(完整版)八年级(北师大版)数学分式方程应用题归类
北师大版八下数学《分式方程》典型例题1
《分式方程》典型例题例1.指出下列方程哪些是整式方程,哪些是分式方程,并说出它们的区别. ①21=+x x ②275-=y y ③2132-=x x ④a bx b a x -+=+2(x 是未知数)⑤x x x -=-2212例2.满足方程2211-=-x x 的x 的值是A .1B .2C .0D .没有例3.解方程 114112=---+x x x例4.解方程 413132=-+--++x x x x x例5.当a 为何值时,关于x 的方程53221+-=-+a a x x 的解等于零?例6.为何值时,关于x 的分式方程53221+-=-+a a x x 的解为零?例7.把以下公式进行变形:(1)已知Ir n IRE +=(0≠+rn R ),求I ;(2)已知2021gt t v s -=(0≠t ),求0v .例8.m 为何值时,关于x 的方程234222+=-+-x x mx x 会产生增根?例9.分式方程0111=+--+-x xx kx x有增根1=x ,求k 的值.例10.解方程组⎪⎪⎩⎪⎪⎨⎧-=+=-.352,413yx y x参考答案例1.解答 整式方程为:③④分式方程为:①②⑤它们的主要区别在于:分式方程的分母中含有未知数.说明 根据定义,把握分母中是否含有未知数这一特征来判断.例2.分析 用验证法比用直接法简便. 当1=x 或2=x 时,方程中均有1个分式无意义,所以1=x 与2=x 不是所求的值. 当0=x 时,方程的左右两边相等.解答 C说明 考查分式方程的解法.例3.解答 原方程变形为1)1)(1(411-+---+x x x x 方程两边都乘)1)(1(+-x x ,约去分母,得)1)(1(4)1(2+-=-+x x x ,解这个整式方程,得1=x检验:当1=x 时,0)1)(1(=+-x x∴ 1=x 是增根,∴原方程无解.说明 分式方程一定要注意验根.例4.分析 去分母时,把12++x x 看做整体处理.解答 方程两边都乘)1(-x ,约去分母,得)1(4)3()1)(1(32-=+----+x x x x x x ,(分数线起着扩号的作用)解这个整式方程,得0=x检验:当0=x 时,.01≠-x∴ 0=x 是原方程的解.说明 解分式方程的思路一般为:抓形式特点→整体处理→转化为整式方程→解整式方程→检验得解例5.解答 方程的两边都乘以)2)(5(-+x a ,得)2)(32()5)(1(--=++x a a x ,整理,得.51)8(a x a -=-当8≠a 时,方程有惟一解aa x --=851. 设0851=--a a ,则051=-a ,故51=a . 综上,当51=a 时,原方程的解等于零. 说明 考查分式方程的解法.例6.分析一 由方程解的定义,将0=x 代入方程便可求出a 值.解答一 ∵0=x ,故原方程化为53221+-=-a a 解此分式方程,得 51=a . 经检验知51=a 是原方程的解. ∴ 51=a 时,方程的解为零. 分析二 解关于x 的分式方程,求出用a 表示x 的关系后,令0=x ,求出0=x ,此法较复杂.解答二 方程两边都乘以最简公分母)5)(2(+-a x ,约去分母,得)2)(32()5)(1(--=++x a a x解关于x 的整式方程得 815--=a a x ∵ 0=x ,∴ 0815=--a a , ∴ 015=-a ,.51=a 检验:当51=a 时,0)5)(2(≠+-a x ∴ 当51=a 时,方程的解为零. 例7.分析 公式变形从实质上看就是解含有字母已知数的分式方程. 它的解法和含数字已知数的分式方程是一样的. 一般情况,公式变形不必检验.(1)题中,I 是未知数,r n R E ,,,是字母已知数;(2)题中0v 是未知数,g t s ,,是字母已知数.解答(1)两边都乘以n ,得n Ir IR n E ⋅+=⋅,即E n I n r R ⋅=⋅+)(,∵0≠+rn R∴两边都除以rn R +,得rnR nE I += (2)移项,2021gt s t v +=, ∴ 2022gt s v t +=⋅,∵0≠t ,∴两边都除以t 2,得tgt s v 2220+= 例8.分析 增根是分式方程去掉分母后的整式方程的根,但又使原方程的分母为0.解答 方程两边都乘以)2)(2(-+x x ,得6342-=++x mx x ,整理,得10)1(-=-x m .当1≠m 时,110--=m x . 如果方程产生增根,那么042=-x ,即2=x 或2-=x(1)若2=x ,则2110=--m ,故4-=m . (2)若2-=x ,则2110-=--m ,故.6=m 例9.分析 这是含有参数字母k 的分式方程,x 是未知数,我们把k 看做“暂时常数”,并考虑增根1=x 的条件解出k 来.解答 原方程可化为01)1()1()1(2=---+++x x x x k x x , 即 01222=-+-+++x x x k kx x x , ∴ k x k -=+)2(若02≠+k ,则k k x +-=2, 当1=x 时,kk +-=21, ∴ .1-=k说明 这是一道含有参数字母k 的分式方程. 如果把求出分式方程的增根作为正向思维的话,本题则是已知1=x 是增根,要求求出分式方程中的参数k ,显然具有考察逆向思维的功能. 因而,其求解步骤为:求x →令x 取增根值→解k .例10.解答 把y x 1,1分别看做一个整体,运用换元法设a x =1,b y =1, 则原方程可化为:⎩⎨⎧-=+=-)2( 352)1( 43b a b a )2(5)1(+⨯,得1717=a ,∴ 1=a ,代入(1)中,得1-=b .∴⎩⎨⎧-==11b a 即⎪⎪⎩⎪⎪⎨⎧-==.11,11yx ∴⎩⎨⎧-==.1,1y x 经验证⎩⎨⎧-==11y x 是原方程组的解.说明 换元法是一种重要的数学方法,通过换元不但可使方程组、方程及解答变得简单,还可使解题思路清晰明了. 本题运用了整体思想和换元法,有化难为易之妙.。
北师大八年级数学下册分式方程应用题精选
分式方程应用题1、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长480Km的高速公路,从乙地到甲地走全长600Km的普通公路。
又知在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?5、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
6、某甲有25元,这些钱是甲、乙两人总数的20%。
乙有多少钱?7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?8、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
9、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
10、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?11、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
12、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
期末备考 第5章《分式方程》 实际应用解答专项(二)2020-2021学年 北师大版八年级数学下册
