初中数学最值问题解题技巧与常用解法,中考数学动点最值问题经典题型专题训练及答案解析
中考数学最值问题总结(含强化训练)
中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
初一数学动点问题答题技巧与方法-含答案
初一数学动点问题答题技巧与方法关键:化动为静,分类讨论。
解决动点问题,关键要抓住动点,我们要化动为静,以不变应万变,寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等)建立所求的等量代数式,攻破题局,求出未知数等等。
动点问题定点化是主要思想。
比如以某个速度运动,设出时间后即可表示该点位置;再如函数动点,尽量设一个变量,y尽量用x来表示,可以把该点当成动点,来计算。
步骤:①画图形;②表线段;③列方程;④求正解。
数轴上动点问题数轴上动点问题离不开数轴上两点之间的距离。
为了便于大家对这类问题的分析,首先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b 个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
问题引入:如图,有一数轴原点为O,点A所对应的数是﹣1,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数.【考点】数轴;比较线段的长短.【专题】数形结合.【分析】(1)由于OA=OB,可得点B所对应的数是点A所对应的数的相反数;(2)先求出AB的距离,再根据速度=路程÷时间求解;(3)先求出AC的距离,得到点C所对应的数,由KC=KA,得到点K所对应的数.【解答】解:(1)∵OA=OB,点A所对应的数是﹣1,∴点B所对应的数是1;(2)[1﹣(1)]÷3=3÷3=1.故该点的运动速度每秒为1.(3)1×9=9,9÷2=4.5,∴点C所对应的数为﹣1+9=7,点K所对应的数为﹣1+4.5=3.故点C所对应的数为7,点K所对应的数为3.【点评】考查了数轴和路程问题,熟练掌握数轴上两点间的距离的求法,本题虽有几题,但基础性较强,难度不大.练习:1.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4 (速度单位:单位长度/秒).(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中标出的位置同时向数轴负方向运动,几秒时,A、B两点到原点的距离恰好相等?例题精讲:例1.已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C两点同时相向而行,甲的速度为4个单位/秒。
中考数学专题复习 专题52 中考数学最值问题(教师版含解析)
中考专题52 中考专题数学最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a =-2时,y 有最小值。
y ac b amin =-442; ②若a <0当x b a =-2时,y 有最大值。
y ac b amax =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的标准答案,这一方法称为“夹逼法”。
动点与最值题 中考数学重难点专题 全国通用版 含答案(原卷+解析版)
OA BC 2 3 ;②当点 D 运动到 OA 的中点处时, PC 2 PD2 7 ;③在运动过程中, CDP 是一个
-1-
定值;④当△ODP
为等腰三角形时,点
D
的坐标为
2
3 3
,
0
.其中正确结论的个数是(
)
A.1 个
B.2 个
C.3 个
D.4 个
5.如图,在 Rt
ABO
中, OBA
于点 Q,D 为线段 PQ 的中点,当 BD 平分 ABC 时,AP 的长度为( )
8
A.
13
15
B.
13
25
C.
13
32
D.
13
3.如图是函数 y x2 2x 3(0 x 4) 的图象,直线 l / / x 轴且过点 (0, m) ,将该函数在直线 l 上方的图
象沿直线 l 向下翻折,在直线 1 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最
-8-
25.如图,在正方形 ABCD 中,点 E 是 AB 边上的一点,以 DE 为边作正方形 DEFG,DF 与 BC 交于点 M, 延长 EM 交 GF 于点 H,EF 与 GB 交于点 N,连接 CG. (1)求证:CD⊥CG;
1 MN
(2)若 tan∠MEN= ,求 的值;
3 EM 1
(3)已知正方形 ABCD 的边长为 1,点 E 在运动过程中,EM 的长能否为 ?请说明理由.
-5-
19.如图, ABC 是⊙O 的内接三角形,且 AB 是⊙O 的直径,点 P 为⊙O 上的动点,且 BPC 60 ,
⊙O 的半径为 6,则点 P 到 AC 距离的最大值是___.
初中数学动点最值问题19大模型+例题详解,彻底解决压轴难题
动点最值问题永远都是中考最难的压轴类题目,很多同学都反应不知道该怎么下手寻找思路。
其实这类题目的题型有限,全部总结归纳就是这19种,希望同学们对每一种都能掌握技巧,再遇见类似的就能及时找到思路。
PS:可下载电子版打印高清版本,链接文末获取!
