浅析图像压缩编码方法
图像编码与压缩的关系解析(二)
图像编码与压缩的关系解析引言:随着科技的不断发展,图像在日常生活中的应用越来越普遍。
然而,高清图片通常占用较大的存储空间,不利于传输和存储。
为了解决这个问题,图像编码与压缩技术应运而生。
本文将从理论、算法和应用三个方面,探讨图像编码与压缩之间的关系。
一、图像编码的原理与方法1. 图像编码的基本原理图像编码是将图像通过某种数学模型进行数值表示,从而实现对图片信息的压缩。
这一过程主要包括采样、量化和编码三个步骤。
采样将连续的图像转换为离散的信号,量化将连续的信号转换为离散的数值,而编码则是利用特定的编码方式将数值进行压缩存储。
2. 图像编码的方法常用的图像编码方法包括无损编码和有损编码。
无损编码保持图像质量不变,包括RLE(Run Length Encoding)、Huffman编码和LZW (Lempel-Ziv-Welch)编码等。
而有损编码则通过牺牲一定的细节和精度来实现更高的压缩率,代表性的有损编码方式有JPEG、以及WebP 等。
二、图像压缩的原理与方法1. 图像压缩的基本原理图像压缩是对图像数据进行有损或无损的压缩,以减小图像数据的体积。
图像压缩技术主要包括空域压缩和变换域压缩两种方法。
空域压缩利用空间冗余性进行数据压缩,该方法通常使用预测编码或差分编码等技术。
变换域压缩则通过将图像转换到频域进行压缩,常用的方式有离散余弦变换(DCT)。
2. 图像压缩的方法图像压缩方法可以分为无损压缩和有损压缩两类。
无损压缩通过减小冗余和利用编码等技术实现图像数据的压缩,以保持图像质量不变。
有损压缩则根据人眼对图像细节的敏感度,通过舍弃部分细节信息来实现更高的压缩率。
常见的图像压缩算法有LZ77、LZ78、DEFLATE 以及JPEG、HEVC等。
三、图像编码与压缩的关系1. 编码与压缩的异同编码和压缩都是对图像数据进行处理以实现压缩效果,但两者有不同的侧重点。
编码主要集中在信号表示的优化,通过数值表达来压缩图像数据及降低存储和传输成本;而压缩则更注重图像数据的压缩率,旨在减小数据量的同时保持较高的图像质量。
图像编码中的数据压缩技术介绍(九)
图像编码是将图像数据转化为一系列数字信号的过程,其目的是通过减少冗余信息,将图像数据压缩存储,以便更有效地传输和处理图像。
在数字图像处理和计算机视觉的广泛应用中,图像编码技术起到了重要的作用。
本文将介绍几种常用的图像编码中的数据压缩技术。
一、无损压缩技术无损压缩技术是指在压缩过程中不损失图像质量的一种方法。
其中最常用的一种是无损预测编码技术。
该技术基于预测和差分编码的思想,将图像中每个像素的值与其周围像素值进行比较,并将差异值编码。
无损预测编码技术可以通过建立预测模型来推断像素值,从而减少编码量。
另一种常见的无损压缩技术是熵编码。
熵编码根据像素值的频率分布,将出现概率较高的像素值用较短的码字表示,而将出现概率较低的像素值用较长的码字表示。
熵编码技术可以充分利用图像中的统计特征,提高编码效率。
二、有损压缩技术有损压缩技术是指在压缩过程中会有部分信息的损失,但通过合理的算法设计,根据人类视觉系统的特性,使得图像的失真不太显著,以达到高压缩比的目的。
其中最常见的有损压缩技术是离散余弦变换(DCT)和小波变换。
离散余弦变换(DCT)将图像划分为小的块,对每个块进行DCT变换得到频域系数。
通过对频域系数进行量化和编码,可以将系数的精度降低,从而减少了数据量。
DCT技术广泛应用于JPEG图像压缩标准中。
小波变换将信号分解为时间和频率域,可以捕捉到信号的时频特征。
图像通过小波变换后,得到的系数可以在频域上局部集中,通过将低系数置零并压缩高系数,可以实现图像的高效压缩。
小波变换技术在图像压缩领域有着广泛的应用,特别是在JPEG2000标准中。
除了DCT和小波变换,还有一种常见的有损压缩技术是基于向量量化的编码方法。
向量量化通过将图像划分为矢量,并将每个矢量映射到一个预定的码本中,从而实现压缩。
向量量化技术在图像编码中具有较好的压缩效果和较低的失真。
当前,图像编码技术在数字图像处理和计算机视觉领域得到了广泛的应用。
图像压缩编码方法
图像压缩编码方法图像压缩编码是一种通过减少图像数据的表示量来降低存储和传输成本的技术。