八年级数学北师大版下册期末备考:第5章《分式方程》实际应用解答专项(二)1.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?2.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.3.某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?4.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?5.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?6.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?7.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?8.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?9.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?10.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)11.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?12.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?13.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?14.某商家预测某种粽子能够畅销,就用6000元购进了一批这种粽子,上市后销售非常好,商家又用14000元购进第二批这种粽子,所购数量是第一批购进数量的2倍,但每袋进价多了5元.(1)该商家两批共购进这种粽子多少袋?(2)由于储存不当,第二批购进的粽子中有10%腐坏,不能售卖.该商家将两批粽子按同一价格全部销售完毕后获利不低于8000元,求每袋粽子的售价至少是多少元?15.某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳.面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进手机壳按同一价格销售,全部售完后,为使得获利不少于2000元,那么销售单价至少为多少?参考答案1.解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.2.解:设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.依题意,得.解方程,得x=100.经检验:x=100是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.3.解:(1)设第一批购进书包的单价为x元.依题意,得,整理,得20(x+4)=21x,解得x=80.检验:当x=80时,x(x+4)≠0,∴x=80是原分式方程的解.答:第一批购进书包的单价为80元,(2)=300+1050=1350答:商店共盈利1350元.4.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.5.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400═2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.6.解:设用于练习的宣纸的单价是x元∕张.由题意,得,解得x=0.2.经检验,x=0.2是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.7.解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.8.解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,依题意得:+=1,解得x=20,检验,当x=20时,3x≠0,所以原方程的解为x=20.所以3x=3×20=60(天).答:乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天;(2)设甲、乙两队合作完成这项工程需要y天,则有y(+)=1,解得y=15.需要施工的费用:15×(15.6+18.4)=510(万元).∵510>500,∴工程预算的费用不够用,需要追加预算10万元.9.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.10.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.11.解:(1)设A商品每件x元,则B商品每件(30+x)元,根据题意,得:,经检验:x=20是原方程的解,所以A商品每件20元,则B商品每件50元.(2)设购买A商品a件,则购买B商品共(10﹣a)件,列不等式组:300≤20•a+50•(10﹣a)≤380,解得:4≤a≤6.7,a取整数:4,5,6.有三种方案:①A商品4件,则购买B商品6件;费用:4×20+6×50=380,②A商品5件,则购买B商品5件;费用:5×20+5×50=350,③A商品6件,则购买B商品4件;费用:6×20+4×50=320,所以方案③费用最低.12.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.13.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.14.解:(1)设该商家第一次购进这种粽子x袋,则第二次购进2x袋,依题意,得:﹣=5,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意,∴x+2x=600.答:该商家两批共购进这种粽子600袋.(2)设每袋粽子的售价是y元,依题意,得:[200+200×2×(1﹣10%)]y﹣6000﹣14000≥8000,解得:y≥50.答:每袋粽子的售价至少是50元.15.解:(1)设第一批手机壳进货单价为x元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批手机壳的进货单价是8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥2000,解得:m≥12.答:销售单价至少为12元.。
北师版八年级下册分式应用题专题含答案
应用题专题1、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要()A.6天B.4天C.3天D.2天2、炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.66602x x=-B.66602x x=-C.66602x x=+D.66602x x=+3、有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg,根据题意,可得方程()A.9001500300x x=+B.9001500300x x=-C.9001500300x x=+D.9001500300x x=-4、我国“八纵八横”铁路骨干网的第八纵通道——温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).5、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.6、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率 污水处理量污水排放量).