高二数学选修1-1试题及答案
高中数学 综合素质检测1 北师大版高二选修1-1数学试题
第一章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题是真命题的是( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2[答案] A[解析] 相应选项中的式子为等式或不等式,通过取特殊值判断命题是假命题.当x =-1时,B 是假命题;当x =y =-1时,C 是假命题;当x =-2,y =-1时,D 是假命题.易知A 是真命题.2.设a ∈R ,则“a >1”是“1a<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 [答案] A[解析]a >1⇒1a <1,1a<1⇒/a >1,故选A.3.“若a ⊥α,则a 垂直于α内任一条直线”是( ) A .全称命题 B .特称命题 C .不是命题 D .假命题[答案] A[解析] 命题中含有全称量词,故为全称命题,且是真命题. 4.“B =60°”是“△ABC 三个内角A 、B 、C 成等差数列”的( ) A .充分而不必要条件 B .充要条件 C .必要而不充分条件 D .既不充分也不必要条件 [答案] B[解析] 在△ABC 中,若B =60°,则A +C =120°, ∴2B =A +C ,则A 、B 、C 成等差数列;若三个内角A、B、C成等差,则2B=A+C,又A+B+C=180°,∴3B=180°,B=60°.5.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] A[解析]由“m=2”可知A={1,4},B={2,4},所以可以推得A∩B={4},反之,如果“A∩B={4}”可以推得m2=4,解得m=2或-2,不能推得m=2,所以“m=2”是“A∩B ={4}”的充分不必要条件.6.(2014·某某理,5)设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是( ) A.p或q B.p且qC.(¬p)且(¬q) D.p或(¬q)[答案] A[解析]取a=c=(1,0),b=(0,1)知,a·b=0,b·c=0,但a·c≠0,∴命题p为假命题;∵a∥b,b∥c,∴∃λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p或q为真命题.7.有下列四个命题①“若b=3,则b2=9”的逆命题;②“全等三角形的面积相等”的否命题;③“若c≤1,则x2+2x+c=0有实根”;④“若A∪B=A,则A⊆B”的逆否命题.其中真命题的个数是( )A.1 B.2C.3 D.4[答案] A[解析]“若b=3,则b2=9”的逆命题:“若b2=9,则b=3”,假;“全等三角形的面积相等”的否命题是:“不全等的三角形,面积不相等”,假;若c≤1,则方程x2+2x+c=0中,Δ=4-4c=4(1-c)≥0,故方程有实根;“若A∪B=A,则A⊆B”为假,故其逆否命题为假.8.已知实数a >1,命题p :函数y =log 12(x 2+2x +a )的定义域为R ,命题q :x 2<1是x <a的充分不必要条件,则( )A .p 或q 为真命题B .p 且q 为假命题C .¬p 且q 为真命题D .¬p 或¬q 为真命题[答案] A[解析]∵a >1,∴Δ=4-4a <0,∴x 2+2x +a >0恒成立,∴p 为真命题;由x 2<1得-1<x <1,∴-1<x <1时,x <a 成立,但x <a 时,-1<x <1不一定成立,∴q 为真命题,从而A 正确.9.“a =-1”是方程“a 2x 2+(a +2)y 2+2ax +a =0”表示圆的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件 [答案] C[解析] 当a =-1时,方程为x 2+y 2-2x -1=0, 即(x -1)2+y 2=2表示圆,若a 2x 2+(a +2)y 2+2ax +a =0表示圆,则应满足⎩⎪⎨⎪⎧a 2=a +2≠02a 2-4a 3>0,解得a =-1,故选C.10.已知命题p :存在x 0∈R ,使mx 20+1≤1;命题q :对任意x ∈R ,x 2+mx +1≥0.若p ∨(¬q )为假命题,则实数m 的取值X 围是( )A .(-∞,0)∪(2,+∞)B .(0,2]C .[0,2]D .R[答案] B[解析] 对于命题p ,由mx 2+1≤1,得mx 2≤0,若p 为真命题,则m ≤0,若p 为假命题,则m >0;对于命题q ,对任意x ∈R ,x 2+mx +1≥0,若命题q 为真命题,则m 2-4≤0,即-2≤m ≤2,若命题q 为假命题,则m <-2或m >2.因为p ∨(¬q )为假命题,所以命题p 为假命题且命题q 为真命题,则有⎩⎪⎨⎪⎧m >0-2≤m ≤2,得0<m ≤2.故选B.二、填空题(本大题共5个小题,每小题5分,共25分,将正确答案填在题中横线上) 11.命题:“在平面直角坐标系中,若直线l 1垂直于直线l 2,则它们的斜率之积为-1”的逆命题为________________________.[答案] 在平面直角坐标系中,若直线l 1与直线l 2的斜率之积为-1,则这两条直线互相垂直12.存在实数x 0,y 0,使得2x 20+3y 20≤0,用符号“∀”或“∃”可表示为____________,其否定为________________.[答案]∃x 0,y 0∈R,2x 20+3y 20≤0 ∀x ,y ∈R,2x 2+3y 2>013.在平面直角坐标系中,点(2m +3-m 2,2m -32-m )在第四象限的充要条件是________.[答案] -1<m <32或2<m <3[解析] 点(2m +3-m 2,2m -32-m )在第四象限⇔⎩⎪⎨⎪⎧2m +3-m 2>02m -32-m <0⇔-1<m <32或2<m <3.14.给出下列四个命题: ①∀x ∈R ,x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,故x >1;③命题“若a >b >0,且c <0,则c a >c b”的逆否命题是真命题;④“a =1”是“直线x +y =0与直线x -ay =0互相垂直”的充分不必要条件. 其中正确的命题为________(只填正确命题的序号). [答案]①②③[解析]①中,x 2+2x >4x -3⇔x 2-2x +3>0⇔(x -1)2+2>0,故①正确.②中,显然x ≠1且x >0,若0<x <1,则log 2x <0,log x 2<0,从而log 2x +log x 2<0,与已知矛盾,故x >1,故②正确③中,命题“若a >b >0,且c <0,则c a >c b”为真命题,故其逆否命题是真命题,∴③正确. ④“a =1”是直线x +y =0与直线x -ay =0互相垂直的充要条件,故④不正确. 15.在下列所示电路图中,闭合开关A 是灯泡B 亮的什么条件:(1)如图①所示,开关A 闭合是灯泡B 亮的______条件; (2)如图②所示,开关A 闭合是灯泡B 亮的______条件; (3)如图③所示,开关A 闭合是灯泡B 亮的______条件; (4)如图④所示,开关A 闭合是灯泡B 亮的______条件. [答案] 充分不必要 必要不充分 充要 既不充分也不必要[解析] (1)A 闭合,B 亮;而B 亮时,A 不一定闭合,故A 是B 的充分不必要条件.(2)A 闭合,B 不一定亮;而B 亮,A 必须闭合,故A 是B 的必要不充分条件.(3)A 闭合,B 亮;而B 亮,A 必闭合,所以A 是B 的充要条件.(4)A 闭合,B 不一定亮;而B 亮,A 不一定闭合,所以A 是B 的既不充分也不必要条件.三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.写出命题“若x 2+7x -8=0,则x =-8或x =1的逆命题、否命题、逆否命题,并分别判断它们的真假.”[答案] 逆命题:若x =-8或x =1,则x 2+7x -8=0. 逆命题为真.否命题:若x 2+7x -8≠0,则x ≠-8且x ≠1. 否命题为真.逆否命题:若x ≠-8且x ≠1,则x 2+7x -8≠0. 逆否命题为真.17.判断下列命题是全称命题还是特称命题,并判断其真假. (1)对数函数都是单调函数;(2)至少有一个整数,它既能被11整除,又能被9整除; (3)∀x ∈{x |x >0},x +1x≥2;(4)∃x 0∈Z ,log 2x 0>2.[答案] (1)(3)是全称命题,(2)(4)是特称命题,都是真命题[解析] (1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题. (3)命题中含有全称量词“∀”,是全称命题,真命题. (4)命题中含有存在量词“∃”,是特称命题,真命题. 18.指出下列各题中,p 是q 的什么条件. (1)p :(x -2)(x -3)=0,q :x -2=0;(2)p :四边形的对角线相等;q :四边形是平行四边形.[答案] (1)p 是q 的必要不充分条件 (2)p 是q 的既不充分也不必要条件[解析] (1)p 是q 的必要不充分条件.这是因为:若(x -2)(x -3)=0,则x -2=0或x -3=0,即(x -2)(x -3)=0⇒/x -2=0,而由x -2=0可以推出(x -2)(x -3)=0.(2)p 是q 的既不充分也不必要条件.这是因为:四边形的对角线相等⇒/四边形为平行四边形;反之,四边形是平行四边形⇒/四边形的对角线相等.19.对于下列命题p ,写出¬p 的命题形式,并判断¬p 命题的真假:(1)p :91∈(A ∩B )(其中全集U =N *,A ={x |x 是质数},B ={x |x 是正奇数}); (2)p :有一个素数是偶数; (3)p :任意正整数都是质数或合数; (4)p :一个三角形有且仅有一个外接圆. [答案] (1)(2)(4)¬p 为假命题 (3)¬p 为真命题 [解析] (1)¬p :91∉A 或91∉B ;假命题. (2)¬p :所有素数都不是偶数;假命题.(3)¬p :存在一个正整数不是质数且不是合数;真命题.(4)¬p :存在一个三角形至少有两个外接圆或没有外接圆;假命题.20.已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若¬p 是¬q 的充分而不必要条件,某某数m 的取值X 围.[答案] [2,4][解析] 由题意p :-2≤x -3≤2,∴1≤x ≤5. ∴¬p :x <1或x >5.q :m -1≤x ≤m +1,∴¬q :x <m -1或x >m +1.又∵¬p 是¬q 的充分而不必要条件,∴⎩⎪⎨⎪⎧m -1≥1m +1≤5,∴2≤m ≤4.经检验m =2,m =4适合条件,即实数m 的取值X 围为2≤m ≤4. ∴m 的取值X 围为[2,4].21.(2014·马某某二中期中)设命题p :f (x )=2x -m在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(¬p )且q 为真,试某某数m 的取值X 围.[答案]m >1[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1, 对命题q :|x 1-x 2|=x 1+x 22-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3,∴m 2+5m -3≥3⇒m ≥1或m ≤-6. 若(¬p )且q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1.。
新课标人教版高二数学选修1-1综合测试卷(word文档有答案)
新课标人教版高二数学选修1-1综合测试卷一.选择题(本大题共12小题,每小题3分,共36分)1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 2. “0<mn ”是“方程122=+ny mx 表示焦点在y 轴上的双曲线”的( ) A .充分而不必要条件 B . 必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 4.双曲线121022=-y x 的焦距为( ) A .22 B .24 C .32 D .34 5. 设x x x f ln )(=,若2)(0='x f ,则=0x ( ) A . 2e B . e C . ln 22 D .ln 2 6. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .2B .3C .12D .138.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x 9.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.已知对任意实数x ,有()(),()()f x f x g x g x -=--=,且0>x 时'()0,'()0f x g x >>,则0<x 时( )A .'()0,'()0f x g x >>B .'()0,'()0f x g x ><C .'()0,'()0f x g x <>D .'()0,'()0f x g x <<二.填空题(本大题共4小题,每小题4分,共16分)13.函数1)(23+++=mx x x x f 是R 上的单调函数,则m 的取值范围为 .14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = _____________15.已知双曲线11222-=-+ny n x n = . 16.命题p :若10<<a ,则不等式0122>+-ax ax 在R 上恒成立,命题q :1≥a 是函数xax x f 1)(-=在),0(+∞上单调递增的充要条件;在命题①“p 且q ”、②“p 或q ”、③“非p ”、④“非q ”中,假命题是 ,真命题是 . 三.解答题(本大题共5小题,共40分)17(本小题满分8分)已知函数8332)(23+++=bx ax x x f 在1x =及2x =处取得极值.(1)求a 、b 的值;(2)求()f x 的单调区间.18(本小题满分10分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆;(2)抛物线的焦点是双曲线14491622=-y x 的左顶点.19(本小题满分10分) 已知椭圆193622=+y x ,求以点)2,4(P 为中点的弦所在的直线方程.20(本小题满分10分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:)1200(880312800013≤<+-=x x x y .已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?21(本小题满分10分)已知双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点为)0,2(1-F 、)0,2(2F 点)7,3(P 在双曲线C 上. (1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程.参考答案一.选择题(本大题共12小题,每小题3分,共36分)1-6 BBCDBD 7-12 ACABCB二.填空题(本大题共4小题,每小题4分,共16分)13. ),31[+∞ 14. 8 15. 12-或24 16. ①、③, ②、④. 三.解答题(本大题共5小题,共48分)17(本小题满分8分)解:(1)由已知b ax x x f 366)(2++='因为)(x f 在1=x 及2=x 处取得极值,所以1和2是方程0366)(2=++='b ax x x f 的两根 故3-=a 、4=b(2)由(1)可得81292)(23++-=x x x x f )2)(1(612186)(2--=+-='x x x x x f 当1<x 或2>x 时,0)(>'x f ,)(x f 是增加的;当21<<x 时,0)(<'x f ,)(x f 是减少的。
高二人教版数学选修1-1练习:1章试卷 Word版含答案