1、将军饮马模型(对称点模型)
2、利用三角形两边差求最值
3、手拉手全等取最值
4、手拉手相似取最值
5、平移构造平行四边形求最小
6、两点对称勺子型连接两端求最小
7、两点对称折线连两端求最小
8、时钟模型,中点两定边求最小值
9、时钟模型,相似两定边求最小值
10、转化构造两定边求最值
11、面积转化法求最值
12、相似转化法求最值
13、相似系数化一法求最值
14、三角函数化一求最值
15、轨迹最值
16、三动点的垂直三角形
17、旋转最值
18、隐圆最值-定角动弦
19、隐圆最值-动角定弦。
初中动点最值问题题型
初中动点最值问题题型1. 什么是动点最值问题?初中数学中的动点最值问题是指给定一个动点在某个区域内移动的情况,我们需要找出在这个过程中,某个量的最大值或最小值。
这个问题涉及到数学中的函数、图像和变量的运动等概念。
2. 动点最值问题的解决思路要解决动点最值问题,我们需要经过以下几个步骤:步骤一:明确问题首先,我们需要明确问题,确定要求解的量是什么。
常见的量包括距离、时间、面积等。
步骤二:建立模型接下来,我们需要建立一个数学模型来描述动点的运动情况。
这通常涉及到函数和变量的运用。
可以根据具体情况选择直角坐标系或极坐标系来建立模型。
步骤三:求解最值通过对模型进行分析和计算,可以得到函数表达式。
然后使用数学方法求解该函数的最大值或最小值。
常见的求解方法有导数法、平方差法等。
步骤四:验证答案得到答案后,我们需要验证它是否符合实际情况。
可以通过数学推导、图像观察等方式进行验证。
3. 动点最值问题的例子下面以一个具体的例子来说明动点最值问题的解决思路:例子:一个人在河边沿着一条弯曲的小路行走,他从A点出发,经过B、C、D三个点,最后到达E点。
小路的形状如下图所示:我们需要求解以下两个问题:1.从A点到E点的最短距离是多少?2.从A点到E点经过的路径是什么?步骤一:明确问题1.最短距离2.路径步骤二:建立模型我们可以将小路看作一个连续函数,使用直角坐标系来建立模型。
假设小路的函数表达式为y = f(x)。
步骤三:求解最值1.最短距离:我们需要求解函数f(x)在区间[AB]、[BC]、[CD]和[DE]上的最小值。
2.路径:根据求解出来的最小值,可以确定经过哪些点构成了最短路径。
步骤四:验证答案1.最短距离:通过计算和比较,可以验证最小值是否正确。
2.路径:通过观察图像和计算距离,可以验证路径是否正确。
4. 总结初中动点最值问题是数学中常见的一类问题,需要运用函数、图像和变量的概念来建立模型,并通过数学方法求解最大值或最小值。
中考数学动点最值问题归纳及解法
中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。
①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
中考初中数学最值问题典型例题(含答案分析)+初中数学压轴题及答案
中考数学最值问题总结考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
(2、代数计算最值问题 3、二次函数中最值问题) 问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型:条件:如下左图,A 、B 是直线l 同旁的两个定点.问题:在直线l 上确定一点P ,使PA PB +的值最小.方法:作点A 关于直线l 的对称点A ',连结A B '交l 于 点P ,则PA PB A B '+=的值最小例1、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM+CM 的值最小;AB′Pl②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长。
例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.例3、如图1,四边形AEFG与ABCD都是正方形,它们的边长分别为a,b(b≥2a),且点F在AD上(以下问题的结果可用a,b表示)(1)求S△DBF;(2) 把正方形AEFG绕点A逆时针方向旋转450得图2,求图2中的S△DBF;(3) 把正方形AEFG绕点A旋转任意角度,在旋转过程中,S△DBF是否存在最大值,最小值?如果存在,试求出最大值、最小值;如果不存在,请说明理由。
中考数学专题复习-如何解答最值问题(含答案)
中考数学复习如何解答最值问题最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题。
下面绍如何利一次函数,二次函数的性质和对称性求最值。
◆一次函数的最值问题一、典型例题:1、(2010陕西)某蒜薹生产基地喜获丰收收蒜薹200吨。
经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:若经过一段时间,蒜薹按计划全部售出后获得利润为y(元)蒜薹x(吨),且零售是批发量的1/3。
(1)求y与x之间的函数关系;(2)由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润。