(1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年省会城市的污水处理率不低于70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?7、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的通过这段对话,请你求出该地驻军原来每天加固的米数.加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 解这个方程,得14991x =. 8分 经检验14991x =是原方程的解. 9分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x 2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去. 7分答: 每盒粽子的进价为40元.8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分 341040%1.05x x-= 4分 解得56x ≈ 5分经检验,56x ≈是原方程的解 6分1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x 万吨)(2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨. 10分4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =. 6分检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解. 7分答:该地驻军原来每天加固300米. 8分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, ……………………1分 根据题意,得 10x +1245x =1 ………………………………… 4分 解这个方程,得x =25 ………………………………………6分经检验,x =25是所列方程的根 ……………………………7分当x =25时,45x =20 …………………………………………9分 答:甲、乙两个施工队单独完成此项工程分别需25天和20天.……………10分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x x x ---⨯+=⨯-%%%%%. 5分解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得: x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时. ……………………… 7分14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 4分解得:5x = 经检验5x =是原方程的解 6分 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元) 8分答:该老板两次售书总体上是赚钱了,共赚了520元.9分15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分 111220x x +=, 3分 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意.5分 ∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 ………………………1分 根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x ………………………6分 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ………………………7分 ∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.………………………8分18、 20。
分式方程的应用的题目各类型
一、知识梳理:1、列分式方程解应用题的一般步骤为:①设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;②列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;③列出方程:根据题目中明显的或者隐含的相等关系列出方程;④解方程并检验;⑤写出答案;注意:由于列方程解应用题是对实际问题的解答,所以检验时除从数学方面进行检验外,还应考虑题目中的实际情况,凡不符合条件的一律舍去。
2、分式方程应用题分类解析分式方程应用性问题联系实际比较广泛,灵活运用分式的基本性质,有助于解决应用问题中出现的分式化简、计算、求值等题目,运用分式的计算有助于解决日常生活实际问题.(一)营销类应用性问题例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg 少3元,比乙种原料0.5kg 多1元,问混合后的单价0.5kg 是多少元?分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.(二)工程类应用性问题例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.(三)行程中的应用性问题例3 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.(四)轮船顺逆水应用问题例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即顺水航行速度千米30=逆水航行速度千米20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.(五)浓度应用性问题例5 要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%. 分析:浓度问题的基本关系是:溶液溶质=浓度.此问题中变化前后三个基本量的关系如下表:设加入盐x 千克.溶液 溶质 浓度 加盐前 40 40×15% 15%加盐后 40+x 40×15%+x20% 根据基本关系即可列方程.(六)货物运输应用性问题例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t.问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t付运费20元计算)分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n倍,列出分式方程.例题讲解:1、一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?请同学根据题意,找出题目中的等量关系.答:骑车行进路程=队伍行进路程=15(千米);骑车的速度=步行速度的2倍;骑车所用的时间=步行的时间-0.5小时.请同学依据上述等量关系列出方程.答案:方法1 设这名学生骑车追上队伍需x小时,依题意列方程为15x=2×15 x+12.方法2 设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为15x-15 2x=12.解由方法1所列出的方程,已在复习中解出,下面解由方法2所列出的方程.方程两边都乘以2x,去分母,得30-15=x,所以 x=15.检验:当x=15时,2x=2×15≠0,所以x=15是原分式方程的根,并且符合题意.所以骑车追上队伍所用的时间为15千米 30千米/时=12小时.答:骑车追上队伍所用的时间为30分钟.