初一数学计算题专题复习
七年级数学加减乘除乘方混合运算题

七年级数学加减乘除乘方混合运算题
一、知识点回顾
1. 运算顺序
先算乘方,再算乘除,最后算加减。
同级运算,从左到右进行。
如果有括号,先算括号里面的(先小括号,再中括号,最后大括号)。
2. 幂的运算性质
同底数幂相乘:公式(公式,公式为正整数)。
同底数幂相除:公式(公式,公式,公式为正整数且公式)。
幂的乘方:公式(公式,公式为正整数)。
二、典型例题
1. 计算:公式
解析:
先算乘方:公式。
再算乘法:公式。
最后算加减:公式。
2. 计算:公式
解析:
先算乘方:
公式。
公式。
再算乘除:
公式。
公式。
最后算加减:
公式。
先通分,分母为12,公式,公式。
则公式。
3. 计算:公式
解析:
先算小括号里面的:
公式。
公式。
再算中括号里面的:
公式。
最后算乘法:
公式。
三、练习题
1. 计算:公式
答案:
先算乘方:公式。
再算乘法:公式。
最后算加减:公式。
2. 计算:公式
答案:
先算乘方:
公式,公式。
再算乘除:
公式。
最后算加减:
公式。
通分计算:公式。
3. 计算:公式
答案:
先算小括号里面的:
公式,公式,公式。
再算中括号里面的:
公式。
最后算乘法:
公式。
(精品)七年级数学计算题大全

七年级数学计算题大全第一部分:数的运算一、加法1. 基础加法:计算 23 + 45 = ?2. 进位加法:计算 57 + 48 = ?3. 多位数加法:计算 123 + 456 = ?二、减法1. 基础减法:计算 56 23 = ?2. 借位减法:计算 87 45 = ?3. 多位数减法:计算 123 456 = ?三、乘法1. 基础乘法:计算7 × 8 = ?2. 两位数乘法:计算23 × 45 = ?3. 多位数乘法:计算123 × 456 = ?四、除法1. 基础除法:计算56 ÷ 7 = ?2. 两位数除法:计算456 ÷ 23 = ?3. 多位数除法:计算5 ÷ 456 = ?五、分数的运算1. 分数加法:计算 1/2 + 3/4 = ?2. 分数减法:计算 3/4 1/2 = ?3. 分数乘法:计算1/2 × 3/4 = ?4. 分数除法:计算3/4 ÷ 1/2 = ?六、小数的运算1. 小数加法:计算 1.23 + 4.56 = ?2. 小数减法:计算 5.67 2.34 = ?3. 小数乘法:计算1.23 ×4.56 = ?4. 小数除法:计算5.67 ÷ 2.34 = ?七、整数与分数、小数的混合运算1. 整数加分数:计算 3 + 1/2 = ?2. 整数减分数:计算 5 3/4 = ?3. 整数乘分数:计算2 × 3/4 = ?4. 整数除分数:计算4 ÷ 3/2 = ?5. 分数加小数:计算 1/2 + 0.25 = ?6. 分数减小数:计算 3/4 0.5 = ?7. 分数乘小数:计算1/2 × 0.5 = ?8. 分数除小数:计算1/2 ÷ 0.5 = ?七年级数学计算题大全第一部分:数的运算一、加法1. 基础加法:计算 23 + 45 = ?2. 进位加法:计算 57 + 48 = ?3. 多位数加法:计算 123 + 456 = ?二、减法1. 基础减法:计算 56 23 = ?2. 借位减法:计算 87 45 = ?3. 多位数减法:计算 123 456 = ?三、乘法1. 基础乘法:计算7 × 8 = ?2. 两位数乘法:计算23 × 45 = ?3. 多位数乘法:计算123 × 456 = ?四、除法1. 基础除法:计算56 ÷ 7 = ?2. 两位数除法:计算456 ÷ 23 = ?3. 多位数除法:计算5 ÷ 456 = ?五、分数的运算1. 分数加法:计算 1/2 + 3/4 = ?2. 分数减法:计算 3/4 1/2 = ?3. 分数乘法:计算1/2 × 3/4 = ?4. 分数除法:计算3/4 ÷ 1/2 = ?六、小数的运算1. 小数加法:计算 1.23 + 4.56 = ?2. 小数减法:计算 5.67 2.34 = ?3. 小数乘法:计算1.23 ×4.56 = ?4. 小数除法:计算5.67 ÷ 2.34 = ?七、整数与分数、小数的混合运算1. 整数加分数:计算 3 + 1/2 = ?2. 整数减分数:计算 5 3/4 = ?3. 整数乘分数:计算2 × 3/4 = ?4. 整数除分数:计算4 ÷ 3/2 = ?5. 分数加小数:计算 1/2 + 0.25 = ?6. 分数减小数:计算 3/4 0.5 = ?7. 分数乘小数:计算1/2 × 0.5 = ?8. 分数除小数:计算1/2 ÷ 0.5 = ?八、应用题1. 求解问题:小华有 3 个苹果,小明有 5 个苹果,他们一共有多少个苹果?2. 面积问题:一个长方形的长是 8 厘米,宽是 5 厘米,求这个长方形的面积。
七年级数学专题训练:整式的加减计算题100题(含答案)

题减整式的加计算1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。
5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。
初一上册计算题及答案

初一上册计算题及答案【篇一:初一数学上册计算题及答案】class=txt>[-3]+[-2]+[-1]+0+1+2= -3[-301]+125+301+[-75]= 50[-1]+[-1/2]+3/4+[-1/4]= -1[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25[-26.54]+[-6.14]+18.54+6.14= -81.125+[-17/5]+[-1/8]+[-0.6]= -3[-98+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)5+21*8/2-6-5968/21-8-11*8+61-2/9-7/9-564.6-(-3/4+1.6-4-3/4)1/2+3+5/6-7/12[2/3-4-1/4*(-0.4)]/1/3+222+(-4)+(-2)+4*3-2*8-8*1/2+8/1/8(2/3+1/2)/(-1/12)*(-12)(-28)/(-6+4)+(-1)2/(-2)+0/7-(-8)*(-2)(1/4-5/6+1/3+2/3)/1/218-6/(-3)*(-2)(5+3/8*8/30/(-2)-3(-84)/2*(-3)/(-6)1/2*(-4/15)/2/3-3x+2y-5x-7y1、我国研制的“曙光3000超级服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学计数法可表示为( )2、下面四个图形每个都由六个相同的小正方形组成,折叠后能围成正方体的是()3、下列各组数中,相等的一组是()a.-1和- 4+(-3) b. |-3|和-(-3) c. 3x2-2x=x d. 2x+3x=5x24.巴黎与北京的时差是-7(正数表示同一时刻比北京早的时数),若北京时间是7月2日14:00时整,则巴黎时间是()a.7月2日21时b.7月2日7时c.7月1日7时d.7月2日5时磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为a. 1000元 b. 900元c. 800元 d. 700元() 6、某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台售价为()a. 0.7a 元b. 0.3a元c. 元d.元7、两条相交直线所成的角中()a.必有一个钝角b.必有一个锐角c.必有一个不是钝角d.必有两个锐角8、为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33 25 28 26 25 31.如果该班有45名学生,根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为 ( )a.900个b.1080个c.1260个d.1800个9、若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是( )a. 3b. –3c. –4d. 410、已知:│m + 3│+3(n-2)2=0,则m n值是 ( )a. –6b.8c. –9d. 911. 