解:(1)由题意,批发蒜薹3x吨,储藏后销售(200-4x)吨则y=3x(3000-700)+x·(4500-1000)+(200-4x)·(5500-1200)=-6800x+860000,(2)由题意得200-4x≤80 解之得x≥30∵-6800x+860000 -6800<0∴y的值随x的值增大而减小当x=30时,y最大值=-6800+860000=656000元2、(广东清远2009)某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A 种果汁原料和B 种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少?解:(1)依题意得:43(50)150y x x x =+-=+(2)依题意得:0.50.2(50)19(1)0.30.4(50)17.2(2)x x x x +-⎧⎨+-⎩≤…………≤………解不等式(1)得:30x ≤ 解不等式(2)得:28x ≥∴不等式组的解集为2830x ≤≤150y x =+,y 是随x 的增大而增大,且2830x ≤≤ ∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y 最小,28150178y =+=最小(元) ◆二次函数的最值问题 一、典型例题:1、(2010武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
初中数学动点产生的最值问题专项讲解
初中数学动点产生的最值问题专项讲解一、如图1,在直线l上找到一点P,使得PA+PB最短.做法如图2,连接A、B与l的交点即为所求.图1 图2 图3 图4二、如图3,在直线l上找到一点P,使得PA+PB最短.做法如图4,做点B关于直线l 的对称点B/,连接AB/与l的交点即为点P.因为A、B两点是固定的,所以当题目要求找到一点P使得△PAB的周长最小时,做法也是一样的.三、如图5,在直线l上找到两点EF(点E在点F的左侧),EF的距离是定值,使得AE+EF+FB最小.做法如图6,过A做AA'∥l且AA'=EF,做B关于直线l的对称点B′,连接A'B'与直线l的交点即为F,过A做A'F的平行线与直线l的交点即为点E 同样地,因为AB两点是固定的,所以当题目要求使得四边形AEFB周长最小时,也是用同样的方法图5 图6 图7 图8四、如图7,直线a与直线b平行,在直线a上找到一点A,过点A作直线b的垂线交于点B,如何确定点A的位置可以使PA+AB+BQ最短.做法如图8,做PD垂直直线b交直线a于点C,交直线b于点D,在PD上截取PECD,连接EQ,EQ与直线b的交点即为点B,过点B做直线a的垂线,交点即为点A,连接PA即可.这种方法在实际生活中的应用就是著名的修桥问题.五、如图9,在直线l上找到一点M,使得|MA-MB|最小;直线l上找到一点N,使|NA-NB|最大.做法如图10,做AB 的中垂线与直线l 相交,交点即为M 、此时|MA-MB|有最小值0.如图11,延长BA 与直线l 相交,交点即为N 、此时|NA-NB|有最大值为AB.图9 图10 图11六、如图12,点P 是∠AOB 内部一点,在OA 上找到一点M 、OB 上找到一点N 使三角形PMN 的周长最小.做法如图13,分别作点P 关于QA 、OB 的对称点P1、P2,连接P1P2、与OA 的交点即为M,与OB 的交点即为N.此时,三角形PMN 的周长最短.图12 图13 图14 图15七、如图14,点P 是∠AOB 内部一点,在OA 上找到一点M 、过点M 作AMN 垂直OB 交OB 于点N,使得PM+MN 的最小.做法如图15,作点P 关于OA 的对称点Q,做QN 垂直OB 于N 、则QN 与OA 的交点为M.八、如图16,在三角形ABC 中找到一点P,使得PA+PB+PC 最小.做法如图17,分别以AB 、BC 、AC 为边向外做等边三角形,连接AD 、BE 、CF 的交点就是符合条件的点P.lABlP2OOO图16 图17 图18 图19九、如图18,三角形ABC 是等腰直角三角形,C 是直角顶点、以C 为圆心,21AB 长为半径作圆,在⊙C 上找到一点P,使得PA+22PB 最短. 做法如图19,取BC 的中点D,连接AD,则AD 与⊙C 的交点即为P. 注:在⊙C 上任取一点P,连接PC,PB,∵CP CD =CB CP =22,且∠PCD=∠BCP ∴△PCD ∽△BCP , ∴PD =22PB学思路铺垫已知:二次函数y=-2x 2+3x-23与直线y=x 交于A 、B 两点,点A 在点B 的左侧. (1)A 、B 两点的坐标分别是__________、(2)在y 轴上找到一点C,使得三角形ABC 的周长最小,则点C 的的坐标为_______ (3)若以M 为圆心的圆经过AB 两点,且圆心角AMB 是直角,请写出M 的坐标_____;若以M 为圆心,以2为半径作圆,在此圆上找到一个点P,使PA+22PB 最小,则此最小值为_____________,_____________ 思路:①两定点在定直线同侧,作对称;②先转化22PB,取MB 的中点Q,连接AQ, 则AQ 的长度即为所求. 