指出:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离时间.如果设速度为未知量,那么按时间找等量关系列方程;如果设时间为未知量,那么按速度找等量关系列方程,所列出的方程都是分式方程.2、某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是s=mt,或t=sm,或m=st.请同学根据题中的等量关系列出方程.答案:方法1 工程规定日期就是甲单独完成工程所需天数,设为x天,那么乙单独完成工程所需的天数就是(x+3)天,设工程总量为1,甲的工作效率就是x1,乙的工作效率是1x+3.依题意,列方程为2(1x+1x3)+x2-xx+3=1.指出:工作效率的意义是单位时间完成的工作量.方法2 设规定日期为x天,乙与甲合作两天后,剩下的工程由乙单独做,恰好在规定日期完成,因此乙的工作时间就是x天,根据题意列方程2x+xx+3=1.方法 3 根据等量关系,总工作量—甲的工作量=乙的工作量,设规定日期为x天,则可列方程1-2x=2x+3+x-2x+3.重点是找等量关系列方程.总结:1.列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去。
北师大版八年级数学下册第五章分式与分式方程分式方程的应用(有答案)
分式方程的应用列分式方程解决实际问题1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140 D.﹣140=2.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠20元.若该校花费4400元采购款在B商家购买餐桌的张数等于花费4000元采购款在A商家购买餐桌的张数,则A 商家每张餐桌的售价为()A.197元B.198元C.199元D.200元3.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克已知第二块试验田每亩的产量比第一块多200千克若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是()A.=B.=C.=D.=4.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是元.5.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为km/h.6.我市从今年1月1日起调整居民用水价格,每立方米水费上涨原价的25%.小明家去年10月份的水费是15元,而今年8月份的水费则是30元.已知小明家今年8月份的用水量比去年10月份的用水量多4立方米,求该市今年居民用水的价格每立方米多少元?()7.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.8.端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?9.某工厂有甲、乙两台机器加工同一种零件,已知甲每小时加工的零件数与乙每小时加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求两台机器每小时分别加工零件多少个? 设甲机器每小时加工x 个零件: (1)用含x 的代数式填表;每小时加工个数 (个/小时)加工时间加工的总个数(个)甲机器 x 80 乙机器100(2)求x 的值. 练习:10.2015年8月31日慧聪网报道,爱唱响内蒙音乐夏令营9月开启,某学校组织部分学生参加夏令营,李老师从夏令营咨询处带回如图所示的两条信息,则原来报名参加夏令营的学生有( )A .100人B .150人C .200人D .250人11.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( ) A .8B .7C .6D .512.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.13.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?14.南山区某道路供水、排水管网改造工程,甲工程队单独完成任务需40天,若乙队先做30天后,甲乙两队一起合作20天就恰好完成任务.请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队用了x天做完其中一部分,乙队用了y天做完另一部分,若x、y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么,两队实际各做了多少天?15.某人驾车从A地到B地,出发2小时后车子出了点毛病,耽搁了半小时修车,为了弥补耽搁的时间他将车速增加到后来的1.6倍,结果按时到达,已知A、B两地相距100千米,求某人原来驾车的速度.16.列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.17.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.答案:1.A . 2.D . 3.C . 4.4. 5.80. 6.每立方米元. 7.10.8.解:设这种粽子的标价是x 元/个,则节后的价格是0.6x 元/个, 依题意,得:+=27,解得:x =8,经检验,x =8是原方程的解,且符合题意.答:这种粽子的标价是8元/个. 9.解:(1)填表如下:每小时加工个数 (个/小时)加工时间加工的总个数(个)甲机器 x 80 乙机器36﹣x100故答案为,36﹣x ,;(2)设甲机器每小时加工x 个零件,根据题意得,=,解得:x =16.经检验,x =16是原方程的解.所以x =16. 10.A . 11.A .12.解:设票价为x 元,由题意得,=+2,解得:x =60,经检验,x =60是原分式方程的解.则小伙伴的人数为:=8.答:小伙伴们的人数为8人.13.解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元, 依题意,得:=,解得:x =0.5,经检验,x =0.5是原方程的解,且符合题意,∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元. (2)设大本作业本购买m 本,则小本作业本购买2m 本, 依题意,得:0.8m +0.5×2m ≤15,解得:m ≤.∵m 为正整数,∴m 的最大值为8.答:大本作业本最多能购买8本.14.解:(1)设乙工程队单独做需要x 天完成任务,由题意,得+×20=1,解得:x =100,经检验,x =100是原方程的根. 答:乙工程队单独做需要100天才能完成任务; (2)根据题意得 +=1. 整理得 y =100﹣x .∵y <70,∴100﹣x <70.解得 x >12.又∵x <15且为整数,∴x =13或14.当x =13时,y 不是整数,所以x =13不符合题意,舍去. 当x =14时,y =100﹣35=65.答:甲队实际做了14天,乙队实际做了65天. 15.解设他原来驾车的速度为x km/h.根据题意得xxx 6.121005.02100-++= 解得30=x 经检验30=x 是原分式方程的解 答:某人原来驾车的速度为30km/h16.解设一片国槐树叶一年的平均滞尘量为x 毫克. 根据题意得xx 550421000=- 解得22=x 经检验22=x 是原分式方程的解 答:一片国槐树叶一年的平均滞尘量为22毫克. 17.解:设该地驻军原来每天加固的米数为x 米. 根据题意得926004800600=-+xx 解得300=x 经检验300=x 是原分式方程的解 答:该地驻军原来每天加固的米数为300米.。