一、选择题(本大题共10小题,每小题5分,共50分)1.命题“若a=0, 则ab=0”的逆否命题是(D)A.若ab=0,则a=0 B.若a≠0,则ab≠0C.若ab=0,则a≠0 D.若ab≠0,则a≠0解析:“若a=0,则ab=0”的逆否命题为“若ab≠0,则a≠0”.2.(·广州海珠综测)“a=-1”是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-1时,可得直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直;当直,故“a=-1”线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直时,可得a=-1或a=34是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的充分不必要条件,故选A.3.(·湛江调研)“x>2”是“(x-1)2>1”的(B)A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:由“x>2”可得“(x-1)2>1”由“(x-1)2>1”可得“x>2或x<0”,则“x>2”是“(x-1)2>1”的充分不必要条件,故选B.4.(·广州二模)命题“∃x∈R,x2+4x+5≤0”的否定是(C)A.∃x∈R,x2+4x+5>0B.∃x∈R,x2+4x+5≤0C.∀x∈R,x2+4x+5>0D.∀x∈R,x2+4x+5≤05.命题“若a<0时,则一元二次方程x2+x+a=0有实根”与其逆命题、否命题、逆否命题中真命题的个数是(B)A.0 B.2 C.4 D.不确定解析:当a<0时,Δ=1 -4a>0,所以方程x2+x+a=0有实根,故原命题为真;根据原命题与逆否命题真假一致,可知其逆否命题为真;逆命题为:“若方程x2+x+a=0有实根,,显然a<0不一定成立,则a<0”,因为方程有实根,所以判别式Δ=1 -4a≥0,所以a≤14故逆命题为假;根据否命题与逆命题真假一致,可知否命题为假.故正确的命题有2个.6.已知命题p:∀b∈[0,+∞),f(x)=x2+bx+c在[0,+∞)上为增函数,命题q:∃x0∈{x|x∈Z},使log2x0>0,则下列结论判断为真的是(C)A.綈p∨綈q B.綈p∧綈qC.p∨綈q D.p∧綈q7.命题“2x 2-5x -3<0”的一个必要不充分条件是(B )A .-12<x <3 B .-3<x <3C .-12<x <2 D .0<x <68.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(B )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2 9.(·佛山质检)下列说法中正确的有(C )(1)命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”; (2)“x >2”是“x 2-3x +2>0”的充分不必要条件; (3)若p ∧q 为假命题,则p 、q 均为假命题;(4)对于命题p :∃x ∈R ,x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0. A .1个 B .2个 C .3个 D .4个解析:对于(3),若p ∧q 为假命题,则p 、q 中至少有一个为假命题,(3)错误.(1)(2)(4)正确,故选C.10.(·东北三省二模)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,那么k的取值范围是(B )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:q :3x +1<1⇒3x +1-1<0⇒2-x x +1<0⇒(x -2)·(x +1)>0⇒x <-1或x >2.因为p 是q 的充分不必要条件,所以k >2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.集合A ={x |x >1},B ={x |x <2};则“x ∈A 或x ∈B ”是“x ∈A ∩B ”的__________条件.答案:必要不充分12.已知命题p :∃x 0∈R ,x 20+2ax 0+a ≤0.若命题p 是假命题,则实数a 的取值范围是________.解析:因为p 是假命题,所以綈p 是真命题,即对任意的x 都有x 2+2ax +a >0,所以有(2a )2-4a <0,解之得a ∈()0,1.答案:()0,1 13.“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”的充要条件是________. 解析:“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”等价于|1-0-k |2<2,解得k ∈(-1,3).答案:-1<k <3 14.下列四种说法:①命题“∀x ∈R ,都有x 2-2<3x ”的否定是“∃x ∈R ,使得x 2-2≥3x ”;②若a ,b ∈R ,则2a <2b是log 12a >log 12b 的必要不充分条件;③把函数y =sin(-3x )(x ∈R )的图象上所有的点向右平移π4个单位即可得到函数y =sin ⎝⎛⎭⎫-3x -π4(x ∈R )的图象;④若向量a ,b 满足|a |=1,|b|=2,且a 与b 的夹角为2π3,则|a +b |= 3. 其中正确的说法是______. 解析:①正确.②若2a <2b ,则a <b ,当a 或b 为负数时,log 12a >log 12b 不成立,若log 12a >log 12b ,∴0<a<b ,∴2a <2b .故②正确.③把y =sin(-3x )的图象上所有点向右平移π4,得到y =sin ⎣⎢⎡⎦⎥⎤-1⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫-3x +3π4,故③不正确.④由题可知,a·b =1×2 cos 2π3=-1,∴|a +b|2=a 2+2a·b +b 2=3,∴|a +b|=3,故④正确.答案:①②④三、解答题(本大题共6小题,共80分)15.(12分)写出下列命题的否定,并判断真假: (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数; (3)s :∃x ∈R ,|x |>0.解析:(1)綈q :∃x 0∈R ,x 0是5x -12=0的根,真命题. (2)綈r :每一个质数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.16.(12分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)平面内,凸多边形的外角和等于360°; (2)有一些奇函数的图象过原点; (3)∃x 0∈R ,2x 20+x 0+1<0; (4)∀x ∈R ,sin x +cos x ≤ 2.解析:(1)可以改写为“平面内,所有凸多边形的外角和等于360°”,故是全称命题,且为真命题.(2)“有一些”是存在量词,故该命题为特称命题,显然是真命题.(3)是特称命题.∵2x 20+x 0+1=2⎝⎛⎭⎫x 0+142+78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0,故该命题为假命题.(4)是全称命题.∵sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2恒成立,∴对任意的实数x ,sin x +cos x≤2都成立,故该命题是真命题.17.(14分)已知集合A ={x |x 2+mx =5mx -2m -6},B ={x |x <0},若“∃x ∈R ,使得x ∈A ∩B ”成立,求实数m 的取值范围.解析:A ={x |x 2+mx =5mx -2m -6}={x |x 2-4mx +2m +6=0}“∃x ∈R ,使得x ∈A ∩B ”成立,所以A ∩B ≠∅.设全集∪={m |Δ=(-4m )2-4(2m +6)≥0},则∪=⎩⎨⎧⎭⎬⎫m ⎪⎪m ≤-1或m ≥32.假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有 ⎩⎨⎧m ∈∪,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧m ∈∪,4m ≥0,2m +6≥0⇒m ≥32. 又集合⎩⎨⎧⎭⎬⎫m ⎪⎪m ≥32关于全集∪的补集是{m |m ≤-1},所以实数m 的取值范围是{m |m ≤-1}. 18.(14分)已知p :-2≤x ≤10;q :x 2-2x +1-m 2≤0(m >0).若綈p 是綈q 的必要非充分条件,求实数m 的取值范围.解析:綈p :x <-2,或x >10, A ={x |x <-2,或x >10}.綈q :x 2-2x +1-m 2>0,x <1-m ,或x >1+m , B ={x |x <1-m ,或x >1+m }. ∵綈p 是綈q 的必要非充分条件,∴B ?A ,即⎩⎨⎧1-m ≤-2,1+m ≥10,m >0⇒m ≥9.∴实数m 的取值范围是[9,+∞).19.(14分)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不同时大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,而1-a +b2≥(1-a )b >12,1-b +c2≥(1-b )c >12,1-c +a2≥(1-c )a >12,得1-a +b 2+1-b +c 2+1-c +a 2>32, 即32>32,属于自相矛盾,所以假设不成立,原命题成立. 20.(14分)已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真,p ∧q 为假,求实数a 的取值范围.解析:设g (x )=x 2+2ax +4.由于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴函数g (x )的图象开口向上,且与x 的轴没有交点,故Δ=4a 2-16<0.∴-2<a <2,∴命题p :-2<a <2. ∵函数f (x )=-(5-2a )2是减函数, 则有5-2a >1,即a <2.∴命题q :a <2.又由于p ∨q 为真p ∧q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥2,此不等式组无解.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <2,∴a ≤-2.综上可知,所求实数a 的取值范围为{a |a ≤-2}.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列语句中是命题的是(B )A .周期函数的和是周期函数吗?B .sin 45°=1C .x 2+2x -1>0D .梯形是不是平面图形呢?解析:可以判断真假的陈述句.2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是(D )A .都真B .都假C .否命题真D .逆否命题真解析:原命题是真命题,所以其逆否命题也为真命题.3.有下述说法:①a >b >0是a 2>b 2的充要条件;②a >b >0是1a <1b的充要条件;③a >b >0是a 3>b 3的充要条件.则其中正确的说法有(A)A .0个B .1个C .2个D .3个解析:①a >b >0⇒a 2>b 2,仅仅是充分条件;②a >b >0⇒1a <1b ,仅仅是充分条件;③a >b >0⇒a 3>b 3,仅仅是充分条件.4.下列说法中正确的是(D )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0, 则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真解析:否命题和逆命题是互为逆否命题,有着一致的真假性.5.(·广州一模)“m <2”是“一元二次不等式x 2+mx +1>0的解集为R ”的(B ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:一元二次不等式x 2+mx +1>0的解为m ∈(-2,2),则m <2只是其必要不充分条件. 6.已知条件p :|x +1|>2,条件q :5x -6>x 2,则綈p 是綈q 的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:綈p :|x +1|≤2,-3≤x ≤1,綈q :5x -6≤x 2,x 2-5x +6≥0,x ≥3或x ≤2,綈p ⇒綈q ,充分不必要条件. 7.有下列四个命题:①“若x +y =0, 则x ,y 互为相反数”的逆否命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题. 其中真命题为(C)A .①②B .②③C .①③D .③④解析:若x +y =0,则x ,y 互为相反数,为真命题,则逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等” 为假命题;若q ≤1⇒4-4q ≥0,即Δ=4-4q ≥0,则x 2+2x +q =0有实根,为真命题.“不等边三角形的三个内角相等”逆命题为“三个内角相等的三角形是不等边三角形”,为假命题.8.已知命题p :若x ∈N *,则x ∈z .命题q :∃x 0∈R ,⎝⎛⎭⎫12x 0-1=0.则下列命题为真命题的是(D )A .綈pB .p ∧qC .綈p ∨qD .綈p ∨綈q 解析: 显然命题p 为真;因为对∀x ∈R ,都有⎝⎛⎭⎫12x -1>0,所以命题q 为假,所以綈q 为真,由“或”“且”“非”命题的真值表知D 正确.9.(·江西卷)下列叙述中正确的是(D )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,a ,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β解析:由于“若b 2-4ac ≤0,则ax 2+bx +c ≥0”是假命题,所以“ax 2+bx +c ≥0”的充分条件不是“b 2-4ac ≤0”,A 错;∵ab 2>cb 2,且b 2>0,∴a >c .而a >c 时,若b 2=0,则ab 2>cb 2不成立,由此知“ab 2>cb 2”是“a >c ”的充分不必要条件,B 错;“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2<0”,C 错;由l ⊥α,l ⊥β,则a ∥β,可得α∥β,理由是:垂直于同一条直线的两个平面平行,D 正确.10.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是(A )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0, 即方程x 2+2ax +2-a =0有实根, ∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2或a ≥1.∴a ≤-2或a =1.11.下列命题中的假命题是(C ) A .∀x >0且x ≠1,都有x +1x>2B .∀a ∈R ,直线ax +y =a 恒过定点(1,0)C .∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∀m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减解析:当x >0时,x +1x ≥2x ·1x =2,∵x ≠1,∴x +1x>2,故A 为真命题;将(1,0)代入直线ax +y =a 成立,B 为真命题;当φ=π2时,函数y =sin ⎝ ⎛⎭⎪⎫x +π2是偶函数,C 为假命题;当m=2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是(A )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0, 即方程x 2+2ax +2-a =0有实根, ∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2,a ≥1.∴a ≤-2,或a =1.二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.命题:“若a ·b 不为零,则a ,b 都不为零”的逆否命题是________________________________________________________________________.