下面说法正确的是 ()a. 过直线外一点可作无数条直线与已知直线平行b. 过一点可作无数条直线与已知直线垂直c. 过两点有且只有二条直线d. 两点之间,线段最短.12、正方体的截面中,边数最多的多边形是()a.四边形b.五边形 c.六边形 d. 七边形二、填空题15、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯的卖报收入是___________.16、已知:如图,线段ab=3.8㎝,ac=1.4㎝,d为cb的中点,a c db 则db= ㎝17、设长方体的面数为f, 棱数为v,顶点数为e,则f + v + e=___________.18.用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:则第(4)个图案中有白色地面砖________块;第n(1)(2)(3)个图案中有白色地面砖_________块.19. 一个袋中有白球5个,黄球4个,红球1个(每个球除颜色外其余都相同),摸到__________球的机会最小20、一次买10斤鸡蛋打八折比打九折少花2元钱,则这10斤鸡蛋的原价是________元.21、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:……第一次捏合后第二次捏合后第三次捏合后这样捏合到第次后可拉出128根细面条。
专题 有理数的混合运算计算题(50题)(解析版)-七年级数学上册

七年级上册数学《第一章有理数》专题有理数的混合运算的计算题(50题)1.(2022秋•晋安区期末)计算:(1)7﹣(﹣6)+(﹣4)×(﹣3);(2)﹣3×(﹣2)2﹣1+(−12)3.【分析】(1)根据有理数的乘法和加减法可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:(1)7﹣(﹣6)+(﹣4)×(﹣3)=7+6+12=25;(2)﹣3×(﹣2)2﹣1+(−12)3=﹣3×4﹣1+(−18)=﹣12﹣1+(−18)=﹣1318.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.(2022春•香坊区校级期中)计算:(1)(−23)﹣(+13)﹣|−34|﹣(−14);(2)﹣12−15×[2﹣(﹣3)2].【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题.【解答】解:(1)(−23)﹣(+13)﹣|−34|﹣(−14)=(−23)+(−13)−34+14=−32;(2)﹣12−15×[2﹣(﹣3)2]=﹣1−15×(﹣7)=﹣1+75=25.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(2023春•香坊区校级期中)计算:(1)(13−12+14)×24(2)﹣23×34−(−3)3÷9【分析】(1)根据乘法分配律简便计算即可求解.;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(13−12+14)×24=13×24−12×24+14×24=8﹣12+6=2;(2)﹣23×34−(−3)3÷9=﹣8×34+27÷9=﹣6+3=﹣3.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.4.(2023•西乡塘区二模)计算:6×(3−5)+(−2)2+14.【分析】先算乘方,再算乘法,然后算加减法即可.【解答】解:6×(3−5)+(−2)2+14=6×(﹣2)+4+14=﹣12+4+14=﹣734.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.5.(2023•南宁三模)计算:(﹣1)3+8÷22+|4﹣7|×13.【分析】先算乘方,再算乘除法,最后算加法即可.【解答】解:(﹣1)3+8÷22+|4﹣7|×13=(﹣1)+8÷4+3×13=(﹣1)+2+1=2.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.6.(2023•柳州三模)计算(−1)2−6÷(−2)×|−13|.【分析】先算乘方和绝对值,再算乘除,最后算加减.【解答】解:原式=1﹣(﹣3)×13=1+1=2.【点评】本题考查了有理数的混合运算,掌握有理数的运算顺序是解决本题的关键.7.(2023春•浦东新区期末)计算:﹣23+|﹣5|﹣18×(−13)2.【分析】先计算立方、绝对值和平方,再计算乘法,最后计算加减.【解答】解:﹣23+|﹣5|﹣18×(−13)2.=﹣8+5﹣18×19=﹣8+5﹣2=﹣5.【点评】此题考查了有理数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.8.(2023•武鸣区二模)计算:−12023+(−4)÷12−(1−32).【分析】先算括号里面的,再算乘方,除法,最后算加减即可.【解答】解:原式=﹣12023+(﹣4)÷12−(1﹣9)=﹣12023+(﹣4)÷12−(﹣8)=﹣1+(﹣4)×2+8=﹣1﹣8+8=﹣1.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.9.(2023春•松江区期中)计算:−32−42÷|−6|+8×(−12)3.【分析】利用乘方运算、绝对值的定义和有理数的混合运算法则计算.【解答】解:−32−42÷|−6|+8×(−12)3=﹣9﹣42÷6+8×(−18)=﹣9﹣7﹣1=﹣17.【点评】本题考查了有理数的混合运算,解题的关键是掌握乘方运算、绝对值的定义和有理数的混合运算法则.10.(2022秋•万源市校级期末)﹣22+|5﹣8|+24÷(﹣3)×13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3−83=−113.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.(2022春•徐汇区校级期末)计算:−24−14×[2−(−2)2].【分析】利用有理数的混合运算法则进行计算即可.【解答】解:原式=﹣16−14×(2﹣4)=﹣16−14×(﹣2)=﹣16+12=﹣1512.【点评】本题考查有理数的混合运算,熟练掌握相关运算法则是解题的关键.12.(2023春•黄浦区期中)计算:(−1112+34)×(−42)+(−213)÷3.5【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=(−1112+912)×(﹣16)−73×27=−16×(﹣16)−23=83−23=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2023春•闵行区期中)计算:2×(−12)3−3×(−12)2+3×(−12)−1.【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:原式=2×(−18)﹣3×14−32−1=−14−34−32−1=﹣312.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春•黄浦区期中)计算:(−1112−34)×(−42)+(−213)÷3.5.【分析】先算括号里面的,再算乘除,最后算加减即可.【解答】解:原式=(−1112−912)×(﹣16)+(﹣213)÷3.5=−53×(﹣16)−73×27=803−23=783=26.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解题的关键.15.(2023春•雁峰区校级期末)计算:(−3)4÷[2−(−7)]+6×(12−1).【分析】先算乘方和括号内的式子,再算括号外的乘除法,最后算加法即可.