北师大八年级数学下册分式方程应用
分式方程应用题1、重量相同的两种商品,分别价值 900 元和 1500 元,已知第一种商品每千克的价值比第二种少 300 元,分别求这两种商品每千克的价值。
2、某客车从甲地到乙地走全长 480Km 的高速公路,从乙地到甲地走全长600Km 的一般公路。
又知在高速公路上行驶的均匀速度比在一般公路上快45Km,由高速公路从甲地到乙地所需的时间是由一般公路从乙地到甲地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的行程是 15 千米, A 骑自行车从甲地到乙地先走, 40 分钟后, B 骑自行车从甲地出发,结果同时到达。
已知 B 的速度是 A 的速度的 3 倍,求两车的速度。
4、一台甲型拖沓机 4 天耕完一块地的一半,加一台乙型拖沓机,两台合耕, 1 天耕完这块地的另一半。
乙型拖沓机单独耕这块地需要几日?5、A 做 90 个部件所需要的时间和 B 做 120 个部件所用的时间相同,又知每小时 A、B 两人共做 35 个机器部件。
求 A、B 每小时各做多少个部件。
6、某甲有 25 元,这些钱是甲、乙两人总数的20%。
乙有多少钱?7、某甲有钱 400 元,某乙有钱 150 元,若乙将一部分钱给甲,此时乙的钱是甲的钱的 10%,问乙应把多少钱给甲?8、我队伍到某桥头狙击仇家,出发时仇家离桥头24 千米,我队伍离桥头30 千米,我队伍急行军速度是仇家的 1.5 倍,结果比仇家提早 48 分钟到达,求我队伍的速度。
9、轮船顺流航行 80 千米所需要的时间和逆水航行 60 千米所用的时间相同。
已知水流的速度是 3 千米 / 时,求轮船在静水中的速度。
10、某中学到离学校15 千米的某地旅行,先遣队和大队同时出发,行进速度是大队的1.2 倍,以便提早半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?11、某人此刻均匀每日比原计划多加工33 个部件,已知此刻加工3300 个部件所需的时间和原计划加工 2310 个部件的时间相同,问此刻均匀每日加工多少个部件。
2020-2021学年八年级数学北师大版下册 5.4分式方程解答题专项练习(应用题篇)(二 )
八年级数学北师大版下册5.4分式方程解答题专项(应用题篇)(二)1.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?2.我县为了改善县区内交通环境,对解放路进行了改造,需要铺设排污管道,其中一段长300米,铺设120米后,为了尽可能减少施工对交通所造成的影响,后来每天的工作量比原计划增加20%,结果完成这一任务共用了27天,求原计划每天铺设排污管道多少米.3.甲、乙两个工程队承担了福州市今年的旧城改造工作中的一个办公楼项目,若乙队单独工作3天后,再由两队合作7天就可以完成这个项目,已知乙队单独完成这个项目所需天数是甲队单独完成这各项目所需天数的2倍.(1)求甲,乙两个工程队单独完成这个项目各需多少天;(2)甲工程队一天的费用是7万元,乙工程队一天的费用是3万元,若甲乙合作5天后剩余工作由乙队单独完成,求这个项目总共要支出的工程费用.(单位:万元)4.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?5.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?6.受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?7.某一工程可以由甲、乙两个工程队进行施工.如果甲队单独完成这项工程刚好如期完成;如果乙队单独完成这项工程要比甲队多用4天;如果甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.请列分式方程求出规定工期为多少天?8.某扶贫干部决定引进改良的中药种子帮助贫困户脱贫.他先花8000元购买了桔梗种子,又花6000元购买了白术种子,已知他购买的这两种种子质量相等,且桔梗种子比白术种子每千克多20元,求白术种子每千克多少元?9.为了响应打赢“蓝天保卫战”的号召,张老师上下班的交通方式由驾车改为骑自行车,张老师的家距学校的路程是8千米;在相同的路线上,驾车的平均速度是骑自行车平均速度的3倍,这样,张老师每天上班要比开车早出发小时,才能按原驾车时间到达学校.(1)求张老师骑自行车的平均速度;(2)据测算,张老师的汽车在上下班行驶过程中平均每小时碳排放量约为12千克,这样张老师一天(按一个往返计算)可以减少碳排放量多少千克.10.为全面改善公园环境,现招标建设某全长960米绿化带,A,B两个工程队的竞标,A 队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.(1)分别求出A,B两队平均每天绿化长度.(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?11.某欧洲客商准备在湖南采购一批特色商品,经调查,用16000元采购A型商品的件数是用7500元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多10元.(1)求一件A,B型商品的进价分别为多少元?(2)若该欧洲客商购进A,B型商品共160件进行试销,其中A型商品的件数不大于B型的件数,且不小于78件,已知A型商品的售价为240元/件,B型商品的售价为220元/件,且全部售出,则共有哪几种进货方案?(3)在第(2)问条件下,哪种方案利润最大?并求出最大利润.12.甲、乙两地相距300千米,一辆货车和一辆小汽车同时从甲地出发开往乙地,小汽车的速度是货车的1.2倍,结果小汽车比货车早半小时到达乙地,求两辆车的速度.13.甲、乙两人做某种机器零件,每小时乙比甲多做8个.已知甲做240个零件的时间与乙做300个零件的时间相同,求甲、乙每小时各做多少个零件.14.某校为积极响应垃圾分类的号召,从商场购进了A、B两种品牌的垃圾桶用于回收不同种类垃圾.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用3000元购买A品牌垃圾桶的数量是用1500元购买B品牌垃圾桶数量的4倍.(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?(2)若该中学准备再次用不超过3000元购进A、B两种品牌垃圾桶共50个,恰逢商场对两种品牌垃圾桶的售价进行了调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?15.利华机械厂为海天公司生产A、B两种产品,该机械厂由甲车间生产A种产品,乙车间生产B种产品,两车间同时生产.甲车间每天生产的A种产品比乙车间每天生产的B 种产品多2件,甲车间生产的A种产品30件的天数与乙车间生产的B种产品24件天数相同.(1)求甲车间每天生产多少件A种产品?乙车间每天生产多少件B种产品?(2)海天公司每天付给甲车间600元的工时费,每天付给乙车间400元的工时费,现海天公司一次性购买A、B两种产品共800件,海天公司购买A、B两种产品付给甲、乙两车间的总工时费用不超过42000元.求购进A种产品至多多少件.参考答案1.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.2.解:设原计划每天铺设排污管道x米,由题意可得:,解得:x=10,经检验,x=10是原方程的解,答:原计划每天铺设排污管道10米.3.解:(1)设甲工程队单独完成这个项目需要x天,则乙工程队单独完成这个项目需要2x天,依题意得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲工程队单独完成这个项目需要12天,乙工程队单独完成这个项目需要24天.