答案:若a ,b 至少有一个为零,则a ·b 为零 14.用“充分、必要、充要”填空:①p ∨q 为真命题是p ∧q 为真命题的__________条件;②綈p 为假命题是p ∨q 为真命题的__________条件;③A :|x -2|<3,B :x 2-4x -15<0,则A 是B 的________条件. 答案:①必要 ②充分 ③充分15.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是__________. 解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,得-3≤a <0.∴-3≤a ≤0.答案:[-3,0]16.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为______.解析:由x 2>1得x <-1或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)对于下述命题p ,写出“綈p ”形式的命题,并判断“p ”与“綈p ”的真假: (1)p :91∈(A ∩B )(其中全集U =N *,A ={x |x 是质数},B ={x |x 是正奇数}); (2)p :有一个素数是偶数;(3)p :任意正整数都是质数或合数; (4)p :三角形有且仅有一个外接圆.解析:(1)綈p :91∉A ,或91∉B ;p 真,綈p 假. (2)綈p :每一个素数都不是偶数;p 真,綈p 假.(3)綈p :存在一个正整数不是质数且不是合数;p 假,綈p 真.(4)綈p :存在一个三角形有两个及其以上的外接圆或没有外接圆;p 真,綈p 假. 18.(12分)写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题,并判断其真假.解析:逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19.(12分)已知方程x 2+(2k -1)x +k 2=0,求使方程有两个大于1的实数根的充要条件.解析:令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎨⎧Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0,即k <-2,所以其充要条件为k <-2.20.(12分)若a 2+b 2=c 2,求证a ,b ,c 不可能都是奇数.证明:假设a ,b ,c 都是奇数,则a 2,b 2,c 2都是奇数,得a 2+b 2为偶数,而c 2为奇数,即a 2+b 2≠c 2,与a 2+b 2=c 2矛盾,所以假设不成立,原命题成立.21.(12分)已知a >0,a ≠1,设p :函数y =log a (x +3)在(0,+∞)上单调递减,q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.解析:对于命题p :当0<a <1时,函数y =log a (x +3)在(0,+∞)上单调递减. 当a >1时,函数y =log a (x +3)在(0,+∞)上单调递增,所以如果p 为真命题,那么0<a <1.如果p 为假命题,那么a >1.对于命题q :如果函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点, 那么Δ=(2a -3)2-4>0,即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题,那么0<a <12或a >52.∴a 的取值范围是⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.22.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解析:(1)由x 2-4ax +3a 2<0,的(x -3a )(x -a )<0. 又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3.所以q 为真时,2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2)∵綈p 是綈q 的充分不必要条件,∴q 是p 的充分不必要条件,则有(2,3]?(a ,3a ).于是满足⎩⎪⎨⎪⎧a ≤2,3a >3,解得1<a ≤2,故所求a 的取值范围是(1,2].。
高二数学(人教B版)选修1-1同步练习1、1-1-1命题
选修1-1 1.1.1命题一、选择题1.下列语句中是真命题的是( )A .矩形不是平行四边形吗?B .垂直于同一条直线的两条直线必平行C .一个数不是合数就是质数D .在一个三角形中,大角所对的边大于小角所对的边[答案] D[解析] A 不是命题,B 、C 是假命题,D 正确.2.下列语句中命题的个数为( )①平行四边形不是梯形; ②3是无理数;③方程9x 2-1=0的解是x =±13; ④请进;⑤2008年8月8日是北京奥运会开幕的日子.A .2B .3C .4D .5[答案] C[解析] ①②③⑤是命题.3.下列语句:①12>5;②3是12的约数;③0.5是整数;④这是一棵大树;⑤x 2+3<2.其中不是命题的有( )A .①③⑤B .①②③④C .②③④D .④ [答案] D[解析] 由命题定义知①②③⑤是命题.4.下列三个命题:①方程x 2-x +2=0的判别式小于零;②矩形的对角线互相垂直且平分;③2是质数.其中是真命题的是( )A .①②B .②③C .①③D .① [答案] C[解析] 矩形的对角线互相平分,但不一定垂直.5.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“当a>1时,方程x2-4x+a=0有实根”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题[答案] D[解析]由Δ=16-4a≥0,知a≤4,故D正确.6.下列语句是命题的是()A.|x+a| B.0∈ZC.集合与简易逻辑D.真子集[答案] B7.下列语句:①奇函数图像关于原点对称;②x>2;③△ABC的面积;④高三全体学生.其中不是命题的是()A.①②③B.①②④C.①③④D.②③④[答案] D8.下列语句中,命题的个数是()①{0}∈N;②他长得高;③地球上的四大洋;④5的平方是20.A.1B.2C.3D.4[答案] B9.下列命题:①mx2+2x-1=0是一元二次方程;②抛物线y=ax2+2x-1与x轴至少有一个交点;③互相包含的两个集合相等;④空集是任何非空集合的真子集.真命题的个数为()A.1B.2C.3D.4[答案] B10.对于向量a、b、c和实数λ,下列命题中正确的是()A.若a·b=0,则a=0或b=0B.若λa=0,则λ=0或a=0C.若a2=b2,则a=b或a=-bD.若|a·b|=|a·c|,则b=c[答案] B二、填空题11.有下列四个命题:①若x·y=0,则x、y中至少有一个为0;②全等三角形面积相等;③若q≤1,则x2+2x+q=0有实数解;④2是合数.其中真命题是________(填上所有正确命题的序号).[答案]①②③12.关于平面向量a,b,c,有下列三个命题:①若a·b=a·c,则b=c;②若a=(1,k),b=(-2,6),a∥b,则k=-3;③非零向量a和b满足|a|=|b|=|a-b|,则a与a+b的夹角为60°.其中真命题的序号为________(写出所有真命题的序号).[答案]②[解析]对于①,向量在等式两边不能相消,也可举反例:当a⊥b且a⊥c,a·b=a·c =0,但此时b=c不一定成立;对于②,在1-2=k6,得k=-3;对于③,根据平行四边形法则,画图可知a与a+b的夹角为30°,而不是60°.13.给出下列四个命题:①梯形的对角线相等;②对任意实数x,均有x+2>x;③不存在实数x,使x2+x+1<0;④有些三角形不是等腰三角形.其中所有真命题的序号为________.[答案]②③④14.下列语句:①2是无限循环小数;②x2-3x+2=0;③当x=4时,2x>0;④难道菱形的对角线不互相平分吗?⑤把门关上.其中不是命题的是________.[答案]②⑤三、解答题15.判断下列语句是否是命题,并说明理由.(1)求证:3是无理数;(2)x2+4x+4≥0;(3)你是高一的学生吗?(4)并非所有的人都喜欢苹果.[解析](1)祈使句,不是命题.(2)x2+4x+4=(x+2)2≥0,它包括x2+4x+4>0,或x2+4x+4=0,对于x∈R.可以判断真假,它是命题.(3)是疑问句,不涉及真假,不是命题.(4)是命题,人群中有的人喜欢苹果,也存在着不喜欢苹果的人.16.判断下列命题的真假.(1)形如a +6b 的数是无理数.(2)正项等差数列的公差大于零.(3)能被2整除的数一定能被4整除.[解析] (1)假命题,反例:若a 为有理数,b =0,则a +6b 为有理数.(2)假命题,反例:若此等差数列为递减数列,如数列20,17,14,11,8,5,2,它的公差为-3.(3)假命题,反例:数2,6能被2整除,但不能被4整除.17.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)当ac >bc 时,a >b ;(2)已知x 、y 为正整数,当y =x +1时,y =3,x =2;(3)当m >14时,mx 2-x +1=0无实根. [解析] (1)若ac >bc ,则a >b ,假命题.(2)已知x 、y 为正整数,若y =x +1,则y =3,且x =2,假命题.(3)若m >14,则mx 2-x +1=0无实根,真命题.。
高二数学选修1--1椭圆练习题(最新整理)
解得 m=4 或 m=8. 3.矩形 ABCD 中,|AB|=4,|BC|=3,则以 A,B 为焦点,且过 C,D 两点的椭圆的短 轴的长为( ) A.2 3 B.2 6 C.4 2 D.4 3 解析:选 D 依题意得|AC|=5,所以椭圆的焦距为 2c=|AB|=4,长轴长 2a=|AC|+|BC|=
解析:依题意得|F1F2|2=|AF1|·|BF1|,即 4c2=(a-c)·(a+c)=a2-c2,整理得 5c2=a2,
c5 得 e= = .
a5 5
答案: 5
2
x2 y2
3
9.已知椭圆 C: + =1(a>b>0)的离心率为 .过右焦点 F 且斜率为 k(k>0)的直线与
a2 b2
2
椭圆 C 相交于 A,B 两点.若 AF =3 FB ,则 k=________.
解析:由题意知,以半焦距 c 为半径的圆与椭圆有公共点,故 b≤c,所以 b2≤c2,即
a2≤2c2,
2c c
2
所以 ≤ .又 <1,所以 ≤e<1.
2 aa
2
2
[ ) 答案: ,1 2 8.(2012·江西高考)椭圆x2+y2=1(a>b>0)的左、右顶点分别是 A,B,左、右焦点分别
a2 b2 是 F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为________.
a2
a2 8
4
(2)设直线 OQ 的斜率为 k,则其方程为 y=kx,设点 Q 的坐标为(x0,y0).
a2b2
由条件得Error!消去
y0
并整理得
x20=
.①
k2a2+b2
由|AQ|=|AO|,A(-a,0)及 y0=kx0,
高中数学选修1-1第一章《常用逻辑用语》单元测试(一)
105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。
人教版高中数学高二选修1-1 椭圆及其标准方程
2.1.1 椭圆及其标准方程问题导学一、椭圆的定义及应用活动与探究1(1)椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A .5B .6C .4D .10(2)已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B中,若有两边之和是10,则第三边的长度为______.迁移与应用 设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列,则|AB |=______.椭圆的定义能够对一些距离进行相互转化,简化解题过程.因此,解题过程中遇到涉及曲线上的点到焦点的距离问题时,应先考虑是否能够利用椭圆的定义求解.椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识,对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1||PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|及余弦定理求出|PF 1||PF 2|,而无需单独求出,这样可以减少运算量.二、椭圆的标准方程及应用活动与探究2求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F 1(-4,0),F 2(4,0),并且椭圆上一点P 与两焦点的距离的和等于10;(2)焦点分别为(0,-2),(0,2),经过点(4,32); (3)经过两点(2,-2),⎝⎛⎭⎫-1,142.迁移与应用1.若方程x 25-k +y 2k -3=1表示焦点在x 轴上的椭圆,则k 的取值范围是__________.2.两焦点坐标分别为(3,0)和(-3,0)且经过点(5,0)的椭圆的标准方程为__________.(1)利用待定系数法求椭圆的标准方程的步骤可总结如下:①由焦点坐标确定方程是x 2a 2+y 2b 2=1(a >b >0),还是y 2a 2+x 2b2=1(a >b >0);②运用定义、平方关系等求出a ,b . (2)当焦点不确定时,可设方程为Ax 2+By 2=1(A >0,B >0,且A ≠B ),这样可以避免讨论.三、焦点三角形问题活动与探究3如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.迁移与应用已知P 是椭圆x 225+y 29=1上一点,F 1,F 2是椭圆的两个焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.四、与椭圆有关的轨迹问题活动与探究4(1)已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM →=2MP ′→,求点M 的轨迹.(2)已知在△ABC 中,|BC |=6,周长为16,那么顶点A 在怎样的曲线上运动?迁移与应用如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解决与椭圆有关的轨迹问题,一般有两种方法: (1)定义法用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.用相关点法求轨迹方程的步骤:①设所求轨迹上的动点P (x ,y ),再设具有某种运动规律f (x ,y )=0上的动点Q (x ′,y ′);②找出P ,Q 之间坐标的关系,并表示为⎩⎪⎨⎪⎧x ′=φ1x ,y ,y ′=φ2x ,y ;③将x ′,y ′代入f (x ,y )=0, 即得所求轨迹方程. 答案: 课前·预习导学 【预习导引】1.距离之和 常数 两个定点 两焦点间的距离 |MF 1|+|MF 2|=2a预习交流1 (1)提示:当2a =|F 1F 2|时,点M 的轨迹是线段F 1F 2;当2a <|F 1F 2|时,点M 的轨迹不存在.(2)提示:B2.x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b2=1(a >b >0) F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c )a2=b2+c2预习交流2(1)提示:相同点:它们都有a>b>0,a2=b2+c2,焦距都是2c,椭圆上的点到两焦点距离的和均为2a.方程右边为1,左边是两个非负分式的和,并且分母不相等.不同点:两类椭圆的焦点位置不同,即焦点所在坐标轴不同,因此焦点坐标也不相同,焦点在x轴上的椭圆两焦点坐标分别为(-c,0)和(c,0),焦点在y轴上的椭圆两焦点坐标分别为(0,-c)和(0,c).当椭圆焦点在x轴上时,含x2项的分母大;当椭圆焦点在y轴上时,含y2项的分母大.(2)提示:534(4,0),(-4,0)课堂·合作探究【问题导学】活动与探究1(1)思路分析:求出a→|PF1|+|PF2|=2a>|F1F2|→求出P到另一个焦点的距离A解析:点P到椭圆的两个焦点的距离之和为2a=10,10-5=5.