图像压缩编码方法包括有损压缩和无损压缩两种。
有损压缩是指在压缩过程中会丢失一定的图像信息,但通常可以接受的程度在人眼感知上是不可察觉的。
有损压缩编码方法主要通过利用图像中的冗余信息和人眼视觉系统的特性来实现图像的压缩,主要有几种方法:1. 颜色空间转换:将RBG图像转换为YUV或者将CMYK图像转换为RGB,通过减少颜色通道的数量来降低数据量。
2. 离散余弦变换(Discrete Cosine Transform,DCT):DCT是一种将原始图像通过变换后得到一系列频率系数的方法,低频系数所表示的信息对于人眼来说更加重要,而高频系数相对不重要,因此可以对高频系数进行压缩或丢弃。
3. 量化(Quantization):通过对DCT系数进行适当的量化,将系数的数值范围映射到较小的范围内,进一步减小数据量。
量化的精度越高,则数据量越小,但图像质量也会受到影响。
4. 预测编码(Predictive Coding):利用图像中像素之间的相关性,通过对当前像素值的预测来减少需要传输的数据。
常用的预测编码方法有差值编码(Differential Encoding)和运动补偿(Motion Compensation)。
5. 生成码字(Codebook):通过统计图像中各个像素值的频次来生成一个码本,将高频次出现的像素值用较短的码字表示,以减小数据量。
有损压缩编码方法的主要优点是压缩率高,但缺点是压缩后图像质量有损失。
适用于图像中存在较多冗余信息或对图像质量要求不高的场景,如网络传输、存储等。
无损压缩编码是指在压缩过程中不丢失任何图像信息,通过利用图像内部的冗余性来减小数据量。
常用的无损压缩编码方法有:1. 霍夫曼编码(Huffman Coding):将出现频率较高的像素值用较短的编码表示,出现频率较低的像素值用较长的编码表示,以减小数据量。
图像编码中的数据压缩技术介绍(三)
图像编码中的数据压缩技术介绍一、背景在数字时代,图像已经成为人们日常生活中不可或缺的一部分。
然而,随着图像数据的增多,存储和传输的需求也越来越大。
为了有效地处理这些图像数据,数据压缩技术应运而生。
二、数据压缩技术的意义数据压缩技术是将一幅图像中的冗余信息去除或者用更少的信息表示同样的内容,从而减小图像数据的存储和传输量。
通过数据压缩技术,不仅可以节省存储空间,还可以提高图像传输速度,降低传输带宽要求。
三、数据压缩的基本原理数据压缩大致可以分为有损压缩和无损压缩两种方法。
1. 无损压缩无损压缩技术是一种将图像数据压缩成更小的规模,但同时保持图像质量不受损的方法。
在无损压缩中,重要的是尽量减小图像数据的冗余度,以减少存储或传输所需的比特数。
最常用的无损压缩方法包括行程编码、霍夫曼编码和算术编码等。
2. 有损压缩有损压缩技术是一种在压缩图像数据时允许一定程度的图像质量损失的方法。
有损压缩方法通过削减图像数据中的冗余信息和不可见的细节来减小文件的大小。
最常用的有损压缩方法包括离散余弦变换和小波变换等。
四、经典的数据压缩算法1. JPEG压缩JPEG压缩是一种广泛应用于数字图像压缩的有损压缩算法。
它主要基于离散余弦变换(DCT)和量化的思想,通过对图像的频域表示进行量化和熵编码,实现对图像数据的压缩。
2. PNG压缩PNG压缩是一种广泛应用于无损图像压缩的算法。
它采用差分编码和行程编码的组合,通过对图像中连续相同像素值的区域进行编码和压缩,实现对图像数据的无损压缩。
五、新兴的数据压缩技术随着科技的发展,新兴的数据压缩技术也不断涌现。
1. 基于深度学习的数据压缩基于深度学习的数据压缩技术利用神经网络模型,通过学习图像数据的特征和规律,实现对图像数据的高效压缩和恢复。
这种方法具有较高的压缩率和较好的图像质量。
2. 全局优化的数据压缩全局优化的数据压缩技术是一种基于整个图像的全局信息进行编码和压缩的方法。
它能够更充分地利用图像中的冗余信息,并在压缩过程中保持图像的可视质量。
图像压缩编码方法
图像压缩编码方法综述概述:近年来, 随着数字化信息时代的到来和多媒体计算机技术的发展, 使得人们所面对的各种数据量剧增, 数据压缩技术的研究受到人们越来越多的重视。