【解答】解:(−3)4÷[2−(−7)]+6×(12−1)=81÷(2+7)+6×(−12)=81÷9+(﹣3)=9+(﹣3)=6.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.(2023春•黄浦区期末)计算:(−56+34)×(−42)+(−213)÷3.5.【分析】有理数的混合运算,先算乘方,再算乘除再算加减,有括号的先算括号的,从而可求出最后结果.【解答】解:(−56+34)×(−42)+(−213)÷3.5=−10+912×(−16)+(−73)×27=−13×(−4)−23=43−23=23.【点评】本题主要考查了有理数的混合运算.本题的易错点是对于负号的计算处理.17.(2023•贺州一模)计算:﹣12023+8÷(﹣2)2﹣|﹣4|×5.【分析】按照有理数的运算法则和运算顺序进行计算即可.【解答】解:原式=﹣1+8÷4﹣4×5=﹣1+2﹣20=﹣19.【点评】本题考查了绝对值和含有乘方的有理数的混合运算,掌握相关运算法则是解题的关键.最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.(2023•防城港二模)计算:−14×[(−8)+2÷12]−|−3|.【分析】根据有理数的混合运算法则进行计算即可.【解答】解:原式=﹣1×(﹣8+2×2)﹣3=﹣1×(﹣8+4)﹣3=﹣1×(﹣4)﹣3=4﹣3=1.【点评】本题考查有理数的混合运算,其相关运算法则是基础且重要知识点,必须熟练掌握.19.(2023春•浦东新区期末)计算:﹣14+(1﹣0.5)×13×(﹣2)2.【分析】首先计算乘方和小括号里面的减法,然后计算乘法,最后计算加法,求出算式的值即可.【解答】解:﹣14+(1﹣0.5)×13×(﹣2)2=﹣1+12×13×4=﹣1+23=−13.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.21.(2022秋•汝阳县期末)−14−(1−0.5)×(−113)×[2−(−3)2].【分析】原式先计算乘方运算以及括号中的运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1−12×(−43)×(2﹣9)=﹣1−143=−173.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.(2022秋•泸县期末)计算:−23÷(−2−14)×(−13)2−3281+1.【分析】根据有理数的运算法则和顺序计算.注意同级运算中的先后顺序.【解答】解:−23÷(−2−14)×(−13)2−3281+1=−8÷(−94)×19−3281+1=−8×(−49)×19−3281+1=3281−3281+1=1.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算;(2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.23.(2023春•吉林月考)计算:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24).【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号和绝对值,要先做括号和绝对值内的运算.注意乘法分配律的运用.【解答】解:(−1)2022+|(−2)3+(−3)2|−(−14+16)×(−24)=1+|﹣8+9|−14×24+16×24=1+1﹣6+4=0.【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,24.(2022秋•易县期末)计算:(1)25÷23−25×(−12);(2)(﹣3)2×(12−56)+|﹣4|.【分析】(1)先把除法转化为乘法,再逆用乘法的分配律进行求解即可;(2)先算乘方,括号里的减法,绝对值,再算乘法,最后算加法即可.【解答】解:(1)25÷23−25×(−12)=25×32+25×12=25×(32+12)=25×2=50;(2)(﹣3)2×(12−56)+|﹣4|=9×(−13)+4=﹣3+4=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.25.(2022秋•广宗县期末)计算(1)(14−13−1)×(﹣12)(2)﹣22×14+(﹣3)3×(−827)【分析】(1)利用乘法分配律展开,再计算乘法,最后计算加减可得;(2)先计算乘方,再计算乘法,最后计算加减可得.【解答】解:(1)原式=14×(﹣12)−13×(﹣12)﹣1×(﹣12)=﹣3+4+12=13;(2)原式=﹣4×14+(﹣27)×(−827)=﹣1+8=7.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.26.(2022秋•黄石港区期末)计算与化简:(1)﹣22+|﹣18﹣(﹣3)×2|÷4;(2)(14−49)×(﹣6)2+7÷(−12).【分析】(1)根据有理数的乘除法和加法可以解答本题;(2)根据乘法分配律、有理数的乘除法和加法可以解答本题.【解答】解:(1)﹣22+|﹣18﹣(﹣3)×2|÷4=﹣4+|﹣18+6|÷4=﹣4+12÷4=﹣4+3=﹣1;(2)(14−49)×(﹣6)2+7÷(−12)=(14−49)×36+7×(﹣2)=9+(﹣16)+(﹣14)=﹣21.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.28.(2022秋•翠屏区期末)计算:(1)12×(116−13−34);(2)−22−13÷5×|1−(−4)2|.【分析】(1)根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法,最后算减法即可.【解答】解:(1)12×(116−13−34)=12×116−12×13−12×34=22﹣4﹣9=9;(2)−22−13÷5×|1−(−4)2|=﹣4−13×15×|1﹣16|=﹣4−13×15×15=﹣4﹣1=﹣5.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.29.(2022秋•通川区校级期末)计算:(1)(﹣72)+37﹣(﹣22)+(﹣17)(2)﹣32×(−13)2+(34−16+38)÷(−124)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣72+37+22﹣17=﹣89+59=﹣30;(2)原式=﹣9×19+(34−16+38)×(﹣24)=﹣1﹣18+4﹣9=﹣28+4=﹣24.【点评】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则是解本题的关键.30.(2022秋•和平区校级期末)计算(1)(13−18+16)×24;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25.【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)(13−18+16)×24=13×24−18×24+16×24=8﹣3+4=9;(2)(﹣2)4÷(﹣223)2+512×(−16)﹣0.25=16÷649+112×(−16)−14=16×964+(−1112)−14=2712+(−1112)−312=1312.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.31.(2023•章贡区校级模拟)计算:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)];(2)(514−78−712)÷(﹣134).【分析】(1)先算乘方和括号内的式子,然后计算括号外的减法即可;(2)先把除法转化为乘法,然后根据乘法分配律计算即可.