(2)思路分析:结合图形,利用定义求第三边.6解析:由已知a2=16,a=4.从而由椭圆定义得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,∴△AF1B的周长为|AF1|+|AB|+|BF1|=16.又知三角形有两边之和为10,∴第三边的长度为6.迁移与应用43解析:由椭圆定义知|AF2|+|AB|+|BF2|=4,又2|AB|=|AF2|+|BF2|,所以|AB|=43.活动与探究2思路分析:(1)由已知可得a,c的值,由b2=a2-c2可求出b,再根据焦点位置写出椭圆的方程.(2)利用两点间的距离公式求出2a ,再写方程;也可用待定系数法.(3)利用待定系数法,但需讨论焦点的位置.也可利用椭圆的一般方程Ax 2+By 2=1(A >0,B >0, A ≠B )直接求A ,B 得方程.解:(1)由题意可知椭圆的焦点在x 轴上,且c =4,2a =10, 所以a =5,b =a 2-c 2=25-16=3.所以椭圆的标准方程为x 225+y 29=1.(2)(方法一)因为椭圆的焦点在y 轴上, 所以可设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12,所以a =6. 又c =2,所以b =a 2-c 2=42. 所以椭圆的标准方程为y 236+x 232=1.(方法二)因为椭圆的焦点在y 轴上, 所以可设其标准方程为y 2a 2+x 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧18a 2+16b 2=1,a 2=b 2+4,解得⎩⎪⎨⎪⎧a 2=36,b 2=32.所以椭圆的标准方程为y 236+x 232=1.(3)(方法一)若椭圆的焦点在x 轴上, 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.同理可得:焦点在y 轴上的椭圆不存在.综上,所求椭圆的标准方程为x 28+y 24=1.(方法二)设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将两点(2,-2),⎝⎛⎭⎫-1,142代入, 得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎨⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.迁移与应用1.(3,4) 解析:由已知得⎩⎪⎨⎪⎧5-k >k -3,k -3>0,解得3<k <4.2.x 225+y 216=1 解析:易知c =3,a =5,则b 2=a 2-c 2=16. 又椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 225+y 216=1.活动与探究3 思路分析:由余弦定理和椭圆定义分别建立|PF 1|,|PF 2|的方程,求出|PF 1|,|PF 2|后,再求△PF 1F 2的面积.解:由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2,在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|,① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|,② 将②代入①解得|PF 1|=65.∴12PF F S ∆=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335,即△PF1F2的面积是353.迁移与应用解:在椭圆x225+y29=1中,a=5,b=3,c=4,则|F1F2|=8,|PF1|+|PF2|=10.①由余弦定理,得|PF1|2+|PF2|2-2|PF1||PF2|·cos 60°=64.②①2-②得|PF1||PF2|=12.∴S=12|PF1|·|PF2|·sin 60°=12×12×32=33.活动与探究4(1)思路分析:先设出M的坐标(x,y),用x,y表示出点P的坐标代入圆方程即可.解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则x0=x,y0=3y.因为P(x0,y0)在圆x2+y2=9上,所以x20+y20=9.将x0=x,y0=3y代入圆方程,得x2+9y2=9.即x29+y2=1.又y≠0,所以点M的轨迹是一个椭圆,且除去(3,0)和(-3,0)两点.(2)思路分析:利用椭圆的定义解决,最后要注意检验.解:由|AB|+|BC|+|AC|=16,|BC|=6,可得|AB|+|AC|=10>6=|BC|,故顶点A在以B,C为焦点,到两焦点距离的和等于10的一个椭圆上运动,且除去BC 直线与椭圆的两个交点.迁移与应用解:由题意知M 在线段CQ 上,从而有|CQ |=|MQ |+|MC |. 又M 在AQ 的垂直平分线上,连接AM ,则|MA |=|MQ |, ∴|MA |+|MC |=|CQ |=5>|AC |=2.∴M 的轨迹是以C (-1,0),A (1,0)为焦点的椭圆,且2a =5, ∴a =52,c =1,b 2=a 2-c 2=214.∴M 的轨迹方程为x 2254+y 2214=1,即4x 225+4y 221=1.当堂检测1.设P 是椭圆22=12516x y +上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ) A .4 B .5 C .8 D .10 答案:D 解析:由椭圆定义知|PF 1|+|PF 2|=2a . ∵a 2=25,∴2a =10. ∴|PF 1|+|PF 2|=10.2.椭圆22=1167x y +的焦点坐标为( ) A .(-4,0)和(4,0) B .(0,)和(0) C .(-3,0)和(3,0) D .(0,-9)和(0,9)答案:C 解析:由已知椭圆的焦点在x 轴上,且a 2=16,b 2=7, ∴c 2=9,c =3.∴椭圆的焦点坐标为(-3,0)和(3,0).3.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .抛物线D .无法确定答案:A解析:由题意得|PF1|+|PF2|=2a(a为大于零的常数,且2a>|F1F2|),|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a.∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.4.已知P是椭圆22=12516x y+上一点,F1,F2为焦点,且∠F1PF2=90°,则△PF1F2的面积是______.答案:16解析:由椭圆定义知:|PF1|+|PF2|=2a=10,①又∵∠F1PF2=90°,∴|PF1|2+|PF2|2=|F1F2|2=4c2=36.②①2-②得|PF1|·|PF2|=32.∴S=12|PF1|·|PF2|=16.5.已知椭圆22=1259x y+上一点M到左焦点F1的距离为6,N是MF1的中点,则|ON|=______.答案:2解析:设右焦点为F2,连接F2M,∵O为F1F2的中点,N是MF1的中点,∴|ON|=12|MF2|.又∵|MF1|+|MF2|=2a=10,|MF1|=6,∴|MF2|=4,∴|ON|=2.。
人教版高二数学选修1-1双曲线及其标准方程练习题答案及详解
-+--= C.-= D.-5(5,A.-= B.-=--=.椭圆+m 2=与双曲线m 2-=A.-= B.-=C.-=-= D.- D.m -b.已知方程=.以椭圆椭圆=A.==-+a 2=与双曲线a -+.过双曲线=.如果椭圆椭圆=.设双曲线与椭圆=3=1. 5、C ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、C ∵c 9-y 22m ,由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a ,∴|PF 1|·|·||PF 2|=m -a . 11、x 273-y 275=1 12、833∵a 2=3,b 2=4,∴c 2=7,∴c ïìx =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833. 13、1 由题意得a >0,且4-a 2=a +2,∴a =1. 14、 x 24-y 212=1(x ≤-2) 设动圆圆心为P (x ,y ),由题意得|PB |-|P A |=4<|AB |=8, 由双曲线定义知,点P 的轨迹是以A 、B 为焦点,且2a =4,a =2的双曲线的左支.其方程为:x 24-y 212=1(x ≤-2). 15、椭圆x 227+y 236=1的焦点为(0,±3),由题意,设双曲线方程为:y 2a 2-x 2b 2=1(a >0,b >0),人教版高二数学选修1-1双曲线及其双曲线及其标准方程标准方程练习题答案及详解 1、D 2、A 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1. 3、A 设动圆设动圆半径半径为r ,圆心为O ,x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、B 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双,双曲线方程曲线方程为y 2-x 2=5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,∴(|PF 1|-|PF 2|)2+2|PF 1|·|·||PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、A 验证法:当m =±1时,m 2=1,对,对椭圆椭圆来说,a 2=4,b 2=1,c 2=3. 对双曲线来说,a 2=1,b 2=2,c 2=3,故当m =±1时,它们有相同的焦点. 直接法:显然双曲线焦点在x 轴上,故4-m 2=m 2+2.∴m 2=1,即m =±1. 8、D 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点,为焦点,实轴实轴长为6的双曲线的右支,其方程为:x 27=1(x >0) 9、D |A F AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16, ∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 10、A 设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|==7,该弦所在,该弦所在直线直线方程为x =7, 由îïí+2-b 2=∴16a 2-15b -=3,(3-3(3--3)·((3-y 2=-y M 2=-3-)(3--y 2M 2=±233,=233. =12|F =3,∴x 2M +y 2M =3①-y M 2=±233,=233. 椭圆=双曲线a 2=为:。
人教版高二数学选修1-1双曲线的几何性质练习题及答案
一、选择题(每小题四个选项中,只有一项符合题目要求)1.双曲线)0,0(12222>>=-b a by a x 的一条准线l 与一条渐近线F 是与l 相应的焦点,则|PF|等于( )交于P 点,F 是与l 相应的焦点,则|PF|等于( )A .aB .bC .2aD .2b2.已知平面内有一定线段AB ,其长度为4,动点P 满足|PA|-|PB|=3,O 为AB 的中点,则|PO|的最小值为( )A .1B .23 C .2 D .4 3.双曲线12222=-by a x 的离心率为1e ,双曲线12222-=-b y a x 的离心率为则21e e +的最小值是( )A .2B .2C .22D .44.已知双曲线12222=-by a x 的焦点为1F 、2F ,弦AB 过1F 且在若||2||||22AB BF AF =+,双曲线的一支上,则|AB|等于( )A .2aB .3aC .4aD .不能确定5.椭圆和双曲线有相同的中心和准线,椭圆的焦点1F 、2F 三等分以双曲线点1F '、2F '为端点的线段,则双曲线的离心率e ′与椭圆的离心率e 的比值是( )A .2B .3C .2D .36.已知两点)45,1(M ,)45,4(--N ,给出下列曲线方程 ①4x+2y-1=0 ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④二、填空题7.过双曲线1222=-y x 的右焦点作直线l 交双曲线于A 、B 两点,若|AB|=4,则这样的直线共有_________条。
8.设1F 、2F 是双曲线222a y x =-的两焦点,Q 是双曲线上任意一点,从1F 引21QF F ∠的平分线的垂线,垂足为P ,则点P 的轨迹方程是__________。
新课标人教版高二数学选修1-1综合测试卷(word文档有答案)
新课标人教版高二数学选修1-1综合测试卷(word文档有答案)新课标人教版高二数学选修1-1综合测试卷一、选择题(本大题共12小题,每小题3分,共36分)1.“sinA=1/2”是“A=30°”的()。
A。
充分而不必要条件B。
必要而不充分条件C。
充分必要条件D。
既不充分也不必要条件2.“mn<0”是“方程mx^2+ny^2=1表示焦点在y轴上的双曲线”的()。
A。
充分而不必要条件B。
必要而不充分条件C。
充分必要条件D。
既不充分也不必要条件3.命题“对任意的x∈R,x-x+1≤32”的否定是()。
A。
不存在x∈R,x-x+1≤32B。
存在x∈R,x-x+1≤32C。
存在x∈R,x-x+1>32D。
对任意的x∈R,x-x+1>324.双曲线x^2/102-y^2/22=1的焦距为()。
A。
2√22B。
4√22C。
2√10D。
4√105.设f(x)=xlnx,若f'(x)=2,则x=()。
A。
eB。
e^2C。
ln2D。
26.若抛物线y=2px的焦点与椭圆x^2/36+y^2/4=1的右焦点重合,则p的值为()。
A。
-2B。
2C。
-4D。
47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()。
A。
√3/2B。
2/3C。
1/2D。
1/38.已知两点F1(-1,0)、F2(1,0),且F1F2是PF1与PF2的等差中项,则动点P的轨迹方程是()。
A。
x^2/9+y^2=1B。
x^2/4+y^2=1C。
x^2+y^2/9=1D。
x^2+y^2/4=19.设曲线y=ax^2在点(1,a)处的切线与直线2x-y-6=0平行,则a=()。
A。
1B。
1/2C。
-1/2D。
-110.抛物线y=-x^2的准线方程是()。
A。
x=11/8B。
y=2C。
y=-2D。
y=-11/811.双曲线x^2/49-y^2/39=1的渐近线方程是()。
A。
y=±x/7B。
y=±3x/7C。
高二数学选修1-1数学测试题及答案
9、已知函数 ;下列判断正确的是()
A.在定义域上为增函数;B.在定义域上为减函数;
C.在定义域上有最小值;没有最大值;D.在定义域上有最大值;没有最小值;
10、设二次函数 的导数为 ; ;若 ;恒有 ;则 的最小值是()
A. B. C. D.
二.填空题:本大题共4小题;每空格5分;共25分。请将答案填在答题卷横线上。
11、已知命题 : ; ;则 形式的命题是__
12、.图中是抛物线形拱桥;水面在A处时;拱顶离水面2米;
水面宽4米;当水面下降1米后;水面宽是
13、.已知点 ; 为抛物线 的焦点;点 在抛物线上;
且 取得最小值;则 点的坐标是
14、已知函数 ;过原点作曲线 的切线;则切线的方程是
三.解答题:本大题共6小题;共80分。解答应写出文字说明、演算步骤或推证过程。
答案:
一、选择题(本大题共10小题;每小题5分;共50分)
1-10:DABCC BDDCA
二、填空题(本大题共4小题;每小题5分;共20分.)
11、 ; ;12、 ;13、 ;14、
三、解答题:(本大题共6小题;共80分.)
16、解:命题 :
即 恒成立 …………3分
命题 :
即方程 有实数根
∴ 或 .…………6分
(Ⅰ)求函数 的单调区间和极大值;
(Ⅱ)证明:对任意 ;不等式 恒成立。
20(本小题满分14分)
如图;设抛物线C: 的焦点为F; 为抛物线上的任一点(其中 ≠0);
过P点的切线交 轴于Q点.
(Ⅰ)证明: ;
(Ⅱ)Q点关于原点O的对称点为M;过M点作平行于PQ的直线
交抛物线C于A、B两点;若 ;求 的值.
