(1))+3*cos(2*pi*100*t+fai(2))+randn(1,N); Rxx=xcorr(xn,'biased');Sx=abs(fft(Rxx));f=(0:1:N-1)*fs/N/2;plot(f,10*log10(Sx(1:N)));7.用分段平均和分窗平滑法估计随机信号的频率普clc;clear all;close all;N=1024;fs=1000;t=(0:1:N-1)/fs;fai=random('unif',0,1,1,2)*2*pi;xt=cos(2*pi*30*t+fai(1))+3*cos(2*pi*100*t+fai(2))+randn(1,N); Nseg=256;win=rectwin(Nseg);Sx1=abs(fft(win'.*xt(1:Nseg),Nseg).^2)/Nseg;Sx2=abs(fft(win'.*xt(1*Nseg+1:2*Nseg),Nseg).^2)/Nseg;Sx3=abs(fft(win'.*xt(2*Nseg+1:3*Nseg),Nseg).^2)/Nseg;Sx4=abs(fft(win'.*xt(3*Nseg+1:4*Nseg),Nseg).^2)/Nseg;Sx=10*log10((Sx1+Sx2+Sx3+Sx4)/4);f=(0:Nseg/2-1)*fs/Nseg;plot(f,Sx(1:Nseg/2));grid on;8. 用Welch法估计上题随机信号功率谱注:Welch法将数据分段使各段相互重叠, 再使用加窗法实现Welch法的Matlab函数为:psd和pwelchclc;clear all;close all;N=1024;fs=1000;t=(0:1:N-1)/fs;fai=random('unif',0,1,1,2)*2*pi;xn=cos(2*pi*30*t+fai(1))+3*cos(2*pi*100*t+fai(2))+randn(1,N); Nseg=256;win=hanning(Nseg);noverlap=Nseg/2;f=(0:Nseg/2)*fs/Nseg;Sx1=psd(xn,Nseg,fs,win,noverlap,'none');Sx2=pwelch(xn,win,noverlap,Nseg,fs,'onesided')*fs/2;subplot(2,1,1)plot(f,10*log10(Sx1));grid on;subplot(2,1,2)plot(f,10*log10(Sx2));grid on;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《随机信号分析》实验报告二班级:学号:姓名:实验二高斯噪声的产生和性能测试1.实验目的(1)掌握加入高斯噪声的随机混合信号的分析方法。
(2)研究随机过程的均值、相关函数、协方差函数和方差。
⒉实验原理(1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。
(2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。
⒊实验报告要求(1)简述实验目的及实验原理。
(2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。
为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。
试求随机过程的均值、相关函数、协方差函数和方差。
用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。
(3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。
(4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。
(5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。
4、源程序及功能注释(2)源程序:clear all;clc;t=0:320; %t=0:320x=sin(2*pi*t/25); %x=sin(2*p1*t/25)x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbwz=x+x1; %z=x+x1;y=trapz(t,z); %y=int(z,x,o,t),返回到从0到t的定积分z,积分变量为xsubplot(2,3,1),plot(z); %将图像窗口分为6个画图区,在第一个区域画图,以z为纵坐标title('随机信号序列') %命名图像meany=mean(z); %返回y中表示的平均值subplot(2,3,2),plot(t,meany,'.'); %在第二个区域画图title('随机信号均值') %命名vary=var(y); %方差subplot(2,3,3),plot(t,vary,'.'); %在第三个区域作图title('随机信号方差') %命名cory=xcorr(z,'unbiased');%自相关函数subplot(2,3,4),plot(cory); %自相关函数title('随机信号自相关函数') %命名covv=cov(y);%协方差subplot(2,3,5),plot(t,covv,'.'); %在第五个区域作图title('随机信号协方差') %命名(3)源程序:t=[0:0.0005:0.045]; %t=[0:0.0005:0.045]X1=sin(2*pi*25*t); %正弦subplot(3,4,1); %将图像窗口分为12个画图区,在第一个区域画图,以z为纵坐标plot(t,X1);grid %以t为横坐标,X1为纵坐标,在画图中设置网格线title('正弦函数序列');%命名X2=randn(1,length(t)); %产生均值为0,方差σ^2=1,标准差σ=1的正态分布的随机数或矩阵的函数高斯随机信号%X2=normrnd(2,0.04); %高斯随机序列均值,标准差subplot(3,4,2); %在第二个区域作图plot(t,X2);title('高斯噪声序列'); %命名X=X1+X2; %混合随机信号X(t)subplot(3,4,3); %在第三个区域作图plot(t,X);gridtitle('混合随机信号'); %命名meany1=mean(X1); %原信号的均值subplot(3,4,5),plot(t,meany1); %在第六个区域作图title('原信号均值'); %命名vary1=var(X1); %原信号的方差subplot(3,4,6),plot(t,vary1); %在第6个区域作图title('原信号方差'); %命名cory1=xcorr(X1,'unbiased'); %原信号的自相关函数subplot(3,4,7),plot(cory1); %在第七个区域作图title('原信号自相关函数'); %命名meany=mean(X); %混合信号的均值subplot(3,4,9),plot(t,meany); %在第九个区域作图title('混合信号均值'); %命名vary=var(X); %混合信号的方差subplot(3,4,10),plot(t,vary); %在第十个区域作图title('混合信号方差') %命名cory=xcorr(X,'unbiased'); %混合信号的自相关函数subplot(3,4,11),plot(cory); %在第十一个区域作图title('混合信号自相关函数') %命名covy=cov(X1,X); %协方差subplot(3,4,4),plot(covy);title('协方差'); %命名[f1,xi]=ksdensity(X1); %原信号的概率密度subplot(3,4,5);plot(xi,f1);title('原信号的概率密度分布)'); %命名[f2,xi]=ksdensity(X); %混合信号的概率密度subplot(3,4,9); %在第九个区域内作图plot(xi,f2);title('混合信号概率密度分布') %图像命名(4)源程序:[I,M]=imread('大殿.jpg');J=imnoise(I,'gaussian',0,0.01);subplot(2,1,1),imshow(I,M),title('大殿1');subplot(2,1,2),imshow(J,M),title('大殿2');K=zeros(242,308);i=1:100;J=imnoise(I,'gaussian',0,0.01);J1=im2double(J);K=K+J1;endK=K/100;(5)源程序:clc;%清除所有变量clear all;%清屏t=[0:0.005:0.5]; %t为0-0.045的由0开始每隔0.0005一个点的数组A=wavread('F:\好好学习\随机信号\实验\实验2\alert.wav '); %读取音频信号subplot(3,3,1),plot(A); %所画图像共有3行3列,该图是第1个,画出A的图像title('音频信号'); %显示图像名称“音频信号”noise=normrnd(2,0.2); %生成均值为2,方差为0.04的高斯噪声x=A+noise; %将音频与噪声混合subplot(3,3,3),plot(x); %所画图像共有3行3列,该图是第3个,画出x的图像title('混合信号'); %显示图像名称“混合信号”meany=mean(x); %计算混合信号的均值subplot(3,3,4),plot(t,meany); %所画图像共有3行3列,该图是第4个,画出mean-t的图像title('混合信号均值'); %显示图像名称“混合信号均值”vary=var(x); %计算混合过程的方差subplot(3,3,5),plot(t,vary); %所画图像共有3行3列,该图是第5个,画出vary-t 的图像title('混合信号方差'); %显示图像名称“混合信号方差”cory=xcorr(x,'unbiased');%计算混合信号的自相关函数subplot(3,3,6),plot(cory); %所画图像共有3行3列,该图是第6个,画出cory 的图像title('混合信号自相关函数'); %显示图像名称“混合信号自相关函数”covv=cov(x);%计算混合信号的协方差subplot(3,3,7),plot(t,covv,'.'); %所画图像共有3行3列,该图是第7个,画出covv-t 的图像title('混合信号协方差'); %显示图像名称“混合信号协方差”fx=fft(x);%求x的离散傅里叶变换ym=abs(x);%求x的绝对值subplot(3,3,8),plot(ym);%所画图像共有3行3列,该图是第8个title('混合信号频谱图')%显示标题为:混合信号频谱图fz=fft(cory);%求cory的离散傅里叶变换zm=abs(fz);%求fz的绝对值subplot(3,3,9),plot(zm);%所画图像共有2行3列,该图是第6个,画出zm的图像title('混合信号功率谱密度图')%显示标题为:混合信号功率谱密度图5 、实验结果(2)结果:(3)结果:(4)结果:6、实验总结。