【解答】解:(1)﹣12008﹣[5×(﹣2)﹣(﹣4)2÷(﹣8)]=﹣1﹣[(﹣10)﹣16÷(﹣8)]=﹣1﹣[(﹣10)+2]=﹣1﹣(﹣8)=﹣1+8=7;(2)(514−78−712)÷(﹣134)=(214−78−712)×(−47)=214×(−47)−78×(−47)−712×(−47)=﹣3+12+13=−186+36+26=−136.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.32.(2023•长阳县一模)计算:(1)(12−13)×6÷|−15|;(2)(−1)2018+(−10)÷12×2−[2−(−3)3].【分析】(1)根据有理数的加减乘除混合运算法则计算即可;(2)根据有理数的加减乘除乘法混合运算法则计算即可.【解答】解:(1)(12−13)×6÷|−15|=(12−13)×6×5=(12−13)×30=12×30−13×30=15﹣10=5;(2)(−1)2018+(−10)÷12×2−[2−(−3)3]=1+(﹣10)×2×2﹣(2+27)=1﹣40﹣29=﹣68.【点评】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.33.(2022秋•定远县期中)计算:(1)−22−|0.5−1|×13×[3−(−3)2];(2)(−4.66)×49−5.34÷94+5×(23)2.【分析】(1)先计算绝对值里面的式子和中括号里面的式子,然后再计算出括号外的式子;(2)先把除法转化为乘法、然后根据有理数的乘方和乘法分配律即可解答本题.【解答】解:(1)−22−|0.5−1|×13×[3−(−3)2]=﹣4−12×13×(3﹣9)=﹣4−16×(﹣6)=﹣4+1=﹣3;(2)(−4.66)×49−5.34÷94+5×(23)2=(﹣4.66)×49−5.34×49+5×49=[(﹣4.66)﹣5.34+5]×49=﹣5×49=−209.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.34.(2022秋•鞍山期末)计算:(1)(134−78−712)÷(−78)+(−34);(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).【分析】(1)先把除法转为乘法,再利用乘法的分配律进行运算,最后算加减即可;(2)先算乘方,再算括号里的运算,接着算乘法与除法,最后算加减即可.【解答】解:(1)(134−78−712)÷(−78)+(−34)=(74−78−712)×(−87)+(−34)=74×(−87)−78×(−87)−712×(−87)−34=﹣2+1+23−34=−1312;(2)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)=﹣8﹣3×(16+2)﹣9÷(﹣2)=﹣8﹣3×18﹣9×(−12)=﹣8﹣54+4.5=﹣57.5.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.35.(2022秋•正阳县期中)计算:(1)(1112−76+34−1324)×(﹣48);(2)﹣9+5×|﹣3|﹣(﹣2)2÷4;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5).【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减法即可;(3)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算加减法即可.【解答】解:(1)(1112−76+34−1324)×(﹣48)=1112×(﹣48)−76×(﹣48)+34×(﹣48)−1324×(﹣48)=﹣44+56+(﹣36)+26=2;(2)﹣9+5×|﹣3|﹣(﹣2)2÷4=﹣9+5×3﹣4÷4=﹣9+15﹣1=5;(3)﹣18+(﹣4)2÷14−(1﹣32)×(13−0.5)=﹣1+16×4﹣(1﹣9)×(−16)=﹣1+64﹣(﹣8)×(−16)=﹣1+64−43=6123.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.36.(2022秋•临邑县期中)计算:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712);(2)(−49)÷75×57÷(−25).(3)﹣22÷43−[22﹣(1−12×13)]×12;【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)先算乘方和括号内的式子,然后括号外的乘除法,最后算加减法即可.【解答】解:(1)(﹣0.5)﹣(﹣314)+2.75﹣(+712)=(−12)+314+234+(﹣712)=﹣2;(2)(−49)÷75×57÷(−25)=49×57×57×125=1;(3)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−[4﹣(1−16)]×12=﹣3﹣(4−56)×12=﹣3﹣4×12+56×12=﹣3﹣48+10=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.37.(2022秋•南票区期中)计算(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5;(2)(﹣5)×6×(−45)÷(﹣4);(3)﹣11×(−227)+19×(−227)+6×(−227);(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|.【分析】(1)去括号,进行加减运算;(2)把除法变成乘法,再进行计算;(3)先提公因数,再计算;(4)先乘方,再乘除,最后加减运算.【解答】解:(1)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5=(﹣0.8)+0.8﹣0.7﹣2.1+1.2+3.5=0﹣2.8+4.7=1.9;(2)(﹣5)×6×(−45)÷(﹣4)=(﹣5)×6×(−45)×(−14)=﹣6;(3)﹣11×(−227)+19×(−227)+6×(−227)=(−227)×(﹣11+19+6)=(−227)×14=﹣44;(4)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|=﹣9×(﹣2)+16÷(﹣8)﹣4=18+(﹣2)﹣4=18﹣2﹣4=12.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数的运算法则和运算顺序.38.(2022秋•库车市期中)计算:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37);(2)﹣54×219+(﹣412)×29;(3)(12+56−712)×(﹣24);(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|.【分析】(1)先去括号,再进行加减运算;(2)(3)先算乘除,再算加减;(4)先算乘方和绝对值,再算乘除,最后算加减.【解答】解:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)=﹣53+21+69﹣37=﹣53﹣37+21+69=﹣90+90=0;(2)﹣54×219+(﹣412)×29=﹣54×199+(−92)×29=﹣115;(3)(12+56−712)×(﹣24)=12×(﹣24)+56×(﹣24)−712×(﹣24)=﹣12﹣20+14=﹣32+14=﹣18;(4)﹣12022÷(−52)×(﹣5)2﹣|2﹣9|=﹣1÷(−52)×25﹣7=﹣1×(−25)×25﹣7=10﹣7=3.【点评】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的顺序.39.