高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题
选修1-1模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0 D .∃x ∈R,2x 2+1≤0 解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x>0成立的一个充分不必要条件是( )A. -1<x <0或x >1B. x <-1或0<x <1C. x >-1D. x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图象,两图象的交点为(1,1)、(-1,-1),依图知x -1x>0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·某某模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤b D .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·某某省日照一中模考]下列命题中,为真命题的是( ) A. ∀x ∈R ,x 2-x -1>0B. ∀α,β∈R ,sin(α+β)<sin α+sin βC. 函数y =2sin(x +π5)的图象的一条对称轴是x =45πD. 若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值X 围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值X 围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知 |BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D. y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值X 围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c2>a ,∴c a>2.答案:C8.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为( )A. 1∶πB. 2∶πC. 1∶2D. 2∶1解析:设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π(6-x 2π)2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4, (6-x )∶x =4∶2=2∶1. 答案:D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,因为y =x 2+1与渐近线相切,故x2+1±bax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4, ∴c 2a2=5,∴e = 5. 答案:C10.[2014·某某五校联考]设函数f (x )=e x(sin x -cos x )(0≤x ≤2012π),则函数f (x )的各极小值之和为( )A. -e 2π1-e2012π1-e 2πB. -e 2π1-e1006π1-eπC. -e 2π1-e1006π1-e2πD. -e 2π1-e2010π1-e2π解析:f ′(x )=(e x)′(sin x -cos x )+e x(sin x -cos x )′=2e xsin x ,若f ′(x )<0,则x ∈(π+2k π,2π+2k π),k ∈Z ;若f ′(x )>0,则x ∈(2π+2k π,3π+2k π),k ∈Z .所以当x =2π+2k π,k ∈Z 时,f (x )取得极小值,其极小值为f (2π+2k π)=e2k π+2π[sin(2π+2k π)-cos(2π+2k π)]=e2k π+2π×(0-1)=-e2k π+2π,k ∈Z .因为0≤x ≤2012π,又在两个端点的函数值不是极小值,所以k ∈[0,1004],所以函数f (x )的各极小值构成以-e 2π为首项,以e 2π为公比的等比数列,共有1005项,故函数f (x )的各极小值之和为S 1005=-e 2π-e 4π-…-e2010π=e2π1-e2010π1-e2π.答案:D11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0). 设A (x 0,y 0),如下图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·某某高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C. 32D.62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b2③,联立②③解得a =2,所以e =c a =62,故选D. 答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =13ax 3-12ax 2(a ≠0)在区间(0,1)上是增函数,则实数a 的取值X 围是________.解析:y ′=ax 2-ax =ax (x -1),∵x ∈(0,1),y ′>0,∴a <0. 答案:a <014.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值X 围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·某某质检]已知a ∈R ,若实数x ,y 满足y =-x 2+3ln x ,则(a -x )2+(a +2-y )2的最小值是________.解析:(a -x )2+(a +2-y )2≥x -a +a +2-y22=x +x 2-3ln x +222.设g (x )=x+x 2-3ln x (x >0),则g ′(x )=1+2x -3x=2x +3x -1x,易知g (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故g (x )≥g (1)=2,(a -x )2+(a +2-y )2≥2+222=8.答案:816.[2013·某某省某某一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,某某数a 的取值X 围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3}, 当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2.18.(12分)已知c >0,设p :y =c x为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值X 围.解:由y =c x为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·海淀期末]已知函数f (x )=(x +a )e x,其中a 为常数. (1)若函数f (x )是区间[-3,+∞)上的增函数,某某数a 的取值X 围; (2)若f (x )≥e 2在x ∈[0,2]时恒成立,某某数a 的取值X 围. 解:(1)f ′(x )=(x +a +1)e x,x ∈R .因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数,所以满足题意只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1,f (x ),f ′(x )的变化情况如下:f (0)≥e 2,解得a ≥e 2,所以此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,求解可得此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2),若满足题意只需f (2)≥e 2,解得a ≥-1,所以此时a 不存在.综上讨论,所某某数a 的取值X 围为[e 2,+∞).20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|PA |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|PA |+|PF 1|=6+|PA |-|PF 2|.求|PA |+|PF 1|的最大值问题转化为6+|PA |-|PF 2|的最大值问题, 即求|PA |-|PF 2|的最大值问题, 如图在△PAF 2中,两边之差小于第三边,即|PA |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|PA |-|PF 2|的最大值为2, 故|PA |+|PF 1|的最大值为6+ 2.21.(12分)已知椭圆M 的对称轴为坐标轴,且抛物线x 2=-42y 的焦点是椭圆M 的一个焦点,又点A (1,2)在椭圆M 上.(1)求椭圆M 的方程;(2)已知直线l 的方向向量为(1,2),若直线l 与椭圆M 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由已知抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1.将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去). 故所求椭圆方程为y 24+x 22=1.(2)设直线BC 的方程为y =2x +m , 设B (x 1,y 1),C (x 2,y 2),代入椭圆方程并化简得4x 2+22mx +m 2-4=0, 由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 可得m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44,故|BC |=3|x 1-x 2|=3×16-2m22.又点A 到BC 的距离为d =|m |3,故S △ABC =12|BC |·d =m216-2m24≤142×2m 2+16-2m22= 2.因此△ABC 面积的最大值为 2.22.(12分)[2014·某某质检]已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. 解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0,即1-ae =0,解之得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1e x .令g (x )=f (x )-(kx -1)=(1-k )x +1ex ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.当k >1时,g (0)=1>0,g (1k -1)=-1+1e 1k -1<0, 又函数g (x )的图象在定义域R 上连续,由零点存在定理,可知g (x )=0至少有一实数解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.当k =1时,g (x )=1e x >0,知方程g (x )=0在R 上没有实数解.所以k 的最大值为1.。
高中数学 模块综合测评 新人教B版高二选修1-1数学试题
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【解析】 设a =1,b =-2,则有a >b ,但a 2<b 2,故a >bD a 2>b 2;设a =-2,b =1,显然a 2>b 2,但a <b ,即a 2>b 2Da >b .故“a >b ”是“a 2>b 2”的既不充分也不必要条件.【答案】 D2.过点P (1,-3)的抛物线的标准方程为( ) A .x 2=13y 或x 2=-13yB .x 2=13yC .y 2=-9x 或x 2=13yD .x 2=-13y 或y 2=9x【解析】P (1,-3)在第四象限,所以抛物线只能开口向右或向下,设方程为y 2=2px (p >0)或x 2=-2py (p >0),代入P (1,-3)得y 2=9x 或x 2=-13y .故选D.【答案】 D3.下列命题中,正确命题的个数是( )①命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”; ②“p ∨q 为真”是“p ∧q 为真”的充分不必要条件; ③若p ∧q 为假命题,则p ,q 均为假命题;④对命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0. A .1 B .2 C .3D .4【解析】①正确;②由p ∨q 为真可知,p ,q 至少有一个是真命题即可,所以p ∧q 不一定是真命题;反之,p ∧q 是真命题,p ,q 均为真命题,所以p ∨q 一定是真命题,②不正确;③若p ∧q 为假命题,则p ,q 至少有一个假命题,③不正确;④正确.【答案】 B4.函数f (x )=x 2+2xf ′(1),则f (-1)与f (1)的大小关系为( ) A .f (-1)=f (1) B .f (-1)<f (1) C .f (-1)>f (1)D .无法确定【解析】f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f (x )=x 2+2x ·f ′(1)=x 2-4x ,f (1)=-3,f (-1)=5.∴f (-1)>f (1). 【答案】 C5.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0【解析】 故原命题的否定为:∃x 0∈[0,+∞),x 30+x 0<0.故选C. 【答案】 C6.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 【解析】 右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1,故选D.【答案】 D7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ) 【导学号:25650148】A .1 B.32C .2D .3【解析】 因为双曲线的离心率e =c a=2,所以b =3a ,所以双曲线的渐近线方程为y=±b a x =±3x ,与抛物线的准线x =-p 2相交于A ⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-32p ,所以△AOB的面积为12×p2×3p =3,又p >0,所以p =2.【答案】 C8.点P 在曲线y =x 3-x +3上移动,过点P 的切线的倾斜角的取值X 围为( )A .[0,π) B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π【解析】f ′(x )=3x 2-1≥-1,即切线的斜率k ≥-1,所以切线的倾斜角的X 围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.【答案】 B9.若直线mx +ny =4与圆x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至少一个B .2个C .1个D .0个 【解析】 圆心到直线的距离为d =4m 2+n 2>2,∴m 2+n 2<2,∴m 2+n 2<4. 将P (m ,n )代入x 29+y 24得:m 29+n 24=4m 2+9n 236<9m 2+n 236<1.∴P (m ,n )在椭圆内部,∴一定有两个交点. 【答案】 B10.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值X 围是( )A.⎝⎛⎭⎪⎫-∞,13B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎭⎪⎫0,13D.⎝⎛⎦⎥⎤-∞,13【解析】f ′(x )=3kx 2+6(k -1)x . 由题意知3kx 2+6(k -1)x ≤0,即kx +2k -2≤0在(0,4)上恒成立, 得k ≤2x +2,x ∈(0,4), 又13<2x +2<1,∴k ≤13. 【答案】 D11.若直线y =2x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线的离心率的取值X围为( )A .(1, 5)B .(5,+∞)C .(1, 5]D .