(2)设甲乙两队合作5天后乙队还要再单独工作y天,依题意得:+=1,解得:y=9,∴7×5+3×(5+9)=77(万元).答:这个项目总共要支出的工程费用为77万元.4.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.5.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.6.解:(1)设该商场购进的第一批“84”消毒液单价为x元/瓶,依题意得:2×=.解得,x=10.经检验,x=10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(+﹣200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.7.解:设规定工期为x天,则甲队单独完成这项工程需x天,乙队单独完成这项工程需(x+4)天,依题意得:+=1,整理得:x﹣12=0,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:规定工期为12天.8.解:设白术种子每千克x元,根据题意,得,解得x=60,经检验,x=60是原方程的解且符合题意.答:白术种子每千克60元.9.解:(1)设张老师骑自行车的平均速度为x千米/小时,依题意有,﹣=,解得x=16,经检验,x=16是原方程的解.故张老师骑自行车的平均速度为16千米/小时,(2)由(1)可得张老师开车的平均速度为16×3=48(千米/小时),×2×12=4(千克).故可以减少碳排放量4千克.10.解:(1)设B队平均每天绿化x米,则A队平均每天绿化2x米.依题意,得:﹣=6,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴2x=160.答:A队平均每天绿化160米,B队平均每天绿化80米.(2)设B队提高工作效率后平均每天绿化y米,则A队提高工作效率后平均每天绿化2y米,依题意,得:(160+80)×2+(2y+y)×(4﹣2)≥960+180,解得:y≥110.答:B队提高工作效率后平均每天至少绿化110米.11.解:(1)设一件B型商品的进价为x元,则一件A型商品的进价为(x+10)元,依题意得:=×2,解得:x=150,经检验,x=150是原方程的解且符合题意,∴x+10=160.答:一件A型商品的进价为160元,一件B型商品的进价为150元.(2)设购进A型商品m件,则购进B型商品(160﹣m)件,依题意得:,解得:78≤m≤80,又∵m为整数,∴m可以为78,79,80,∴共有3种进货方案,方案1:购进A型商品78件,B型商品82件;方案2:购进A型商品79件,B型商品81件;方案1:购进A型商品80件,B型商品80件.(3)方案1获得的利润为(240﹣160)×78+(220﹣150)×82=11980(元);方案2获得的利润为(240﹣160)×79+(220﹣150)×81=11990(元);方案3获得的利润为(240﹣160)×80+(220﹣150)×80=12000(元).∵11980<11990<12000,∴方案3购进A型商品80件,B型商品80件获得利润最大,最大利润为12000元.12.解:设货车的速度为x千米/小时,则小汽车的速度为1.2x千米/小时,依题意得:﹣=,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴1.2x=120.答:货车的速度为100千米/小时,小汽车的速度为120千米/小时.13.解:设甲每小时做x个零件,乙每小时做(x+8)个零件,由题意可得:,解得:x=32,经检验,x=32是原方程的解,∴x+8=40(个),答:甲每小时做32个零件,乙每小时做40个零件.14.解:(1)设购买一个A品牌垃圾桶需x元,则购买一个B品牌垃圾桶需(x+50)元,由题意得:=4×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+50=100,答:购买一个A品牌垃圾桶需50元,购买一个B品牌垃圾桶需100元;(2)设该学校此次购买m个B品牌垃圾桶,则购买(50﹣m)个A品牌垃圾桶,由题意得:50×0.9×(50﹣m)+100×(1+20%)m≤3000,解得:m≤10,∴m最大值是10.答:该学校此次最多可购买10个B品牌垃圾桶.15.解:(1)设乙车间每天生产x件B种产品,则甲车间每天生产(x+2)件A种产品,由题意得:=,解得:x=8,经检验,x=8是原方程的解,且符合题意,则x+2=10,答:甲车间每天生产10件A种产品?乙车间每天生产8件B种产品;(2)设购进A种产品a件,则购进B种产品(800﹣a)件,由题意得:×600+×400≤42000,解得:a≤200,答:购进A种产品至多200件.。
北师大版八年级数学分式方程解应用题
分式方程解应用题列分式方程解应用题:1、某车间加工1200个零件后,采用了新工艺,功效是原来的1.5倍,这样加工同样多就少用10小时。
采用新工艺前、后每时分别加工多少个零件?2、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总款为4800元,第二次捐款人数为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。
如果设第一次捐款人数为x人,那么x满足怎样的方程?3、甲、乙两地相距360km,新修的高速公路开通后,在甲、乙两地间行驶的长途客运车平均车速提高了50%,而从甲地到乙地的时间缩短了2小时,试确定原来的平均车速。
4、某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?5、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?6、在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,求小林每分钟跳几下?7、在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.乙队单独完成这项工程需要多少天?8、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.今年三月份甲种电脑每台售价多少元?9、某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?10、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?11.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来..12、铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?分式方程解应用题5、18%)201(160400160=+-+x x6、x x 9020120=+7、解:(1)设乙队单独完成需x 天根据题意,得11120()2416060x ⨯++⨯=解这个方程,得x =90经检验,x =90是原方程的解∴乙队单独完成需90天8、解:(1)设今年三月份甲种电脑每台售价x 元x x 800001000100000=+解得: 4000=x经检验: 4000=x 是原方程的根,9、解:设该厂原来每天加工x 个零件, 由题意得:72500100=+x x解得 x =50经检验:x =50是原分式方程的解10、解:(1)设商场第一次购进x 套运动服,由题意得:6800032000102x x -=,解这个方程,得200x =.