(2022秋•南山区校级期中)计算:(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(23−112−415)×(−60);(3)−14−16×[2−(−3)2];(4)(−2)2−[(−23)+(−14)]÷112.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算及括号里面的,再计算除法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣12﹣5﹣14+39=﹣31+39=8;(2)原式=﹣40+5+16=﹣19;(3)原式=−1−16×(2−9)=−1+76=16;(4)原式=4−(−23−14)×12=4+8+3=15.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.40.计算:(1)4﹣(﹣28)+(﹣2);(2)(13−16)×(﹣24);(3)(﹣2)3﹣(﹣13)÷(−12);(4)﹣12﹣(1﹣0.5)÷52×15.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=4+28﹣2=30;(2)原式=﹣8+4=﹣4;(3)原式=﹣8﹣26=﹣34;(4)原式=﹣1−12×25×15=−1−125=−1125.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.41.计算:(1)3+(﹣6)﹣(﹣7);(2)(﹣22)×(﹣114)÷13;(3)(34−13−56)×(﹣12);(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|.【分析】(1)先把减法转化为加法,然后根据有理数加法法则计算即可;(2)先算乘方、再算乘除法即可;(3)根据乘法分配律可以解答本题;(4)先算乘方和括号内的式子,再算括号外的乘法和加减法即可.【解答】解:(1)3+(﹣6)﹣(﹣7)=3+(﹣6)+7=4;(2)(﹣22)×(﹣114)÷13=(﹣4)×(−54)×3=15;(3)(34−13−56)×(﹣12)=34×(﹣12)−13×(﹣12)−56×(﹣12)=(﹣9)+4+10=5;(4)﹣12021﹣(−13)×(﹣22+3)+12×|3﹣1|=﹣1﹣(−13)×(﹣4+3)+12×2=﹣1+13×(﹣1)+1=﹣1+(−13)+1=−13.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.42.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9);(2)−12021×[4−(−3)2]+3÷(−34);(3)(512−79+23)÷136;(4)−316×7−316×(−9)+(−196)×(−8).【分析】(1)先把减法转化为加法,然后根据有理数的加法法则计算即可;(2)先算乘方和括号内的式子,然后计算括号外的乘除法、最后算加法即可;(3)先把除法转化为乘法、然后根据乘法分配律计算即可;(4)先将带分数化为假分数,然后根据乘法分配律计算即可.【解答】解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=(﹣5)+(﹣4)+(﹣101)+9=﹣101;(2)−12021×[4−(−3)2]+3÷(−34)=﹣1×(4﹣9)+3×(−43)=﹣1×(﹣5)+(﹣4)=5+(﹣4)=1;(3)(512−79+23)÷136=(512−79+23)×36=512×36−79×36+23×36=15﹣28+24=11;(4)−316×7−316×(−9)+(−196)×(−8)=−196×7−196×(﹣9)−196×(﹣8)=−196×[7+(﹣9)+(﹣8)]=−196×(﹣10)=953.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序,注意乘法分配律的应用.43.(2022秋•西城区校级期中)计算:(1)﹣2+8﹣36﹣(﹣30);(2)﹣24÷(﹣6)×(−14);(3)(−34+56+716)×(﹣48);(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2].【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)先把除法转化为乘法,然后根据乘法法则计算即可;(3)根据乘法分配律计算即可;(4)先算乘方和括号内的式子,然后算乘法,最后算减法即可.【解答】解:(1)﹣2+8﹣36﹣(﹣30)=﹣2+8+(﹣36)+30=0;(2)﹣24÷(﹣6)×(−14)=﹣24×16×14=﹣1;(3)(−34+56+716)×(﹣48)=−34×(﹣48)+56×(﹣48)+716×(﹣48)=36+(﹣40)+(﹣21)=﹣25;(4)|12−1|×(﹣1)2021﹣[1﹣(﹣6)2]=12×(﹣1)﹣(1﹣36)=−12−(﹣35)=−12+35=3412.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.44.计算:(1)(−58)÷143×(−165)÷(−67)(2)﹣3﹣[﹣5+(1﹣0.2×35)÷(﹣2)](3)(413−312)×(﹣2)﹣223÷(−12)(4)[50﹣(79−1112+16)×(﹣6)2]÷(﹣7)2.【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=−58×314×165×76=−12;(2)原式=﹣3+5+(1−325)×12=−3+5+1125=21125;(3)原式=−263+7+163=323;(4)原式=(50﹣28+33﹣6)×149=49×149=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.45.计算:(1)﹣4﹣28﹣(﹣29)+(﹣24);(2)4×(﹣3)2﹣5×(﹣2)+6;(3)(−34+712−59)÷(−136);(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2].【分析】(1)先化简,再计算加减法即可求解;(2)(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)将除法变为乘法,再根据乘法分配律简便计算.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣4﹣28+29﹣24=﹣56+29=﹣27;(2)4×(﹣3)2﹣5×(﹣2)+6=4×9+10+6=36+10+6=52;(3)(−34+712−59)÷(−136)=(−34+712−59)×(﹣36)=34×36−712×36+59×36=27﹣21+20=26;(4)﹣14﹣(1﹣0.5)÷213×[2﹣(﹣3)2]=﹣1−12÷213×[2﹣9]=﹣1−12÷213×(﹣7)=﹣1+112=12.【点评】考查了有理数的混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.46.(2022秋•汤阴县期中)计算:(1)−22×|−5|−6÷(12−13)×56;(2)(−56+13−34)×(−24);(3)(−1)2023×[−24×(−34)2−1];(4)24−12022×(−2)3−5.5÷415×(−815).【分析】(1)先算乘方、括号内的式子和去绝对值,然后计算括号外的乘除法,再算减法即可;(2)根据乘法分配律计算即可;(3)先算乘方和括号内的式子,再算括号外的乘法即可;(4)先算乘方,再算乘除法,最后算加减法即可.