[5,+∞)【解析】 双曲线的两条渐近线中斜率为正的渐近线为y =b a x .由条件知,应有b a>2,故e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2> 5.【答案】 B12.若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2【解析】 设f (x )=e x-ln x (0<x <1), 则f ′(x )=e x-1x =x e x -1x.令f ′(x )=0,得x e x-1=0.根据函数y =e x与y =1x的图象,可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx(0<x <1),则g ′(x )=e xx -1x 2. 又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴x 2e x 1>x 1e x 2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 【解析】a +b +c =3的否定是a +b +c ≠3,a 2+b 2+c 2≥3的否定是a 2+b 2+c 2<3.【答案】 若a +b +c ≠3,则a 2+b 2+c 2<3 14.曲线y =x e x+2x +1在点(0,1)处的切线方程为 ________. 【导学号:25650149】【解析】y ′=e x +x e x +2,k =y ′|x =0=e 0+0+2=3, 所以切线方程为y -1=3(x -0),即3x -y +1=0. 【答案】 3x -y +1=015.如图1为函数f (x )=ax 3+bx 2+cx +d 的图象,f ′(x )为函数f (x )的导函数,则不等式xf ′(x )<0的解集为________.图1【解析】 当x <0时,f ′(x )>0,此时f (x )为增函数, 由图象可知x ∈(-∞,-3);当x >0时,f ′(x )<0,此时f (x )为减函数,由图象可知x ∈(0, 2). ∴xf ′(x )<0的解集为(-∞,-3)∪(0, 2). 【答案】 (-∞,-3)∪(0, 2)16.若O 和F 分别是椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________.【解析】 由椭圆x 24+y 23=1可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,当且仅当x =2时,OP →·FP →取得最大值6.【答案】 6三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设命题p :方程x 21-2m +y 2m +4=1表示的曲线是双曲线;命题q :∃x ∈R,3x 2+2mx +m +6<0.若命题p ∧q 为假命题,p ∨q 为真命题,某某数m 的取值X 围.【解】 对于命题p ,因为方程x 21-2m +y 2m +4=1表示的曲线是双曲线,所以(1-2m )(m+4)<0,解得m <-4或m >12,则命题p :m <-4或m >12.对于命题q ,因为∃x ∈R,3x 2+2mx +m +6<0,即不等式3x 2+2mx +m +6<0在实数集R 上有解,所以Δ=(2m )2-4×3×(m +6)>0, 解得m <-3或m >6. 则命题q :m <-3或m >6.因为命题p ∧q 为假命题,p ∨q 为真命题,所以命题p 与命题q 有且只有一个为真命题. 若命题p 为真命题且命题q 为假命题, 即⎩⎪⎨⎪⎧ m <-4或m >12,-3≤m ≤6,得12<m ≤6; 若命题p 为假命题且命题q 为真命题, 即⎩⎪⎨⎪⎧-4≤m ≤12,m <-3或m >6,得-4≤m <-3.综上,实数m 的取值X 围为[-4,-3)∪⎝ ⎛⎦⎥⎤12,6.18.(本小题满分12分)设函数f (x )=x 3+bx 2+cx (x ∈R ),已知g (x )=f (x )-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值. 【解】 (1)∵f (x )=x 3+bx 2+cx , ∴f ′(x )=3x 2+2bx +c . 从而g (x )=f (x )-f ′(x ) =x 3+bx 2+cx -(3x 2+2bx +c ) =x 3+(b -3)x 2+(c -2b )x -c ∵g (x )是奇函数,∴-x 3+(b -3)x 2-(c -2b )x -c =-[x 3+(b -3)x 2+(c -2b )x -c ] 得(b -3)x 2-c =0对x ∈R 都成立.∴⎩⎪⎨⎪⎧b -3=0,c =0,得b =3,c =0.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2, 2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42,g (x )在x =2时,取得极小值,极小值为-4 2.19.(本小题满分12分)已知抛物线y 2=4x 截直线y =2x +b 所得的弦长为|AB |=3 5. (1)求b 的值;(2)在x 轴上求一点P ,使△APB 的面积为39.【解】 (1)联立方程组⎩⎪⎨⎪⎧y 2=4x ,y =2x +b ,消去y ,得方程:4x 2+(4b -4)x +b 2=0,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=1-b ,x 1x 2=b 24,|AB |=5x 1+x 22-4x 1x 2=51-b 2-b 2=35,解得b =-4.(2)将b =-4代入直线y =2x +b ,得AB 所在的直线方程为2x -y -4=0, 设P (a,0),则P 到直线AB 的距离为d =|2a -4|5.△APB 的面积S =12×|2a -4|5×35=39,则a =-11或15,所以P 点的坐标为(-11,0)或(15,0).20.(本小题满分12分)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0≤x ≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?【解】 (1)设商品降低x 元时,多卖出的商品件数为kx 2,若记商品在一个星期的销售利润为f (x ),则依题意有f (x )=(30-x -9)·(432+kx 2) =(21-x )·(432+kx 2),又由已知条件24=k ·22,于是有k =6,所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30]. (2)根据(1),有f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f (x )与f ′(x )的变化情况如下表:故x =因为f (0)=9 072,f (12)=11 664,所以定价为30-12=18(元)能使一个星期的商品销售利润最大. 21.(本小题满分12分)已知函数f (x )=12x 2+a ln x (a <0).(1)若a =-1,求函数f (x )的极值;(2)若∀x >0,不等式f (x )≥0恒成立,某某数a 的取值X 围. 【解】 由题意,x >0.(1)当a =-1时,f (x )=12x 2-ln x ,f ′(x )=x -1x,令f ′(x )=x -1x>0,解得x >1,所以f (x )的单调增区间为(1,+∞);f ′(x )=x -1x<0,得0<x <1,所以f (x )的单调减区间为(0,1),所以函数f (x )在x =1处有极小值f (1)=12.(2)因为a <0,f ′(x )=x +a x. 令f ′(x )=0,所以x =-a , 列表:这时f (=-a2+a ln -a ,因为∀x >0,不等式f (x )≥0恒成立, 所以-a2+a ln -a ≥0,所以a ≥-e ,所以a 的取值X 围为[-e,0).22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝ ⎛⎭⎪⎫1,32,且离心率e =12.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点G ⎝ ⎛⎭⎪⎫18,0,求k 的取值X 围. 【导学号:25650150】【解】 (1)由题意e =12,即e =c a =12,∴a =2c .∴b 2=a 2-c 2=(2c )2-c 2=3c 2.∴椭圆C 的方程可设为x 24c 2+y 23c2=1.代入A ⎝ ⎛⎭⎪⎫1,32,得14c 2+⎝ ⎛⎭⎪⎫3223c 2=1. 解得c 2=1,∴所求椭圆C 的方程为x 24+y 23=1,(2)由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0. 由题意,Δ=(8km )2-4(3+4k 2)(4m 2-12)>0, 整理得:3+4k 2-m 2>0,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为P (x 0,y 0), x 0=x 1+x 22=-4km3+4k 2,y 0=kx 0+m =3m3+4k2. 由已知,MN ⊥GP ,即k MN ·k GP =-1, 即k ·3m3+4k2-0-4km 3+4k 2-18=-1,整理得:m =-3+4k28k .代入①式,并整理得:k 2>120, 即|k |>510,∴k ∈⎝ ⎛⎭⎪⎫-∞,-510∪⎝ ⎛⎭⎪⎫510,+∞.。
高二数学(人教B版)选修1-1阶段性测试题1
阶段性测试题一(第一章基本知能检测)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列语句中,不表示命题的一个是( )A .3>8B .0是自然数C .杭州是省会城市D .他去哪儿 [答案] D[解析] 选项D 不涉及真假.2.下列命题是真命题的为( )A .若1x =1y ,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2 [答案] A[解析] 判断命题的真假,根据选项容易选出A.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题和逆否命题中( )A .都真B .都假C .否命题真D .逆否命题真 [答案] D[解析] 原命题与其逆否命题同真假,原命题真,故选D.4.命题“π≥3.14”使用的逻辑联结词的情况是( )A .没有使用逻辑联结词B .使用了逻辑联结词“且”C .使用了逻辑联结词“或”D .使用了逻辑联结词“非”[答案] C[解析] “π≥3.14”的意思为:“π>3.14或π=3.14”.故选C.5.设p :x <-1或x >1;q :x <-2或x >1,则¬p 是¬q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ¬p :-1≤x ≤1,¬q :-2≤x ≤1,¬p ⇒¬q ,而¬q ⇒/ ¬p .6.如果一个命题的逆命题是真命题,那么这个命题的否命题( )A .是真命题B .是假命题C .不一定是真命题D .不一定是假命题 [答案] A[解析] 一个命题的逆命题与否命题真值相同.7.设集合M ={x |0<x ≤3},N ={x |0<x ≤2},那么“a ∈M ”是“a ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] B[解析] ∵N M ,∴若a ∈N ,则a ∈M ,当a =52时,a ∈M ,但a ∉N ,故选B. 8.a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[答案] C[解析] 当直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行时,有a (a -1)=6,解得a =3或a =-2.当a =-2时,两直线重合.9.下列判断不正确...的是( ) A .命题“若p 则q ”与“若¬q 则¬p ”互为逆否命题B .“am 2<bm 2”是“a <b ”的充要条件C .“矩形的两条对角线相等”的否定为假D .命题“∅{1,2}或4∈{1,2}”为真[答案] B[解析] 由am 2<bm 2⇒a <b ,但a <b ⇒/ am 2<bm 2.例如:m =0时,故选B.10.如果命题“¬(p 或q )”为假命题,则( )A .p 、q 均为真命题B .p 、q 均为假命题C .p 、q 中至少有一个真命题D .p 、q 中至多有一个真命题[答案] C[解析] “¬(p 或q )”为假,则“p 或q ”为真,故p 、q 中至少有一个为真.11.“1x 2>1y 2”是“|x |<|y |”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] |x |<|y |⇔x 2<y 2,1x 2>1y 2⇔1x 2-1y 2>0 ⇔y 2-x 2x 2y 2>0⇔y 2-x 2>0⇔x 2<y 2. 当x 2=0,y 2≠0时,x 2<y 2成立,但1x 2无意义,故选A. 12.“a =18”是“对任意的正数x,2x +a x≥1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[答案] A[解析] a =18⇒2x +a x=2x +18x ≥22x ×18x=1. 另一方面,对任意正数x,2x +a x≥1, 只要2x +a x ≥22x ×a 8x =22a ≥1⇒a ≥18,所以选A. 二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.命题“如果ab 不为零,则a ,b 都不为零”的逆否命题是________.[答案] 如果a ,b 至少有一个为零,则ab 为零[解析] 将原命题的结论和条件进行“换位”及“换质”,即得其逆命题.14.用“p ∨q ”“p ∧q ”“¬q ”填空.命题“-x 2+2≤2”是________形式,命题“奇数的平方不是偶数”是________形式.[答案] “p ∨q ” “¬p ”15.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若¬p 是¬q 的必要而不充分条件,则实数a 的取值范围是________.[答案] 0≤a ≤12[解析] 命题p :|4x -3|≤1⇔12≤x ≤1; 命题q :x 2-(2a +1)x +a (a +1)≤0⇔a ≤x ≤a +1.∵¬p 是¬q 的必要而不充分条件,∴p 是q 的充分而不必要条件,则有⎩⎪⎨⎪⎧a ≤12a +1≥1,∴0≤a ≤12. 16.已知:①命题“如果xy =1,则x ,y 互为倒数”的逆命题;②命题“所有模相等的向量相等”的否定;③命题“如果m ≤1,则x 2-2x +m =0有实根”的逆否命题;④命题“如果A ∩B =A ,则A B ”的逆否命题.其中能构成真命题的是________(填上你认为正确的命题的序号).[答案] ①②③[解析] ①逆命题:若x ,y 互为倒数,则xy =1,是真命题.②的否定是:“存在模相等的向量不相等”.是真命题.如,a =(1,1),b =(-1,1),有|a|=|b|=2,但a ≠b .③命题“若m ≤1,则x 2-2x +m =0”是真命题.这是因为当m <0时Δ=(-2)2-4m =4-4m >0恒成立,故方程有根,所以其逆否命题也是真命题.④若A ∩B =A ,则A ⊆B .故原命题是假命题,因此其逆否命题也是假命题.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)写出命题“若x -2+(y +1)2=0,则x =2且y =-1”的逆命题、否命题、逆否命题,并判断它们的真假.[解析] 逆命题:若x =2且y =-1,则x -2+(y +1)2=0;真命题. 否命题:若x -2+(y +1)2≠0,则x ≠2或y ≠-1;真命题.逆否命题:若x ≠2或y ≠-1,则x -2+(y +1)2≠0;真命题.18.(本题满分12分)已知命题p {x |1-c <x <1+c ,c >0},命题q (x -3)2<16,且p 是q的充分而不必要条件.求c 的取值范围.[解析] 命题p 对应的集合A ={x |1-c <x <1+c ,c >0},由(x -3)2<16可解得命题q 对应的集合B ={x |-1<x <7},∵p 是q 的充分而不必要条件,∴A B ,∴⎩⎪⎨⎪⎧ c >01-c ≥-11+c ≤7,解得:0<c ≤2,经检验知c =2也符合题意,所以所求c 的取值范围为0<c ≤2.19.