压轴题(山东滨州中考)如图2-4-20,已知直线y=kx+b(k 、b 为常数)分别与x 轴、y 轴交于点A(-4,0)、B(0,3),抛物线y=-x 2+2x+1与y 轴交于点C. (1)求直线y=kx+b 的函数解析式;(2)若点P(x,y)是抛物线y=-x 2+2x+1上的任意一点,设点P 到直线AB 的距离为d,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标;(3)若点E 在抛物线y=-x 2+2x+1的对称轴上移动,点F 在直线AB 上移动,求CE+EF 的最小值提能力1.(山东烟合中考)如图2-4-21,抛物线y=ax 2+bx+2与x 轴交于A 、B 两点,与y 轴交于C,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E (1)抛物线的解析式为________;(2)如图2-4-22,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直EO 于点G,作PH ⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求L 与m 的函解析式(不必写出m 的取值范围),并求出l 的最大值.2.(山东东营中考)如图2-4-23,直线y=33x+3分别与x 轴、y 轴交于B 、C 两点,点A 在x 轴上,∠ACB=90°,抛物线y=ax 2+bx+3经过A,B 两点.(1)A 、B 两点的坐标分别为_____________;抛物线的解析式为____________ (2)点M 是直线BC 上方抛物线上的一点,过点M 作MH ⊥BC 于点H,作MD ∥y 轴交BC 于点D,求△DMH 周长的最大值.3.(湖南岳阳中考)如图2-4-24,抛物线y=32x 2+bx+c 经过点B(3,0),C(0,-2),直线l:y=-32x-32交y 轴于点E,且与抛物线交于A,D 两点,P 为抛物线上一动点(不与A,D 重合.(1)抛物线的解析式为________;(2)当点P 在直线l 下方时,过点P 作PM ∥x 轴交l 于点M,PN ∥y 轴交l 于点N,求PM+PN 的最大值4.(天津中考)已知抛物线y= x 2+bx-3(b 是常数)经过点A(-1,0). (1)该抛物线的解析式和顶点坐标分别为________;(2)P(m,t)为抛物线上的一个动点,P 关于原点的对称点为P /.当点P /落在第二象限内,并且P /A 2取得最小值时,求m 的值.5.(湖南怀化中考)如图2-4-25,在平面直角坐标系中,已知抛物线y=ax 2+bx-5与x 轴交于点A(-1,0),B(5,0),与y 轴交于点C. (1)抛物线的函数表达式为________;(2)若点K 为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x 轴,y 轴上分别找点P,Q,使四边形PQKM 的周长最小,求出点P,Q 的坐标6.(甘肃兰州中考)如图2-4-26,抛物线y=-x 2+bx+c 与直线AB 交于A(-4,-4),B(0,4)两点,直线AC:y=-21x-6交y 轴于点C.点E 是直线AB 上的动点,过点E 作EF ⊥x 轴交AC 于点F,交抛物线于点G.(1)抛物线y=-x 2+bx+c 的表达式为________;(2)已知E(-2,0),H(0,-1)以点E 为圆心,EH 长为半径作圆,点M 为⊙E 上一动点,求21AM+CM 的最小值.。
动点与最值问题解题技巧
动点与最值问题解题技巧【实用版4篇】篇1 目录1.动点与最值问题概述2.动点与最值问题的解题技巧3.动点与最值问题的应用篇1正文一、动点与最值问题概述动点与最值问题是数学中的一类常见问题,主要涉及到点在平面直角坐标系中的运动以及函数的最值求解。
这类问题通常需要结合几何知识、函数知识以及代数知识进行求解。
二、动点与最值问题的解题技巧1.理解问题:仔细阅读题目,理解问题的含义和限制条件,明确求解的目标。
2.建立模型:根据问题建立合适的数学模型,可以使用函数、方程、几何图形等方法。
3.求解模型:使用数学工具和方法求解模型,得到结果。
4.验证结果:验证所得结果是否符合问题要求,是否具有实际意义。
三、动点与最值问题的应用动点与最值问题在生活和工程中有着广泛的应用。
例如,在建筑设计、桥梁设计、道路设计等领域中,需要考虑动点的运动和最值问题,以保证设计的合理性和可行性。
篇2 目录1.动点与最值问题概述2.动点与最值问题的解题技巧3.动点与最值问题的应用篇2正文一、动点与最值问题概述动点与最值问题是数学中的常见问题,涉及到的知识点包括几何、函数、导数等。
这类问题具有综合性强、难度较大的特点,需要学生具备扎实的基础知识和灵活的解题技巧。
二、动点与最值问题的解题技巧1.理解问题本质:首先需要仔细阅读题目,理解问题的本质,确定动点的运动方式和约束条件。
2.建立数学模型:根据题目中的几何关系和函数关系,建立数学模型,使用几何或函数的方法描述问题。
3.寻找解题方法:根据具体问题选择合适的方法,如代数方法、几何方法、微积分方法等。
4.优化解题过程:在解题过程中,要善于利用各种技巧,如配方、拆项、代入数值等,使解题过程更加简洁。
三、动点与最值问题的应用动点与最值问题在日常生活和工程中都有广泛的应用,如建筑工程中的最短路径问题、交通规划中的最优路径问题等。
篇3 目录1.动点与最值问题的联系与区别2.动点问题的解题技巧3.最值问题的解题技巧篇3正文一、动点与最值问题的联系与区别动点问题与最值问题都是中学数学中常见的几何问题,它们在解题思路上有许多相似之处,但也有一些区别。