【解答】解:(1)−22×|−5|−6÷(12−13)×56=﹣4×5﹣6÷16×56=﹣20﹣6×6×56=﹣20﹣30=﹣50;(2)(−56+13−34)×(−24)=−56×(﹣24)+13×(﹣24)−34×(﹣24)=20+(﹣8)+18=30;(3)(−1)2023×[−24×(−34)2−1]=(﹣1)×(﹣16×916−1)=(﹣1)×(﹣9﹣1)=(﹣1)×(﹣10)=10;(4)24−12022×(−2)3−5.5÷415×(−815)=24﹣1×(﹣8)−112×154×(−815)=24+8+11=43.【点评】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键,注意乘法分配律的应用.47.(2022秋•丰泽区校级期中)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)(−38−16+34)×(﹣24);(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017;(4)﹣22÷43−[22﹣(1−12×13)]×12.【分析】(1)先把减法转化为加法,然后根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算乘方,再算乘法,最后算减法即可;(4)先算乘方和括号内的式子,然后计算括号外的乘除法,最后算减法即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20+(﹣14)+18+(﹣13)=﹣29;(2)(−38−16+34)×(﹣24)=−38×(﹣24)−16×(﹣24)+34×(﹣24)=9+4+(﹣18)=﹣5;(3)(−14)×42﹣0.25×(﹣8)×(﹣1)2017=(−14)×16−14×(﹣8)×(﹣1)=﹣4﹣2=﹣6;(4)﹣22÷43−[22﹣(1−12×13)]×12=﹣4×34−(4﹣1+16)×12=﹣3﹣(3+16)×12=﹣3﹣36﹣2=﹣41.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.48.计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣2467)÷6(3)(﹣18)÷214×49÷(﹣16)(4)43−{(−3)4−[(−1)÷2.5+214×(−4)]÷(24815−27815)}.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24−67)×16=−4−17=−417;(3)原式=﹣18×49×49×(−116)=29;(4)原式=64﹣81+(﹣925)÷(﹣3)=64﹣81+4715=−131315.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.49.(2023春•沈阳月考)计算:(1)3﹣(+63)﹣(﹣259)﹣(﹣41);(2)213−(+1013)+(−815)⋅(+325);(3)(−292324)×12;(4)(−24)×(1−34+16−58);(5)−32−(−2)3×(−4)÷(−14);(6)(−32+3)×[(−1)2022−(1−0.5×13)].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)先算乘法,再算加减法即可;(3)先变形,然后根据乘法分配律计算即可;(4)根据乘法分配律计算即可;(5)先算乘方,再算乘除法,最后算减法即可;(6)先算括号内的式子,再算括号外的乘法即可.【解答】解:(1)3﹣(+63)﹣(﹣259)﹣(﹣41)=3+(﹣63)+259+41=240;(2)213−(+1013)+(−815)⋅(+325);=213+(﹣1013)+(−415)×175=213+(﹣1013)+(−69725)=﹣8+(−69725)=−89725;(3)(−292324)×12=(﹣30+124)×12=﹣30×12+124×12=﹣360+12=﹣35912;(4)(−24)×(1−34+16−58)=﹣24×1+24×34−24×16+24×58=﹣24+18﹣4+15=5;(5)−32−(−2)3×(−4)÷(−14)=﹣9﹣(﹣8)×(﹣4)×(﹣4)=﹣9+128=119;(6)(−32+3)×[(−1)2022−(1−0.5×13)]=(﹣9+3)×[1﹣(1−16)]=(﹣6)×(1−56)=(﹣6)×16=﹣1.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.50.(2022秋•朝阳区校级月考)计算.(1)﹣32﹣(+11)+(﹣9)﹣(﹣16);(2)﹣9+0.8+(﹣1)+(−45)−(−10);(3)﹣212÷(−5)×(−313)÷0.75;(4)(−16−512+13)×(−72);(5)−12023+27×(−13)2−|﹣5|;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12.【分析】(1)先把减法统一成加法,写成省略括号和的形式,再把负数、正数分别相加;(2)先把分数化成小数,再把和为0的放一起先加;(3)先把除法统一成乘法,再算乘法;(4)利用乘法的分配律计算比较简便;(5)先算乘方化简绝对值,再算乘法,最后算加减;(6)先算乘方,再算括号里面的,最后算乘法、加减.【解答】解:(1)﹣32﹣(+11)+(﹣9)﹣(﹣16)=﹣32﹣11﹣9+16=﹣52+16=﹣36;(2)﹣9+0.8+(﹣1)+(−45)−(−10)=﹣9+0.8﹣1﹣0.8+10=(﹣9﹣1+10)+(0.8﹣0.8)=0+0=0;(3)﹣212÷(−5)×(−313)÷0.75=−52×(−15)×(−103)÷34=−52×15×103×43=−209;(4)(−16−512+13)×(−72)=(−16)×(﹣72)−512×(﹣72)+13×(﹣72)=12+30﹣24=18;(5)−12023+27×(−13)2−|﹣5|=﹣1+27×19−5=﹣1+3﹣5=﹣3;(6)(−12+34)×(﹣2)3+(﹣4)2+2×12=(−24+34)×(﹣8)+16+2×12=14×(﹣8)+16+1=﹣2+16+1=15.【点评】本题考查了有理数的混合运算,掌握有理数的运算律、运算法则是解决本题的关键.。
完整版)初一数学计算题专题复习

完整版)初一数学计算题专题复习初一数学计算题专题复一、有理数计算:1) 23 - 17 - (-7) + (-16)2) (-25) - 9 - (-6) + (-3)3) (-6) ÷ (-1) - 4 × (-1) - 54) 3 × (-4) - (-2) × 3 + 25) (-2)² - 22 - |(-|×4|)7) (-)×(-78)二、合并同类项:1) 5a - 3b - a + 2b = 4a - b3) a²b - b²c + 3a²b + 2b²c = 4a²b + b²c三、去括号,合并同类项:1) (8a - 7b) - (4a - 5b) = 4a - 2b2) a - (2a + b) + 2(a - 2b) = a - 2a - b + 2a - 4b = -2b6) -(1 - 0.5) × 1/3 × [2 - (-3)²] = -1.58) -22 - 24 × (1/12 - 5/6 + 3/8) = -282) -3x² + 7x - 6 + 2x² - 5x + 1 = -x² + 2x - 54) -11/3a²b - 2ab² + 1/6a²b + ab² = -31/6a²b - 2ab²3) 3(5x + 4) - (3x - 5) = 12x + 174) 3(-ab + 2a) - (3a - b) = -4a + 2b四、先化简,再求值:1) (3x² - xy + y) - 2(5xy - 4x² + y),其中x = -2,y = 1.3(-2)² - (-2)(1) + 1 - 2(5(-2)(1) - 4(-2)² + 1)112) 2(3m²n - mn²) - (2m²n + mn²),其中m = -1,n = 22(3(-1)²(2) - (-1)(2)²) - (2(-1)²(2) + (-1)(2)²)163) (1 - 4a²b) - 2(ab² - a²b),其中a = -1,b =。