(本题满分12分)已知命题p :关于x 的方程x 2+mx +1=0有两个不等的负实根;命题q :关于x 的方程4x 2+4(m -2)x +1=0无实根,已知命题p 和q 中,一个为真命题,一个为假命题,求m 的取值范围.[解析] p :⎩⎪⎨⎪⎧Δ=m 2-4>0m >0解得m >2. q :Δ=16(m -2)2-16=16(m 2-4m +3)<0解得1<m <3.∵p ,q 中一真一假.∴有两种可能,即p 真q 假或者p 假q 真,即⎩⎪⎨⎪⎧ m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3, 解得:m ≥3或1<m ≤2.20.(本题满分12分)指出下列各组命题中,p 是q 的什么条件?(在“充分而不必要条件”、“必要而不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种)(1)在△ABC 中,p :∠A >∠B ,q :BC >AC ;(2)p :a =3,q :(a +2)(a -3)=0;(3)p :a >2,q :a >5;(4)p :a <b ,q :a b<1. [解析] (1)在△ABC 中,∠A >∠B ⇔BC >AC .所以p 是q 的充要条件.(2)a =3⇒(a +2)(a -3)=0,但(a +2)(a -3)=0⇒/ a =3.所以p 是q 的充分而不必要条件.(3)a >2⇒/ a >5,但a >5⇒a >2,所以p 是q 的必要而不充分条件.(4)a <b ⇒/ a b <1,且a b<1⇒/ a <b ,所以p 是q 的既不充分也不必要条件. 21.(本题满分12分)已知p :函数f (x )=lg(ax 2-x +116a )的定义域为R ;q :a ≥1.如果命题“p ∨q 为真,p ∧q 为假”,求实数a 的取值范围.[解析] 由p 真可知⎩⎪⎨⎪⎧a >0Δ=1-4a ·116a <0,解得a >2,由p ∨q 为真,p ∧q 为假知,p 和q 中一个为真、一个为假.若p 真q 假时a 不存在,若p 假q 真时1≤a ≤2.综上,实数a 的取值范围是1≤a ≤2.22.(本题满分14分)已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,如果p 与q 有且只有一个正确,求a 的取值范围.[解析] 当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减.曲线y =x 2+(2a -3)x +1与x 轴交于不同两点等价于(2a -3)2-4>0.即a <12或a >52. (1)p 正确,q 不正确.则a ∈(0,1)∩⎩⎨⎧⎭⎬⎫a ⎪⎪12≤a ≤52且a ≠1,即a ∈⎣⎡⎭⎫12,1. (2)p 不正确,q 正确.则a ∈(1,+∞)∩⎩⎨⎧⎭⎬⎫a ⎪⎪0<a <12或a >52, 即a ∈⎝⎛⎭⎫52,+∞.综上所述,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.。
2019—2020年新课标北师大版高中数学选修1-1全册质量试题试题及答案答案解析.docx
(新课标)2017-2018学年北师大版高中数学选修1-1高二数学选修1-1质量检测试题(卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至6页。
考试结束后. 只将第Ⅱ卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 顶点在原点,且过点(4,4)-的抛物线的标准方程是A.24y x=- B.24x y=C.24y x=-或24x y= D.24y x=或24x y=-2. 椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为A.22110084x y+= B.221259x y+=C.22110084x y+=或22184100x y+= D.221259x y+=或221259y x+=3.如果方程22143x y m m +=--表示焦点在y 轴上的椭圆,则m 的取值范围是 A.34m << B. 72m >C. 732m <<D.742m << 4.“5,12k k Z αππ=+∈”是“1sin 22α=”的 A.充分不必要条件 B. 必要不充分条件C.充要条件D. 既不充分又不必要条件5. 已知函数2sin y x x =,则y '=A. 2sin x xB.2cos x x C. 22sin cos x x x x + D. 22cos sin x x x x +6. 已知(2)2f =-,(2)(2)1f g '==,(2)2g '=,则函数()()g x f x 在2x =处的导数值为A. 54-B.54C.5-D. 5 7. 已知两定点1(5,0)F ,2(5,0)F -,曲线上的点P 到1F 、2F 的距离之差的绝对值是6,则该曲线的方程为 A.221916x y -= B.221169x y -= C.2212536x y -= D. 2212536y x -= 8.设P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的两个焦点,则12PF PF +的值为A. 10B. 8C. 6D. 49.命题“a, b 都是偶数,则a 与b 的和是偶数”的逆否命题是A. a 与b 的和是偶数,则a, b 都是偶数B. a 与b 的和不是偶数,则a, b 都不是偶数C. a, b 不都是偶数,则a 与b 的和不是偶数D. a 与b 的和不是偶数,则a, b 不都是偶数10 .若曲线()y f x =在点00(,())x f x 处的 切线方程为210x y +-=,则A. 00()f x '>B. 00()f x '<C. 00()f x '=D. 0()f x '不存在11.以下有四种说法,其中正确说法的个数为:(1)“m 是实数”是“m 是有理数”的充分不必要条件;(2)“a b >”是“22a b >”的充要条件; (3) “3x =”是“2230x x --=”的必要不充分条件; (4)“A B B =”是“A φ=”的必要不充分条件.A. 0个B. 1个C. 2个D. 3个12. 双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为A .6B .5C .3D .2二、填空题:本大题共6小题,每小题5分,共30分。
高中数学 模块综合测评(含解析)北师大版高二选修1-1数学试题
选修1-1 模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真【解析】否命题和逆命题是互为逆否命题,有着一致的真假性.【答案】 D2.设a,b∈R,则“(a-b)·a2<0”是“a<b”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】由(a-b)a2<0⇒a≠0且a<b,∴充分性成立;由a<b⇒a-b<0,当0=a<b时⇒/(a-b)·a2<0,必要性不成立.【答案】 A3.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是( )A.-9 B.-3C.9 D.15【解析】y′=3x2,故曲线在点P(1,12)处的切线斜率是3,故切线方程是y-12=3(x -1),令x=0得y=9.【答案】 C4.如果命题“﹁p且﹁q”是真命题,那么下列结论中正确的是( )A.“p或q”是真命题 B.“p且q”是真命题C.“﹁p”为真命题 D.以上都有可能【解析】若“﹁p且﹁q”是真命题,则﹁p,﹁q均为真命题,即命题p、命题q都是假命题.【答案】 C5.下列命题的否定为假命题的是( )A.对任意x∈R,都有-x2+x-1<0成立B.对任意x∈R,都有|x|>x成立C .对任意x ,y ∈Z ,都有2x -5y ≠12成立D .存在x ∈R ,使sin 2x +sin x +1=0成立【解析】 对于A 选项命题的否定为“存在x ∈R ,使-x 2+x -1≥0成立”,显然,这是一个假命题.【答案】 A6.抛物线y 2=12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形面积等于( )A .33B .2 3C .2 D. 3【解析】 抛物线y 2=12x 的准线为x =-3,双曲线的渐近线为y =±33x ,则准线与渐近线交点为(-3,-3)、(-3, 3).∴所围成三角形面积S =12×3×23=3 3.【答案】 A7.过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|的值为( )A .5B .6C .8D .10【解析】 抛物线x 2=4y 的准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以|P 1P 2|的值为y 1+y 2+2=8.【答案】 C8.已知F 1,F 2是椭圆x 216+y 23=1的两个焦点,P 为椭圆上一点,则|PF 1|·|PF 2|有( )A .最大值16B .最小值16C .最大值4D .最小值4【解析】 由椭圆的定义知a =4,|PF 1|+|PF 2|=2a =2×4=8.由基本不等式知|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=⎝ ⎛⎭⎪⎫822=16,当且仅当|PF 1|=|PF 2|=4时等号成立,所以|PF 1|·|PF 2|有最大值16.【答案】 A9.如图1所示,四图都是在同一坐标系中某三次函数及其导函数的图像,其中一定不正确的序号是( )图1A .①② B.③④ C.①③ D.②④【解析】 因为三次函数的导函数为二次函数,其图像为抛物线,观察四图,由导函数与原函数的关系可知,当导函数大于0时,其函数为增函数;当导函数小于0时,其函数为减函数,由此规律可判定③④不正确.【答案】 B10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在双曲线的右支上存在一点P ,使得|PF 1|=3|PF 2|,则双曲线的离心率e 的取值X 围为( )A .[2,+∞) B.[2,+∞) C .(1,2] D .(1,2] 【解析】 由双曲线的定义知, |PF 1|-|PF 2|=2a ,又|PF 1|=3|PF 2|,∴|PF 2|=a .即双曲线的右支上存在点P 使得|PF 2|=a . 设双曲线的右顶点为A ,则|AF 2|=c -a . 由题意知c -a ≤a , ∴c ≤2a .又c >a ,∴e =c a≤2且e >1,即e ∈(1,2]. 【答案】 C11.设f (x )是一个三次函数,f ′(x )为其导函数,如图2所示的是y =x ·f ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( )图2A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)【解析】 由图像知,f ′(2)=f ′(-2)=0.∵x >2时,y =x ·f ′(x )>0,∴f ′(x )>0, ∴y =f (x )在(2,+∞)上单调递增;同理f (x )在(-∞,-2)上单调递增;在(-2,2)上单调递减.∴y =f (x )的极大值为f (-2),极小值为f (2),故选C. 【答案】 C12.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4x B .y 2=±8x C .y 2=4x D .y 2=8x 【解析】a >0时,F ⎝ ⎛⎭⎪⎫a 4,0,直线l 方程为y =2⎝⎛⎭⎪⎫x -a 4,令x =0得y =-a2.∴S △OAF =12·a 4·⎪⎪⎪⎪⎪⎪-a 2=4.解得a =8.同理a <0时,得a =-8. ∴抛物线方程为y 2=±8x . 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则右焦点坐标为________.【解析】 由x 24-y 2b 2=1得渐近线方程为y =±b2x ,∴b 2=12,b =1, ∴c 2=a 2+b 2=4+1=5, ∴右焦点坐标为(5,0). 【答案】 (5,0)14.函数f (x )=x 3-15x 2-33x +6的单调减区间为________. 【解析】f ′(x )=3x 2-30x -33=3(x -11)(x +1), 当x <-1或x >11时,f ′(x )>0,f (x )增加; 当-1<x <11时,f ′(x )<0,f (x )减少. 【答案】 (-1,11)15.已知命题p :对任意x ∈[0,1],都有a ≥e x成立,命题q :存在x ∈R ,使x 2+4x +a =0成立,若命题“p 且q ”是真命题,则实数a 的取值X 围是____________.【解析】 因为对任意x ∈[0,1],都有a ≥e x成立,所以a ≥e.由存在x ∈R ,使x 2+4x +a =0成立,可得判别式Δ=16-4a ≥0,即a ≤4.若命题“p 且q ”是真命题,所以p 、q 同为真,所以e≤a ≤4.【答案】 [e,4]16.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线C 2:y 2=4x 的焦点F 重合,椭圆C 1与抛物线C 2在第一象限的交点为P ,|PF |=53.则椭圆C 1的方程为________.【解析】 抛物线C 2的焦点F 的坐标为(1,0),准线为x =-1,设点P 的坐标为(x 0,y 0),依据抛物线的定义,由|PF |=53,得1+x 0=53,解得x 0=23.因为点P 在抛物线C 2上,且在第一象限,所以y 0=263.所以点P 的坐标为⎝ ⎛⎭⎪⎫23,263.因为点P 在椭圆C 1:x 2a 2+y 2b 2=1上,所以49a 2+83b 2=1.又c =1,所以a 2=b 2+1,联立解得a 2=4,b 2=3.所以椭圆C 1的方程为x 24+y 23=1.【答案】x 24+y 23=1三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求与⊙C 1:(x +1)2+y 2=1相外切,且与⊙C 2:(x -1)2+y 2=9相内切的动圆圆心P 的轨迹方程.【解】 设动圆圆心P 的坐标为(x ,y ),半径为r , 由题意得,|PC 1|=r +1,|PC 2|=3-r ,∴|PC 1|+|PC 2|=r +1+3-r =4>|C 1C 2|=2,由椭圆定义知,动圆圆心P 的轨迹是以C 1,C 2为焦点,长轴长为2a =4的椭圆,椭圆方程为x 24+y 23=1.18.(本小题满分12分)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值.【解】f ′(x )=2ax ,g ′(x )=3x 2+b .∵曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,∴⎩⎪⎨⎪⎧f ′1=g ′1f 1=g 1,即⎩⎪⎨⎪⎧2a =3+b a +1=1+b =c ,解得⎩⎪⎨⎪⎧a =3b =3.∴a ,b 的值分别为3,3.19.(本小题满分12分)已知命题p :函数f (x )=x 3+ax +5在区间(-2,1)上不单调,若命题p 的否定是一个真命题,求a 的取值X 围.【解】 考虑命题p 为真命题时a 的取值X 围,因为f ′(x )=3x 2+a ,令f ′(x )=0,得到x 2=-a3,当a ≥0时,f ′(x )≥0,函数f (x )在区间(-2,1)上是增加的,不合题意; 当a <0时,由x 2=-a3,得到x =±-a3,要使函数f (x )=x 3+ax +5在区间(-2,1)上不单调,则-a3<1或--a3>-2,即a >-12, 综上可知-12<a <0,故命题p 的否定是一个真命题时,a 的取值X 围是a ≤-12或a ≥0.20.(本小题满分12分)某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p 与日产量x 的函数关系是:p =3x4x +32(x ∈N +). (1)将该厂的日盈利额T (元)表示为日产量x (件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件?【解】 (1)由题意可知次品率p =日产次品数/日产量,每天生产x 件,次品数为xp ,正品数为x (1-p ).因为次品率p =3x4x +32,当每天生产x 件时,有x ·3x4x +32件次品,有x ⎝ ⎛⎭⎪⎫1-3x 4x +32件正品. 所以T =200x ⎝ ⎛⎭⎪⎫1-3x 4x +32-100x ·3x 4x +32 =25·64x -x2x +8(x ∈N +).(2)T ′=-25·x +32x -16x +82,由T ′=0,得x =16或x =-32(舍去). 