初中几何动点最值问题难题集锦
初中几何动点最值问题难题集锦初中几何动点最值问题是初中数学中的一道难题类型。
动点最值问题考察动点在几何形状内运动时,某一量的最大值或最小值的求解方法。
下面是一些初中几何动点最值问题的难题集锦。
1.【问题描述】在一个矩形ABCD中,点P动态地沿着矩形的边移动,求线段AP的最长长度。
【解答】假设矩形ABCD的边长为a和b(a<b),点P动态地沿着矩形的边移动。
我们可以观察到,当点P处于矩形的顶点A或D时,线段AP的长度为a;当点P处于矩形的顶点B或C时,线段AP的长度为b。
因此,线段AP的最长长度为b。
2.【问题描述】在一个圆形O内,点P动态地沿着圆的周长移动,求线段OP的最长长度。
【解答】设圆的半径为r,点P动态地沿着圆的周长移动。
根据三角形的性质,可以知道线段OP的长度最长时,点P应该位于圆的周长上的与点O相对的点,即直径上的点。
因此,线段OP的最长长度为2r。
3.【问题描述】在一个正方形ABCD内,点P动态地沿着正方形的边移动,求线段BP的最长长度。
【解答】设正方形ABCD的边长为a,点P动态地沿着正方形的边移动。
由于线段BP的长度等于点P距离B点的距离,所以线段BP的最长长度为正方形的对角线长度,即√2a。
4.【问题描述】在一个等腰直角三角形ABC中,点P动态地沿着三角形的边移动,求线段AP的最长长度。
【解答】设等腰直角三角形ABC的等腰边长为a,点P动态地沿着三角形的边移动。
可以观察到,当点P处于顶点B或C 时,线段AP的长度为a;当点P处于顶点A时,线段AP的长度为0。
因此,线段AP的最长长度为a。
5.【问题描述】在一个梯形ABCD中,点P动态地沿着梯形的边移动,求线段CP的最长长度。
【解答】设梯形ABCD的上底长为a,下底长为b(a>b),点P动态地沿着梯形的边移动。
可以观察到,当点P处于梯形的底端点C或顶端点D时,线段CP的长度为0;当点P处于梯形的上底端点A时,线段CP的长度为ab。
动点问题中的最值、最短路径问题-备战2021年中考数学解题方法之探究十法(解析版)
专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB最大,最大值为线段AB 的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求P A +PB 的最小值的作图.P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值.作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点M 、N 即为所求.5. 二次函数的最大(小)值()2y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k .二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为【答案】4.【解析】解:∵PQ ⊥EP ,∴∠EPQ =90°,即∠EPB +∠QPC =90°,∵四边形ABCD 是正方形,∴∠B =∠C =90°,∠EPB +∠BEP =90°,∴∠BEP =∠QPC ,∴△BEP ∽△CPQ ,O。
动点最值问题方法+经典例题
动点最值问题方法+经典例题
动点最值是初中数学的难点内容,它考察的知识点很多,动点最值有很多类型,本次课程我们不仅总结了解决最值问题的基本方法,还给大家准备了经典例题基本方法
1最经济问题2利用三角形两边差求最值
3转化垂直求最值4平移构造平行四边形求最值5勺子形连两端求最值6对称连两端求最值
7构造两定边求最值8转化构造两定边求最值
9面积转化法求最值10相似转化法求最值
11系数化一法求最值12胡不归原理13轨迹最值14三动点的最值三角形15费马点今天就讲到这儿,还有很多内容我一下子没办法讲完,只能一点点讲。
同学们,下课。
中考数学复习:专题9-9 探究动点背景下的线段最值问题
探究动点背景下的线段最值问题【专题综述】图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到比较为难.本文谈谈破解这类问题的方法. 动点背景下线段长度的最值问题一般有两种解法:1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式来求解.2、几何方法.常通取特殊点,如线段中点、端点;与动点的特殊位置相关的特殊线段,如三角形的高、中线、圆的直径等;特殊图形,如直角三角形、等边三角形、矩形等,用几何公理、定理来求解. 一般而言,用几何方法抓住特殊情形处理,比代数方法更有独特魅力. 【方法解读】一、从动点所在特殊位置入手图形中动点的运动有一定的范围,其较为特殊的位置有:线段上动点的两端点、线段中点等;若点在线段外运动,则与某线段共线就是特殊位置.这些特殊位置正是产生最值的关键点.例1 如图1,在四边形ABCD 中,90A ∠=︒,33AB =,3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为. 分析 DM ,MN 的长度随点M ,N 分别在线段BC ,AB 上运动而变化,点E ,F 分别为DM ,MN 的中点却保持不变.