初一上册计算题精选集

初一上册计算题精选集初一的学习是为整个初中阶段打下坚实基础的重要时期,而数学中的计算题更是锻炼思维和提升能力的关键。
下面为大家精选了一些初一上册常见的计算题,通过练习和掌握这些题目,相信能帮助同学们更好地理解和运用所学知识。
一、有理数的运算1、计算:(-5) + 3这道题考查有理数的加法。
异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
在这道题中,|-5|>|3|,所以结果为负,用 5 3 = 2,最终答案为-2 。
2、计算:(-8) (-5)这是有理数的减法运算,减去一个数等于加上这个数的相反数。
所以原式可转化为-8 + 5 =-3 。
3、计算:(-2)×(-3)有理数乘法,同号得正,异号得负。
所以这道题的结果为 6 。
4、计算:(-12)÷(-3)两数相除,同号得正,异号得负。
所以答案为 4 。
二、整式的运算1、化简:3x + 2x同类项合并,系数相加,字母和指数不变。
所以结果为 5x 。
2、化简:(2x²+ 3x 5) (x² 2x + 1)去括号,然后合并同类项。
原式= 2x²+ 3x 5 x²+ 2x 1 = x²+5x 6 。
3、计算:2x(3x 1)使用乘法分配律,原式= 2x×3x 2x×1 = 6x² 2x 。
三、一元一次方程1、解方程:2x + 3 = 7首先,将 3 移到等号右边得到 2x = 7 3 ,即 2x = 4 ,然后两边同时除以 2 ,解得 x = 2 。
2、解方程:3(x 1) = 2x + 1先去括号得到 3x 3 = 2x + 1 ,然后将 2x 移到左边,-3 移到右边,得到 3x 2x = 1 + 3 ,解得 x = 4 。
四、综合计算题1、计算:(-2)³ ×(-4) 6 ÷(-3)先计算指数运算,(-2)³=-8 ,然后计算乘法-8×(-4) = 32 ,再计算减法 32 6 = 26 ,最后除以-3 ,得到-26/3 。
初中数学七年级计算题

初中数学七年级计算题一、有理数运算。
1. 计算:(-3)+5 - (-2)- 解析:- 去括号法则,“负负得正”,所以-(-2)=2。
- 则原式变为-3 + 5+2。
- 按照从左到右的顺序计算,-3+5 = 2,2 + 2=4。
2. 计算:4×(-3)÷(-6)- 解析:- 按照从左到右的顺序进行计算。
- 先算4×(-3)=-12。
- 再算-12÷(-6),根据除法法则,两数相除,同号得正,所以-12÷(-6)=2。
3. 计算:(-2)^3+(-3)×[(-4)^2 - 2]- 解析:- 先计算指数运算。
- (-2)^3=-8,(-4)^2 = 16。
- 则原式中(-4)^2-2=16 - 2=14。
- 再算乘法-3×14=-42。
- 最后算加法-8+(-42)=-8 - 42=-50。
4. 计算:(1)/(2)-<=ft(-(1)/(3))+<=ft(-(1)/(4))- 解析:- 首先去括号,-<=ft(-(1)/(3))=(1)/(3)。
- 然后通分,分母2、3、4的最小公倍数是12。
- (1)/(2)=(6)/(12),(1)/(3)=(4)/(12),-(1)/(4)=-(3)/(12)。
- 则原式变为(6)/(12)+(4)/(12)-(3)/(12)=(6 + 4-3)/(12)=(7)/(12)。
5. 计算:(-5)×<=ft(-(3)/(5))+(-12)÷(-4)- 解析:- 先算乘法和除法。
- (-5)×<=ft(-(3)/(5))=3,(-12)÷(-4)=3。
- 再算加法3 + 3=6。
二、整式的加减。
6. 化简:3a+2b - 5a - b- 解析:- 合并同类项,3a-5a=(3 - 5)a=-2a,2b-b=(2 - 1)b = b。
初一年级100道数学计算题和答案解析

初一年级100道数学计算题和答案解析1. 计算:3 + 5 × 2 4 ÷ 2答案:13解析:根据运算法则,先乘除后加减,所以先计算5 × 2 = 10,再计算4 ÷ 2 = 2,进行加减运算,得出结果为13。
2. 计算:(4 + 6) × (5 3)答案:18解析:先计算括号内的加法和减法,4 + 6 = 10,5 3 = 2,然后将两个结果相乘,得出18。
3. 计算:8 ÷ 2(2 + 3)答案:1解析:先计算括号内的加法,2 + 3 = 5,然后将8除以2,得4,用4除以5,得出结果为1。
4. 计算:7 × 7 7 ÷ 7答案:48解析:先计算乘法,7 × 7 = 49,再计算除法,7 ÷ 7 = 1,进行减法运算,得出结果为48。
5. 计算:9 + 6 ÷ 3 2 × 4答案:1解析:根据运算法则,先乘除后加减。
先计算6 ÷ 3 = 2,再计算2 × 4 = 8,进行加减运算,得出结果为1。
6. 计算:15 3 × 2 + 4 ÷ 2答案:10解析:处理乘法,3 × 2 = 6,然后进行除法,4 ÷ 2 = 2。
接着,将15减去6,再加上2,得到最终答案10。
7. 计算:4² 6²答案:20解析:这里涉及到平方的计算,4² = 16,6² = 36。
将16减去36,得到的结果是20。
8. 计算:(8 5) × (3 + 2)答案:18解析:先解决括号内的运算,8 5 = 3,3 + 2 = 5。
然后将两个结果相乘,3 × 5 = 18。
9. 计算:12 ÷ (2 + 1)答案:4解析:计算括号内的加法,2 + 1 = 3。
接着,用12除以3,得到的结果是4。
初一数学上册计算题大全及答案

初一数学上册计算题大全及答案目录1.分数的加减法2.分数的乘除法3.百分数的概念与运算4.有理数的加减法5.有理数的乘除法6.相交角的性质7.三角形的面积与周长8.长方形与正方形的面积与周长9.运动与速度10.简单方程与应用1. 分数的加减法题目 1:计算: 1/2 + 1/3 = ?解答:1/2 + 1/3 = (13 + 12)/(2*3) = 5/6题目 2:计算: 3/4 - 1/5 = ?解答:3/4 - 1/5 = (35 - 14)/(4*5) = 11/20题目 3:计算: 2/3 + 5/6 - 1/2 = ?解答:2/3 + 5/6 - 1/2 = (26 + 51 - 13)/(36) = 11/18…2. 分数的乘除法题目 1:计算: 2/3 × 3/4 = ?解答:2/3 × 3/4 = (2×3)/(3×4) = 6/12 = 1/2题目 2:计算: 4/5 ÷ 2/3 = ?解答:4/5 ÷ 2/3 = (4/5) × (3/2) = (4×3)/(5×2) = 12/10 = 6/5题目 3:计算: 5/6 × 2/3 ÷ 1/2 = ?解答:5/6 × 2/3 ÷ 1/2 = (5/6) × (2/3) ÷ (1/2) = (5×2×2)/(6×3×1) = 20/18 = 10/93. 百分数的概念与运算题目 1:将16/25 转换为百分数。
解答:16/25 = (16/25) × 100% = 64%题目 2:将36% 转换为小数形式。
解答:36% = 36/100 = 0.36题目 3:计算45% × 80。
解答:45% × 80 = (45/100) × 80 = 364. 有理数的加减法题目 1:计算: -3 + 5 = ?解答:-3 + 5 = 2题目 2:计算: 3 + (-5) = ?解答:3 + (-5) = -2题目 3:计算: -3 - 5 = ?解答:-3 - 5 = -85. 有理数的乘除法题目 1:计算: (-2) × 3 = ?解答:(-2) × 3 = -6题目 2:计算: 6 ÷ (-3) = ?解答:6 ÷ (-3) = -2题目 3:计算: (-4) × (-5) = ?解答:(-4) × (-5) = 206. 相交角的性质题目 1:已知∠A = 30°,∠B = 45°,求∠C的度数。
初一数学各种计算题集锦