经检验,200x =是所列方程的根.11、解:(1)设每个乙种零件进价为x 元,则每个甲种零件进价为(2)x -元.由题意得801002x x =-,解得10x =.检验:当10x =时,(2)0x x -≠,∴10x =是原分式方程的解.1028-=(元)答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y 个,则购进甲种零件(35)y -个由题意得3595(128)(35)(1510)371y y y y -+⎧⎨--+->⎩≤,解得2325y <≤. y 为整数,24y ∴=或25.∴共有2种方案.分别是:方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.12、解:(1)设试销时这种苹果的进货价是每千克x 元,依题意,得11000500020.5x x =⨯+)解之,得 x =5经检验,x =5是原方程的解.(2)试销时进苹果的数量为:500010005= (千克)第二次进苹果的数量为:2×1000=2000(千克)盈利为: 2600×7+400×7×0.7-5000-11000=4160(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.。
北师大版八下数学《分式方程》典型例题2(含答案)
《分式方程》典型例题例1.甲、乙二人同时从A 地前往距A 地30千米的B 地,甲比乙每小时快2千米,结果比乙先到半小时,若设乙的速度为x 千米/小时,则可列出的方程为A .2123030=--x x B .2123030=+-x x C .2130230=-+x x D .2130230=--x x例2.某校学生进行急行军,预计行60千米的路程可在下午5点钟到达,后来由于每小时加快速度的51,结果于4点钟到达,这时的速度是多少?例3.甲、乙两人合做某项工作,如果先由两人合作3天,剩下的由乙单独来做,那么再有1天便可完成. 已知乙单独做全部工作所需天数是单独做所需天数的2倍. 求甲、乙单独做这项工作各需多少天?例4.某工人现在平均每天比计划多做20个零件,已知现在做4000个 零件和原计划做3000个零件所用的时间相同,问现在平均每天做多少个?例5. A 、B 两地相距7千米,甲由A 地走向B 地,刚走完了1千米到达C ,在A 地的乙发现甲有物遗忘,为送物追甲,乙在D 处追上甲后又立即返回,当乙回到A 地时,甲正好到了B 地,求C 、D 间的距离.例6.编一道可化为一元一次方程的分式方程应用题,并解答,编写要求.(1)要联系实际生活,其解符合实际.(2)根据题意列出的分式方程只含有两项分式,不含常数项,分式的分母均含有未知数,并且可化为一元一次方程.(3)题目完整,题意清楚.参考答案例1.分析1 比较分母的大小判断分式的值的大小,知A 、C 左边均为负数,不可能与右边相等,故应排除A 、C. 又,根据题设,甲的速度为)2(+x 千米/小时,在D 式中没出现2+x ,故排除D.分析2 按列方程解应用题的常规办法列方程得B 式(详细分析过程从略) 解答 B例2.分析 此为行程问题. 基本关系式为:路程=速度×时间. 本题欲求速度,则设原计划速度为x 千米/时,而实际速度为x )511(+千米/时,所以,计划时间x 60时,实际时间x )511(60+时,以时间关系为相等关系来列方程. 解答 设原计划速度为x 千米/时, (务必写明意义和单位) 则实际速度为x )511(+千米/时,依题意,得 1)511(6060=+-x x 化为整式方程,得 1256=x ∴ 10=x经检验:10=x 是原方程的根. 则.12)511(=+x 答:这时的速度为12千米/时.说明 对于行程问题,已知距离求速度,以时间为相等关系.例3.分析 此题为总工作量为1的工程问题. 设甲单独做需x 天,则乙单独做需x 2天,甲每天的工作量为x 1,乙每天的工作量为x21,依题意可列出仅含一个未知数x 的分式方程,于是问题得解.解答 设甲单独做需x 天,则乙单独做需x 2天,依题意,得121)211(3=++xx x 解这个方程,得 5=x经检验知5=x 是原方程的解.∴ 102=x .答:甲单独做需5天,乙单独做需10天.说明 工作总量看做1的工程问题,通常以工作总量为相等关系.例4.分析 此为工作总量不为1的工程问题,要求效率,设现在平均每天做x 个,计划每天做)20(-x 个,现在做4000个所用的时间为x 4000天,计划生产3000个所用时间为203000-x 天,以时间为相等关系可求解. 解答 设现在每天生产x 个零件,计划每天生产)20(-x 个零件,依题意,得 2030004000-=x x 去分母,整理得800001000=x∴ 80=x经检验 80=x 是原方程的解.答:现在平均每天做80个零件.说明 总工作量不是1的工程问题已知总工作量,求工作效率,通常以时间为等量关系. 工作时间工作效率工作总量=. 例5.分析一 甲自C 到D 所行的时间与乙自A 到D 所行的时间相同,甲自C 到B 所行的时间与乙自A 到D 再回到A 所用的时间相同. 如图示:解答一 设甲的速度是每小时x 千米,乙的速度是每小时y 千米,又设CD 的距离是s 千米,依题意,得⎪⎪⎩⎪⎪⎨⎧+=+=y s xy x x s )1(26,1 两式相除,消去x 、y ,得3=s .分析二 甲自C 到D 所行的时间与乙自A 到D 所行的时间相同,甲自D 到B 所行的时间与乙自D 到A 所行的时间相同.解答二 设甲的速度是每小时x 千米,乙的速度是每小时y 千米,又设CD 的距离是s 千米,于是得方程组⎪⎪⎩⎪⎪⎨⎧+=-+=.16,1y s xs y s x s 两式相除,消去x 、y ,得3=s .分析三 由于甲自C 到D 所行的时间与乙自A 到D 所行的时间相同,甲自D 到B 所行的时间与乙自D 到A 所行的时间相同. 而DA AD = 则DB CD =即D 为CB 中点.解答三 设CD 的距离s ,于是得.712=+s 解得3=s .说明 为列方程起见,第一、二种解法增设了甲乙二人的速度,它们在求解过程中自行消失. 而在列方程过程中降低了思维难度,为列方程起到很好的辅助作用. 第三种解法在对问题深刻分析的基础上,得到D 是CB 中点的结论,从而列出了一个很简单的方程. 说明审题时,深入分析题意很重要,可得到最佳的解题方略. 同时,图示法、列表法等在分析总是过程中的直观作用,是分析问题的有效工具.例6.分析 本题着重从三步考虑:①依题意,确定一个有意义的数字:如5,当作所列应用题方程的一个根,建立一个题设要求的等式:如256510-=. ②把上述等式中的5用未知数x 代替变等式方程为分式方程2610-=x x ③根据方程编出应用题甲、乙二人做某种机器零件,已知甲每小时比乙多做2个,甲做10个所用的时间与乙做6个所用时间相等. 求,甲、乙每小时各做多少个?解:设甲每小时做x 个,则乙每小时做)2(-x 个根据题意,得 2610-=x x 整理,得 x x 62010=- ∴ 5=x 经检验5=x 是方程的根.答:甲每小时做5件,乙每小时做3件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程应用题行程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度*时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
1、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度5、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的 1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