题设中EF 与不变量A ∠,AB ,AD 无直接数量关系,但连结DN ,则由三角形的中位线定理可知12EF DN =,如图1所示,从而可知DN 最大时,EF 最大.因为N 在线段AB 上,当点N 与其端点B 重合时DN 最大,如图2所示.此时,由勾股定理知6BD =,所以EF 长度的最大值为3.例2 如图3,在⊙O 中,直径6AB =,BC 是弦,30ABC ∠=︒,点P 是BC 上的一个动点,点Q 在⊙O 上,且OP PQ ⊥.求PQ 长的最大值.分析 点P 在BC 运动时,OP ,PQ 的位置和大小都变化,但OP PQ ⊥,圆的半径不变,连结OQ ,则OPQ ∆保持直角三角形不变.在Rt OPQ ∆中,22223PQ OQ OP OP =-=-,所以OP 最小时PQ 的长的最大.由垂径定理知,此时点P 正好是CB 的中点,如图4所示,Q 点与C 点重合.分析 连结OQ . ∵OP PQ ⊥,∴OPQ ∆为直角三角形. 又∵OP CB ⊥,132OB AB ==,30ABC ∠=︒, ∴32OP =由勾股定理,得223333()22PQ =-=即PQ 长的最大值332. 二、从动点产生的特殊线段入手在图形中,点的运动会引起相应线段位置和长度大小的变化,位置的变化会使线段成为具有某种特殊性质抓住这些线段变化的特殊性:如三角形的高、中线、圆的直径等,往往会找到最值的答案.例3 如图5,在直角ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为AB 上(不与AB 重合)一动点,过点P 分别作PE AC ⊥于点E ,PF BC ⊥与F ,则EF 的最小值 .分析 因为点P 在AB 上运动时,PE AC ⊥于点E ,PF BC ⊥与F ,90C ∠=︒,所以四边形CFDE 是矩形,且这些关系不变.连结PC ,则EF CP =,要求EF 的最小值,就是求CP 的最小值.显然当CD AB ⊥,即CD 是斜边AB 的高时,CD 最小.又由勾股定理,得5AB =,根据三角形面积不变,得AC BC CD AB ⨯=⨯,解得125CP =,所以EF 的最小值为125. 例4 如图6,在圆O 上有定点C 和动点P 位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点G .已知:圆O 半径为52,4tan 3ABC ∠=,则CG 的最大值是(). (A)5 (B)154(C)253(D)203分析 点P 在AB 上运动时,PC 的位置和大小会随之变化,但CAB CPG ∠=∠,90ACB PCG ∠=∠=︒保持不变,故有ABCPGC ∆∆,∴BC AC CG PC =,即BC CG PC AC=,由3tan 4AC ABC PC ∠==,知43CG PC =,当PC 最大时,CQ 取到最大值易知,当PC 经过圆心,即PC 为圆O 的直径时,PC 最大(此时CG 是圆O 的切线). ∵圆O 半径为52, ∴PC 的最大值为5,∴315544CG =⨯=. ∴CG 的最大值154,故选B.三、抓住动点问题的特性,从构造特殊图形入手某些动点问题中,难以找到图形变化时与相关线段最值的特殊情形若要用几何解法,应联系整个问题所含条件添加辅助线,构造特殊图形,然后借助特殊图形的性质将问题进行有效转化.例5 如图7,ABC ∆中,45B ∠=︒,60BAC ∠=︒,22AB =. D 是BC 上的一个动点以AD 为直径画圆与AB ,AC 相交于E ,F 两点,求EF 的最小值.分析 点D 在BC 上运动,AD 的位置改变引起圆O 的位置和大小变化,而所求EF 的 值与不变量B ∠,BAC ∠以及AB 的关系不明显.连结OE ,OF ,构造含120︒角的特殊等腰三角形,如图8所示,过O 点作OH EF ⊥垂足为H ,由圆周角定理可知1602EOH EOF BAC ∠=∠=∠=︒.在Rt EOH ∆中,由垂径定理可知23EF EH OE ==.所以当OE 最小时,EF 的值最小,而12OE AD =,由垂线段的性质可知,当AD 为ABC ∆的边BC 上的高时,直径AD 最短,此时线段EF 最小.在Rt ADB ∆中,45ABC ∠=︒,22AB =∴2AD BD ==,即此时圆的直径为2. 在Rt EOH ∆中,33sin 122EH OE EOH =∠=⨯= ∴23EF EH ==, 即EF 的最小值为3.四、从图形运动中相对保持不动的点入手若图形中的动点不止一个,这种情形相对单一动点问题要复杂一般会引起变化的量增加或整个图形发生运动,难以找到原图中保存不变的量,这时可着眼于图中的相对不变量.相对不变量是指在整个图形运动变化中,保持某种特性不变的量与动点下线段最值所对应的仍是图中特殊相对不变量透过图形运动的整体,抓住特殊相对不变量才是解题的关键.例6 如图9,在ABC ∆中,90ACB ∠=︒,3BC =,8AC =,点A ,C 分别在x 轴、y 轴的正半轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动中OB 的最大值是多少?分析 当点A 在x 轴上运动时,点C 随之在y 轴上运动,这样改变了ABC ∆的位置,点B 的位置也随之改变,OB 的长度随之发生变化.虽然BC 、AC 的长度不变,但些相对不变的量与OB 没有直接的关系. 