当0<x <16时,T ′>0; 当x >16时,T ′<0; 所以当x =16时,T 最大.即该厂的日产量定为16件,能获得最大盈利.21.(本小题满分12分)设函数f (x )=x 2-2tx +4t 3+t 2-3t +3,其中x ∈R ,t ∈R ,将f (x )的最小值记为g (t ).(1)求g (t )的表达式;(2)讨论g (t )在区间[-1,1]内的单调性;(3)若当t ∈[-1,1]时,|g (t )|≤k 恒成立,其中k 为正数,求k 的取值X 围. 【解】 (1)f (x )=(x -t )2+4t 3-3t +3,当x =t 时,f (x )取得其最小值g (t ),即g (t )=4t 3-3t +3.(2)∵g ′(t )=12t 2-3=3(2t +1)(2t -1), 列表如下:t ⎝ ⎛⎭⎪⎫-1,-12-12 ⎝⎛ -12,⎭⎪⎫12 12 ⎝ ⎛⎭⎪⎫12,1 g ′(t ) +0 -0 +g (t )极大值g ⎝ ⎛⎭⎪⎫-12极小值g ⎝ ⎛⎭⎪⎫12由此可见,g (t )在区间⎝ ⎛⎭⎪⎫-1,-2和⎝ ⎛⎭⎪⎫2,1上单调递增,在区间⎝ ⎛⎭⎪⎫-2,2上单调递减. (3)∵g (1)=g ⎝ ⎛⎭⎪⎫-12=4,g (-1)=g ⎝ ⎛⎭⎪⎫12=2,∴g (t )最大值=4,g (t )最小值=2, 又∵|g (t )|≤k 恒成立,∴-k ≤g (t )≤k 恒成立,∴⎩⎪⎨⎪⎧k ≥4,-k ≤2,∴k ≥4.22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为23,右焦点F 与抛物线y 2=4x 的焦点重合,O 为坐标原点.(1)求椭圆C 的方程;(2)设A 、B 是椭圆C 上的不同两点,点D (-4,0),且满足DA →=λDB →,若λ∈⎣⎢⎡⎦⎥⎤38,12,求直线AB 的斜率的取值X 围.【解】 (1)由已知得b =3,c =1,a =2, 所以椭圆的方程为x 24+y 23=1.(2)∵DA →=λDB →,∴D ,A ,B 三点共线,而D (-4,0),且直线AB 的斜率一定存在,所以设AB 的方程为y =k (x +4),与椭圆的方程x 24+y 23=1联立得(3+4k 2)y 2-24ky +36k 2=0,由Δ=144k 2(1-4k 2)>0,得k 2<14.设A (x 1,y 1),B (x 2,y 2),y 1+y 2=24k3+4k 2,y 1·y 2=36k23+4k2,①又由DA →=λDB →得:(x 1+4,y 1)=λ(x 2+4,y 2), ∴y 1=λy 2②将②式代入①式得:⎩⎪⎨⎪⎧1+λy 2=24k3+4k2,λy 22=36k23+4k2,消去y 2得:163+4k2=1+λ2λ=1λ+λ+2.当λ∈⎣⎢⎡⎦⎥⎤38,12时,h (λ)=1λ+λ+2是减函数, ∴92≤h (λ)≤12124, ∴92≤163+4k 2≤12124,解得21484≤k 2≤536,又因为k 2<14,所以21484≤k 2≤536,即-56≤k ≤-2122或2122≤k ≤56. ∴直线AB 的斜率的取值X 围是 ⎣⎢⎡⎦⎥⎤-56,-2122∪⎣⎢⎡⎦⎥⎤2122,56.。
高二数学选修1-1试卷及答案
绝密★启用前圆锥曲线复习题憋说话,你的对手正在做题!;考试时间:100分钟;命题人:MJW学校:___________姓名:___________班级:___________考号:___________题号一二三四五六七八九总分得分分卷I分卷I 注释评卷人得分一、单选题(注释)1、如图所示,直线l:x-2y+2=0过椭圆的左焦点F1和一个顶点B,该椭圆的离心率为( )A.B.C.D.【答案】D【解析】由条件知,F1(-2,0),B(0,1),∴b=1,c=2,∴a==,∴e===.2、过椭圆x2+2y2=4的左焦点F作倾斜角为的弦AB,则弦AB的长为( )A.B.C.D.【答案】B【解析】椭圆的方程可化为+=1,∴F(-,0).又∵直线AB的斜率为,∴直线AB的方程为y=x+.由得7x2+12x+8=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1·x2=,∴|AB|==.分卷II分卷II 注释评卷人得分二、填空题(注释)3、已知椭圆经过点(,0)且与椭圆+=1的焦点相同,则这个椭圆的标准方程为____.【答案】+=1【解析】椭圆+=1的焦点在y轴上,且c==,故所求椭圆的焦点在y轴上,又它过(,0),所以b=,故a2=b2+c2=3+5=8,故所求方程为+=1.4、椭圆+=1的两个焦点为F1和F2,点P在椭圆上,线段PF1的中点在y轴上,那么|PF1|是|PF2|的________倍.【答案】7【解析】依题意,不妨设椭圆两个焦点的坐标分别为F1(-3,0),F2(3,0),设P点的坐标为(x1,y1),由线段PF1的中点的横坐标为0,知=0,∴x1=3.把x1=3代入椭圆方程+=1,得y1=±,即P点的坐标为(3,±),∴|PF2|=|y1|=.由椭圆的定义知,|PF1|+|PF2|=4,∴|PF1|=4-|PF2|=4-=,评卷人得分三、解答题(注释)5、求经过两点P1,P2的椭圆的标准方程.【答案】+=1【解析】方法一①当椭圆的焦点在x轴上时,设椭圆的标准方程为+=1 (a>b>0),依题意,知⇒∵a2=<=b2,∴与a>b矛盾,舍去.②当椭圆的焦点在y轴上时,设椭圆的标准方程为+=1 (a>b>0),依题意,知⇒故所求椭圆的标准方程为+=1.方法二设所求椭圆的方程为Ax2+By2=1 (A>0,B>0,A≠B).依题意,得⇒故所求椭圆的标准方程为+=1.6、求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和是10;(2)焦点在y轴上,且经过两个点(0,2)和(1,0);(3)经过点(,)和点(,1).【答案】(1) +=1.(2) +x2=1.(3) x2+=1【解析】对于(1)、(2)可直接用待定系数法设出方程求解,但要注意焦点位置.对于(3)由于题中条件不能确定椭圆焦点在哪个坐标轴上,所以应分类讨论求解,为了避免讨论,还可以设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B)然后代入已知点求出A、B.(1)∵椭圆的焦点在x轴上,∴设它的标准方程为+=1(a>b>0).∵2a=10,∴a=5,又∵c=4,∴b2=a2-c2=52-42=9.∴所求椭圆的标准方程为+=1.(2)∵椭圆的焦点在y轴上,∴设它的标准方程为+=1(a>b>0).∵椭圆经过点(0,2)和(1,0),∴⇒故所求椭圆的标准方程为+x2=1.(3)法一①当椭圆的焦点在x轴上时,设椭圆的方程为+=1(a>b>0).∵点(,)和点(,1)在椭圆上,∴∴而a>b>0.∴a2=1,b2=9不合题意,即焦点在x轴上的椭圆的方程不存在.②当椭圆的焦点在y轴上时,设椭圆的标准方程为+=1(a>b>0).∵点(,)和点(,1)在椭圆上,∴∴∴所求椭圆的方程为+x2=1.法二设椭圆的方程为mx2+ny2=1(m>0,n>0,m≠n).∵点(,)和点(,1)都在椭圆上,∴即∴∴所求椭圆的标准方程为x2+=1.7、如图,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是-,求点M的轨迹方程.【答案】+=1 (x≠±5)【解析】设点M的坐标为(x,y),因为点A的坐标是(-5,0),所以,直线AM的斜率k AM= (x≠-5);同理,直线BM的斜率k BM= (x≠5).由已知有×=- (x≠±5),化简,得点M的轨迹方程为+=1 (x≠±5).8、已知直线l:y=kx+1与椭圆+y2=1交于M、N两点,且|MN|=.求直线l的方程.【答案】y=x+1或y=-x+1【解析】设直线l与椭圆的交点M(x1,y1),N(x2,y2),由消y并化简,得(1+2k2)x2+4kx=0,∴x1+x2=-,x1x2=0.由|MN|=,得(x1-x2)2+(y1-y2)2=,∴(1+k2)(x1-x2)2=,∴(1+k2)[(x1+x2)2-4x1x2]=.即(1+k2) =.化简,得k4+k2-2=0,∴k2=1,∴k=±1.∴所求直线l的方程是y=x+1或y=-x+1.9、已知椭圆+=1,过点P(2,1)作一弦,使弦在这点被平分,求此弦所在直线的方程.【答案】x+2y-4=0【解析】法一如图,设所求直线的方程为y-1=k(x-2),代入椭圆方程并整理,得(4k2+1)x2-8(2k2-k)x+4(2k-1)2-16=0, (*)又设直线与椭圆的交点为A(x1,y1),B(x2,y2),则x1、x2是(*)方程的两个根,∴x1+x2=.∵P为弦AB的中点,∴2==.解得k=-,∴所求直线的方程为x+2y-4=0.法二设直线与椭圆交点为A(x1,y1),B(x2,y2),∵P为弦AB的中点,∴x1+x2=4,y1+y2=2,又∵A、B在椭圆上,∴x+4y=16,x+4y=16.两式相减,得(x-x)+4(y-y)=0,即(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0.∴==-,即k AB=-.∴所求直线方程为y-1=- (x-2),即x+2y-4=0.法三设所求直线与椭圆的一交点为A(x,y),则另一交点为B(4-x,2-y).∵A、B在椭圆上,∴x2+4y2=16,①(4-x)2+4(2-y)2=16,②从而A、B在方程①-②的图形x+2y-4=0上,而过A、B的直线只有一条,∴所求直线的方程为x+2y-4=0.10、已知双曲线-=1的左、右焦点分别是F1、F2,若双曲线上一点P使得∠F1PF2=60°,求△F1PF2的面积.【答案】解由-=1,得a=3,b=4,c=5.由定义和余弦定理得|PF1|-|PF2|=±6,|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°,所以102=(|PF1|-|PF2|)2+|PF1|·|PF2|,所以|PF1|·|PF2|=64,所以S△F1PF2=|PF1|·|PF2|·sin∠F1PF2=×64×=16.【解析】11、已知双曲线的方程是-=1,点P在双曲线上,且到其中一个焦点F1的距离为10,点N是PF1的中点,求|ON|的大小(O为坐标原点).【答案】1或9【解析】设双曲线另一个焦点为F2,连接PF2,ON是三角形PF1F2的中位线,所以|ON|=|PF2|,因为||PF1|-|PF2||=8,|PF1|=10,所以|PF2|=2或18,|ON|=|PF2|=1或9.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修1—1
闫春亮
一、选择题:(每小题5分,共50分)
1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )
A.“P 或Q ”为真,“非Q ”为假;
B.“P 且Q ”为假,“非P ”为真 ;
C.“P 且Q ”为假,“非P ”为假 ;
D.“P 且Q ”为假,“P 或Q ”为真
2.在下列命题中,真命题是( )
A. “x=2时,x 2-3x+2=0”的否命题;
B.“若b=3,则b 2=9”的逆命题;
C.若ac>bc,则a>b;
D.“相似三角形的对应角相等”的逆否命题
3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )
A.充分不必要条件;
B.必要不充分条件 ;
C.充要条件 ;
D.既不充分也不必要条件
4.平面内有一长度为2的线段AB 和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是( )
A.[1,4];
B.[2,6];
C.[3,5 ];
D. [3,6].
5. 函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为( )
A.a=3,b=-3或a=―4,b=11 ;
B.a=-4,b=1或a=-4,b=11 ;
C.a=-1,b=5 ;
D.以上都不对
6.曲线f(x)=x 3+x -2在P 0点处的切线平行于直线y=4x -1,则P 0点坐标为( )
A.(1,0);
B.(2,8);
C.(1,0)和(-1,-4);
D.(2,8)和(-1,-4)
7.函数f(x)=x 3-ax+1在区间(1,+∞)内是增函数,则实数a 的取值范围是( )
A.a<3 ;
B.a>3 ;
C.a ≤3;
D.a ≥3
8.若方程1522
2=-+-k
y k x 表示双曲线,则实数k 的取值范围是( ) A.2<k<5 ; B.k>5 ; C.k<2或k>5; D.以上答案均不对
9.函数y=xcosx -sinx 在下面哪个区间内是增函数( )
A.()23,2π
π; B.)2,(ππ; C.)2
5,23(ππ; D.)3,2(ππ 10.已知双曲线13
62
2=-y x 的焦点为F 1、F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )
A.563;
B.665 ;
C.56 ;
D.6
5 二、填空题:(每小题5分,共25)
11.双曲线的渐近线方程为y=x 4
3±,则双曲线的离心率为________ 12.函数f(x)=(ln2)log 2x -5x log 5e(其中e 为自然对数的底数)的导函数为_______
13.与双曲线14
52
2-=-y x 有相同焦点,且离心率为0.6的椭圆方程为________
14.正弦函数y=sinx 在x=
6
π处的切线方程为____________ 15.过抛物线y 2=4x 的焦点,作倾斜角为4π的直线交抛物线于P 、Q 两点,O 为坐标原点,则∆POQ 的面积为_________
三、解答题: (每题15分,共75分)
16.命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。
17.求过定点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程。
18. 已知函数f(x)=2ax 3+bx 2-6x 在x=±1处取得极值
(1) 讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(2) 试求函数f(x)在x=-2处的切线方程;
(3) 试求函数f(x)在区间[-3,2] 上的最值。
19.已知定点A (1,0),定直线l :x=5,动点M (x,y )
(1)若M 到点A 的距离与M 到直线l 的距离之比为55,试求M 的轨迹曲线C 1的方程;
(2)若曲线C 2是以C 1的焦点为顶点,且以C 1的顶点为焦点,试求曲线C 2的方
程;
(3)是否存在过点F(5,0)的直线m ,使其与曲线C 2交得弦|PQ|长度为8呢?若存在,则求出直线m 的方程;若不存在,试说明理由。
20. 在平面直角坐标系xOy 中,抛物线y=x2上异于坐标原
点O 的两不同动点A 、B 满足AO ⊥BO (如图4所示).
(Ⅰ)求△AOB 的重心G (即三角形三条中线的交点)的
轨迹方程;
(Ⅱ)△AOB 的面积是否存在最小值?若存在,请求出
最小值;若不存在,请说明理由.
选修1—1试题参考答案:
一、CDACD CCCBC
二、11.35,45 ; 12.x 1-5x ; 13.1251622=+y x ; 14.0361236=-+-πy x ; 15. 22.
三、 16.命题甲:m>2,命题乙:1<m<3. 故 1<m ≤2,或m ≥3
17.x=0,y=1,y=2
1x+1 18.(1).f(x)=2x 3-6x; 故f(1)=-4是极小值,f(-1)=4是极大值
(2).切线方程是18x -y+32=0
(3) .最大值为f(-1)=f(2)=4, 最小值为f(-3)=-36
19.提示:C 1方程为14
52
2=+y x ;C 2方程为1422=-y x 或x+m 的方程为x=5或y=26±(x -5) 20.解:(I )设△AOB 的重心为G(x,y),A(x1,y1),B(x2,y2),
则⎪⎪⎩
⎪⎪⎨⎧+=+=332121y y y x x x (1)
∵OA ⊥OB ∴1-=⋅OB OA k k , 即12121-=+y y x x , (2)
又点A ,B 在抛物线上,有222211,x y x y ==,代入(2)化简得121-=x x ∴3
2332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y 所以重心为G 的轨迹方程为3
232+=x y (II )2221212222212221222221212
1))((21||||21y y y x y x x x y x y x OB OA S AOB +++=++==∆ 由(I )得12212)1(2212221221662616261=⨯=+-=+⋅≥++=
∆x x x x S AOB 当且仅当6261x x =即121-=-=x x 时,等号成立。
谢谢大家。