〔1〕(3x-5y)-(6x+7y)+(9x-2y)〔2〕2a-[3b-5a-(3a-5b)]x y 3x 4 yx2 y12 5322 x yx 2 1 y21312x y , 3x 2y 5x 2 22x y42(3x 2y) 2x 83x 2 4, ①3 2 x 2②2 x 12, ①31 x2 ②甲、乙两人练习跑步,假如乙先跑 10 米,那么甲跑 5 秒便可追上乙;假如乙先跑 2 秒,那么甲跑 4 秒便可追上乙,假定设甲的速度为 x 米 /秒,乙的速度为 y 米 /秒,求甲、乙的速度各是多少22222222)〔1〕(6m n-5mn )-6(m n-mn )〔2〕m+(-mn)-n+(-m1 2 1122(2)[(1)2 (1)3] |3|(5)3 (2)22432x10,3x0, 4x0.4x 70.x y z13m n3 34y z x1m nz x y31323某年级学生共有246 人,此中男生人数y 比女生人数 x 的 2 倍少 2 人,男生和女生各多少人?〔1〕(x-y) 2-(x-y) 2-[(x-y) 2-(x-y) 2]〔2〕3x 2-2{x-5[x-3(x-2x 2)-3(x 2-2x)]-(x-1)}- 5< 6- 2x <31 x 1 x,22x 4 3x 3.3x3y 3x 2 y2x y 16 25yz 123(2 x 3y )2(3x 2y )25 x1023z6假定 x 3m - 3-2y n -1=5 是二元一次方程,那么 m=_____,n=______有假定干只鸡和兔关在一个笼子里,从上边数,有 30 个头;从下边数,有 84 条腿,问笼中各有几个鸡和兔?〔 1〕假定 16x3m-1y5和-x5y2n+1是同类项,求〔2〕2x2-{-3x+6+[4x2-(2x2-3x+2)]}3m+2n 的值13258234)23(1)3410.5 (22x 5 3( x 2),2x 1 0x 1x x 5 023│ x-1│+〔2y+1〕2=0,且 2x-ky=4,那么 k=_____假定 5x+2 与﹣ 3x﹣4 互为相反数,求3x+5 的值4〔1〕10a+6b-7a+3b-10a+10b+12a+8b〔2〕(3x-5y)-(6x+7y)+(9x-2y)x -2 2x +52x -0.3 x +-=-1-=1x5 321 10 (3) (5) (7) (3)603 12 15x 2 1,2x 3>3x,①2x 3 >3 3x,x 3 x 1 1.②3 62甲煤场有煤 518 吨,乙煤场有煤 106 吨,为了使甲煤场存煤是乙煤场的 2 倍,需要从甲煤场运煤到乙煤场多少吨?〔1〕(3x 2-4xy+2 y2)+(x 2+2xy-5y 2)多项式 4 x2y 2 x4y x 1 最高次项是53单项式2m4n的系数是,次数是,7单项式5x2 y的系数与次数的积是 _________ ;3x-13x+1解方程3+x=2 2x5 3 x 2 , ①2x 13x②1,2〔2〕6x 2y+2xy-3x 2y2-7x-5yx-4y 2 x2-6x 2y多项式 3〔x2+2xy ﹣ 4y2〕﹣〔 2x2﹣ 2mxy﹣ 2y2〕中不含 xy项,那么 m=.2x2 y单项式的系数是,次数是.32x-1 3x-53-4=22 x 30x 10一架飞机杂两城之间飞翔,风速为每小时24 千米,顺风飞翔需 2 小时 50 分钟,顶风飞翔需要 3 小时。
初中7年级计算题

初中7年级计算题一、有理数运算类。
1. 计算:(-3)+5 - (-2)- 解析:- 首先去括号,根据去括号法则,“-”变“+”,所以-(-2)=2。
- 原式变为- 3+5 + 2。
- 按照从左到右的顺序计算,-3 + 5=2,2+2 = 4。
2. 计算:(-2)×(-3)÷(1)/(2)- 解析:- 先计算乘法,根据有理数乘法法则,两数相乘,同号得正,所以(-2)×(-3)=6。
- 再计算除法,除以一个数等于乘以它的倒数,所以6÷(1)/(2)=6×2 = 12。
3. 计算:(-4)^2×(-(1)/(2))- 解析:- 先计算指数运算,(-4)^2 = 16。
- 再计算乘法,16×(-(1)/(2))=-8。
4. 计算:2 - 3×(-4)+(-5)- 解析:- 先算乘法,3×(-4)= - 12。
- 原式变为2-(-12)+(-5)。
- 去括号得2 + 12-5。
- 计算得14 - 5=9。
二、整式加减类。
5. 化简:3a+2b - 5a - b- 解析:- 合并同类项,对于a的同类项,3a-5a=-2a;对于b的同类项,2b - b=b。
- 所以化简结果为-2a + b。
6. 计算:(2x^2 - 3x+1)-(x^2 - 2x - 3)- 解析:- 去括号,括号前是“-”号,去括号后括号里各项要变号。
- 得到2x^2-3x + 1 - x^2+2x + 3。
- 合并同类项,2x^2-x^2=x^2,-3x+2x=-x,1 + 3=4。
- 结果为x^2 - x+4。
7. 化简:4(2x - 3y)-3(3x - 2y)- 解析:- 先使用乘法分配律,4(2x-3y)=8x-12y,3(3x - 2y)=9x - 6y。
- 原式变为8x-12y-(9x - 6y)。
- 去括号得8x-12y - 9x+6y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学计算题专题复习
一有理数计算:
(1)23﹣17﹣(﹣7)+(﹣16) (2) (-25)-9-(-6)+(-3)
(3)(﹣6)÷(﹣1)﹣4×(﹣1)﹣5 (4)3×(﹣4)﹣(﹣2)3+2
,
(5)(﹣2)2﹣22﹣|﹣|×4 (6)])3(2[3
1)5.01(2
--⨯⨯--
(7)(﹣+)×(﹣78); (8) 2
153-2-24-+1268
⨯()
~
二合并同类项:
(1)5a -3b -a+2b ; (2)-3x 2+7x -6+2x 2-5x+1;
(3)a 2b -b 2c+3a 2b+2b 2c ; (4)-13a 2b -12ab 2+1
6
a 2b+a
b 2;
$
三去括号,合并同类项:
(1)(8a-7b)-(4a-5b); (2)a-(2a+b)+2(a-2b);
(3) 3(5x+4)-(3x-5); (4)3(-ab +2a)-(3a -b);
*
四先化简,再求值:
(1) (3x 2﹣xy+y )﹣2(5xy ﹣4x 2+y ),其中x=﹣2,y=1.
>
(2) 2(3m 2n ﹣mn 2)﹣(2m 2n+mn 2),其中m=﹣1,n=2
(3)(1﹣4a 2b )﹣2(ab 2﹣a 2b ),其中a=﹣1,b=.
(4)5(3a 2b-ab 2)-(ab 2+3a 2b )-4(3a 2b-ab 2).其中a=-2,b=2
1.
,
(5)
)(4)]2(2[32222xyz z x z x xyz y x y x -+---,其中2-=x ,4=y ,2=z 。
(6)已知:02)3(2=++-y x ,
~
求代数式)2(2)22(222222y xy x y xy x x +--+--+的值.
五解方程
(1)3(4x ﹣5)+2=3x ; (2)3x+2(x ﹣5)=﹣12
)
(3) ()432040x x --+= (4)4(x-6)-3(5-2x )=11; (5) = (6) .
·
(7)﹣
=1. (8)3
2
261+-
=--
x x x
(9)1
3
50
0.20.01
x x ++-= (10)32010x 303040x 20=--+......
\
六应用题:
1、今年小亮3岁,小亮的妈妈27岁,多少年后妈妈的年龄是小亮年龄的4倍
2、父亲的年龄比儿子大25岁,20年后父亲的年龄是儿子的2倍,儿子今年多
少岁
《
3、在3年前,父子年龄和是44岁,现在父亲的年龄是儿子的4倍,父子今年各多少岁
4、若今年妈妈的年龄是张亮的8倍,18年后妈妈的年龄是张亮的2倍,今年
妈妈张亮各多少岁
{
七规律题:
学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与
22+
32+3
42+
……
(2)桌面上整齐地摆放几摞碟子,分别从三个方向上看,其三种形状图如下图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.。