仔细观察图9,AC 是Rt COA ∆的斜边,AC 长度不变,则点O 与其中点D 的连线段OD 的长度保持不变,这个隐含的相对不变的特殊量与OB 有关. 于是,连结DB ,则OB DB OD <+,所以,当O 、D 、B 三点共线时OB 值最大,即BO OD DB =+. 在Rt BCA ∆中,4CD =,3CB =,5DB =. 则OB 的最大值为549+=:.综上可知,解决动点背景下线段长度的最值问题时,一般可用几何方法从特殊情形出发考虑.1、在分析动点位置变化的同时,重点抓住图形中不变的量,不变的关系和性质,以不变应万变,动中求静.2、线段的最大值和最小值,常与下列知识相关:两点之间线段最短,垂线段最短,直径是圆中最大的弦,三角形中任意两边之和大于第三边,任意两边之差小于第三边等等.所以要抓住特殊情形,联系与问题相关的结论进行有效转化.【强化训练】1.(2017四川省内江市)如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=430,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且P A+AB+BQ 最小,此时P A+BQ= .2.(2017山东省东营市)如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.3.(2017山东省威海市)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.4. (2017甘肃省天水市)如图所示,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P是对角线AC上的一动点,连接PB、PE,当点P在AC上运动时,△PBE周长的最小值是.5.(2017贵州省贵阳市)如图,在矩形纸片ABCD 中,AB =2,AD =3,点E 是AB 的中点,点F 是AD 边上的一个动点,将△AEF 沿EF 所在直线翻折,得到△A ′EF ,则A ′C 的长的最小值是 .6.(2016山东省枣庄市)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF =63,∠BAD =60°,且AB >63. (1)求∠EPF 的大小;(2)若AP =10,求AE +AF 的值;(3)若△E FP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.7.(2016山东省枣庄市)如图,已知抛物线2y ax bx c =++(a ≠0)的对称轴为直线x =﹣1,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴x =﹣1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.8.(2017山东省烟台市)如图1,抛物线22y ax bx =++与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E . (1)求抛物线的解析式;(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H .设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.9.(2016四川省眉山市)已知如图,在平面直角坐标系xOy 中,点A 、B 、C 分别为坐标轴上上的三个点,且OA =1,OB =3,OC =4.(1)求经过A 、B 、C 三点的抛物线的解析式;(2)在平面直角坐标系xOy 中是否存在一点P ,使得以以点A 、B 、C 、P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM ﹣AM |的最大值时点M 的坐标,并直接写出|PM ﹣AM |的最大值.10. (2016广西梧州市)如图,抛物线24y ax bx =+-(a ≠0)与x 轴交于A (4,0)、B (﹣1,0)两点,过点A 的直线y =﹣x +4交抛物线于点C . (1)求此抛物线的解析式;(2)在直线AC 上有一动点E ,当点E 在某个位置时,使△BDE 的周长最小,求此时E 点坐标; (3)当动点E 在直线AC 与抛物线围成的封闭线A →C →B →D →A 上运动时,是否存在使△BDE 为直角三角形的情况,若存在,请直接写出符合要求的E 点的坐标;若不存在,请说明理由.。
中考数学最值问题的题型归纳与解题思路讲解
分析:如图 5,动点 P 在以 AB 为直径的圆上运动,根据点与圆的关系,知道,当 O,P, C 三点共线时,CP 最短.
解析:因为∠PBA+∠PBC=90°,∠PAB=∠PBC,所以∠PBA+∠PAB=90°,所以∠ APB=90°,所以点 P 在以 AB 为直径的圆上,当 O,P,C 三点共线时,CP 最短,因为 AB=6, 所以 OB=3,因为 BC=4,所以 OC=5,所以 CP=OC-OP=5-3=2,所以 CP 的最小值为 2,所以选 B.
中考数学最值问题的题型归纳与解题思路讲解
最值是中考一个永恒的主题,也是一个重大的难题,解答最值问题不仅要准确理解题意, 更要准确找到取得最值的方式,最后才是运用数学知识给出数值.下面就把最值的题型归纳一 下,解答的思路梳理一下,供学习时借鉴.