6、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的 1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?7、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的 1.5倍,才能按要求提前2小时到达,求急行军的速度8、八年级(1)班学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车的1。
5倍,求慢车的速度9、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度.10、甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走32小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?11、某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?12、某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.13、供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的 1.5倍,求这两种车的速度.水流问题1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度2、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
3、某人沿一条河顺流游泳l米,然后逆流游回出发点,设此人在静水中的游泳速度为xm/s,水流速度为nm/s,求他来回一趟所需的时间t。
4、小芳在一条水流速度是0.01m/s的河中游泳,她在静水中游泳的速度是0.39m/s,而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间。
5、志勇是小芳的邻居,也喜欢在该河中游泳,他记得有一次出发点与柳树间来回一趟大约用了 2.5min,假设当时水流的速度是0.015m/s,而志勇在静水中的游泳速度是0.585m/s,那么出发点与柳树间的距离大约是多少?6、甲乙两地相距360千米,新修的高叔公路开通后,在甲乙两地间行驶的长途客运车平均车速提高了50%,而从甲到乙的时间缩短了2小时,求原来的平均速度7、一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.其他问题1、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数X人,那么X 应满足怎样的方程?2、一个正多边形的每个内角都是172度,求它的边数N应满足的分式方程。
3、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率乙厂高5%,求甲厂的合格率?4、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?5、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
6、某甲有25元,这些钱是甲、乙两人总数的20%。
乙有多少钱?7、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?8、一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.9、大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的211倍,求单独浇这块地各需多少时间?工程问题:这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率*工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
1、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x 小时可以完成后一半任务,那么x 应满足的方程是什么?2、某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,1小时完成了后一半,如果设单独采用机械装运X 小时可以完成后一半任务,那么应满足的方程是什么?3、某车间加工1200个零件,采用新工艺,工效是原来的 1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?4、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
5、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?6、A 做90个零件所需要的时间和B 做120个零件所用的时间相同,又知每小时A 、B 两人共做35个机器零件。
求A 、B 每小时各做多少个零件。
7、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?8、有三堆数量相同的煤,用小卡车独运一堆的天数是大卡车独运一堆天数的一半的3倍.第三堆大小卡车同时运6天,运了这堆煤的一半,求大小卡车单独运一堆煤各要多少天?9、有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?10、某水泵厂在一定天数内生产4000台水泵,工人为支援建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?11、现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
求原来每天装配的机器数.12、某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打13、打字员甲的工作效率比乙高%多少字?耕地问题1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。
2、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。
3、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
4、退耕还林还草是我国西部地区实施的一项重要生态工程,某地规划退耕面积69000公顷,退耕还林与退耕还草的面积比是5:3,设退耕还林的面积是X公顷,那么应满足的分式方程是什么?盈利问题1、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人(3)这个八年级的学生总数在什么范围内?(4)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?3、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?4、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。
5、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
6、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,7、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。