1.把线段的最小值转化为垂线段最短型 例 1 如图 1,在 Rt△ABC 中,∠B=90°,AB=4,BC>AB,点 D 在 BC 上,以 AC 为 对角线的所有平行四边形 ADCE 中,DE 的最小值是_____________.
形,所有剪法中剩余部分面积的最小值是
A.6
B.3 C.2.5
D.2
(
)
分析:要想使得剩余的面积最小,就要保证剪去的三角形的面积最大,要想使得剪去得
每一个三角形的面积最大,只要保证等腰直角三角形斜边最大即可,所以我们可以这样去剪:
1、以最长的边为斜边构造等腰直角三角形 1
以 BC 为斜边作等腰直角三角形△EBC,此时三角形的面积为 2 ×3×6=9;
△ABF,△BCE,△ECG 得到四边形 EFDG,是剩余部分面积的最小的.
解析:在矩形 ABCD 中剪去△ABF,△BCE,△ECG 得到四边形 EFDG,此时剩余部分
2024中考备考重难点数学06几何最值问题(5大题型+满分技巧+限时分层检测)
重难点06 几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧 将军饮马:。
构造平行四边形AMNA`,转化AM 为A`N ,之后再对称连接求A`N +NB 的最小值即可A`构造平行四边形AA`NM ,则AM 转化为A`N ,之后再依据两点之间线段最短,连接A`B 即为A 、B 之间陆地距离的最小值1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE =1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补1.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,AE=3,连接BE,以BE为斜边在BE的右侧作等腰直角△BDE,P是AE边上的一点,连接PC和CD,当∠PCD=45°,则PE长为.考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:1.(2023•金平区三模)如图,长方形ABCD中,AB=6,BC=,E为BC上一点,且BE=,F为AB 边上的一个动点,连接EF,将EF绕着点E顺时针旋转45°到EG的位置,连接FG和CG,则CG的最小值为.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
初中数学动点最值问题解题技巧总结
初中数学动点最值问题解题技巧总结示例文章篇一:哎呀呀,同学们,你们有没有被初中数学里的动点最值问题难倒过呀?反正我之前是被搞得晕头转向的!不过呢,经过我一番苦苦摸索,还真总结出了一些超有用的解题技巧,今天就来和大家分享分享。
咱们先来说说啥是动点最值问题。
就好比有个小调皮的点,在图形里到处乱跑,然后让咱们找它跑到啥位置的时候能得到最大或者最小的值。
这可不像找藏起来的糖果那么简单哟!那怎么解决呢?首先,咱们得学会用“两点之间线段最短”这个宝贝定理。
比如说,有A、B 两个点,那连接这两个点的线段AB 不就是最短的距离嘛。
这就像从家到学校,咱们走直线肯定是最近的路呀,难道还能绕个大圈子?再说说“垂线段最短”。
假如有一条直线l,还有一个点P,那从点P 向直线l 作垂线,垂足为Q,线段PQ 就是点P 到直线l 最短的距离。
这就好比你站在河边,要到河里打水,肯定是垂直下去打水最近,要是斜着走,那不是多走冤枉路嘛!还有一种常见的方法是利用三角形的三边关系。
两边之和大于第三边,两边之差小于第三边。
比如说有三角形ABC,AB 边长是5,AC 边长是3,那BC 的长度就在2 到8 之间。
这就好像三个人手拉手,两边的人胳膊加起来肯定要比中间那个人的胳膊长呀!有一次,我和同桌一起做一道动点最值问题。
题目说在一个直角三角形里,有一个动点P,让咱们找P 点在啥位置的时候,PA + PB 的值最小。
我一开始毫无头绪,急得直抓脑袋,嘴里嘟囔着:“这可咋办呀?”同桌倒是挺冷静,他说:“咱们想想刚刚学的那些方法呀!”然后我俩就一起琢磨,突然我灵光一闪:“哎呀,这不就可以用两点之间线段最短嘛!”最后我们成功解出了这道题,那种喜悦,简直没法形容!还有一次,数学老师在课堂上讲一道特别难的动点最值问题,好多同学都听得云里雾里的。
老师就耐心地一遍又一遍解释,还说:“同学们,别着急,咱们慢慢理清楚思路。
”最后大家终于明白了,都忍不住欢呼起来。
所以呀,同学们,动点最值问题虽然看起来很难很可怕,但只要咱们掌握了这些解题技巧,再加上多做练习,多和同学老师讨论,就一定能把它拿下!你们说是不是呀?我相信,只要咱们肯努力,就没有解决不了的数学难题!示例文章篇二:哎呀呀,同学们,你们是不是一碰到初中数学里的动点最值问题就头疼得要命呀?反正我之前是这样的!但是后来我发现,只要掌握了一些小技巧,这类题也没那么可怕啦!就拿那种在三角形里找动点最值的题来说吧。