图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于图像的存储和传输。
即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。
图像压缩编码原理:图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。
图像数据的冗余度又可以分为空间冗余、时间冗余、结构冗余、知识冗余和视觉冗余几个方面。
空间冗余:在一幅图像中规则的物体和规则的背景具有很强的相关性。
时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。
结构冗余和知识冗余:图像从大面积上看常存在有纹理结构,称之为结构冗余。
视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像的变化并不都能察觉出来。
人眼的视觉特性:亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。
人眼刚刚能察觉的亮度变化值称为亮度辨别阈值。
视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就察觉不出来,高于它才看得出来,这是一个统计值。
空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。
掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像信号变化的剧烈程度有关。
图像压缩编码的分类:根据编码过程中是否存在信息损耗可将图像编码分为:无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真;有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。
图像压缩编码方法
图像压缩编码方法
图像压缩编码方法是通过减少图像数据的冗余部分来减小图像文件的大小,以便于存储和传输。
以下是常见的图像压缩编码方法:
1. 无损压缩:无损压缩方法可以压缩图像文件的大小,但不会丢失任何图像数据。
常见的无损压缩编码方法包括:
- Huffman编码:基于字符出现频率进行编码,将频率较低的字符用较长的编码表示,频率较高的字符用较短的编码表示。
- 预测编码:根据图像像素间的相关性进行编码,利用当前像素与附近像素的差异来表示像素值。
- 霍夫曼编码:利用霍夫曼树来对图像数据进行编码,降低数据的冗余度。
- 算术编码:根据符号的出现概率,将整个编码空间划分为不同部分,每个符号对应于不同的编码区域。
2. 有损压缩:有损压缩方法可以在压缩图像大小的同时,对图像数据进行一定的丢失,但尽量使丢失的数据对人眼不可见。
常见的有损压缩编码方法包括:
- JPEG压缩:基于离散余弦变换(DCT)的方法,将图像数据转换为频域表示,
然后根据不同频率成分的重要性进行量化和编码。
- 基于小波变换的压缩:将图像数据转换为频域表示,利用小波基函数将图像分解为低频和高频子带,然后对高频子带进行量化和编码。
- 层次编码:将原始图像数据分为不同的预测层次,然后对不同层次的误差进行编码,从而实现压缩。
需要注意的是,不同的压缩编码方法适用于不同类型的图像数据和压缩要求。
有些方法适用于需要高压缩比的情况,但会引入更多的失真,而有些方法适用于需要保留图像质量的情况,但压缩比较低。
因此,在选择图像压缩编码方法时,需要根据具体要求和应用场景进行权衡和选择。
图像压缩和编码中的数学算法和原理解析
图像压缩和编码中的数学算法和原理解析在当今数字化时代,图像的处理和传输已经成为了人们日常生活中不可或缺的一部分。
然而,由于图像数据庞大且占用存储和传输资源,图像压缩和编码技术应运而生。
本文将探讨图像压缩和编码中的数学算法和原理,为读者带来更深入的理解。
一、图像压缩的基本原理图像压缩是指通过减少图像数据的冗余信息来减小图像文件的大小,以达到节省存储空间和提高传输效率的目的。
图像压缩的基本原理可以归结为两个方面:冗余性和编码。
冗余性是指图像中存在的不必要的冗余信息。
在图像中,存在着空间冗余、视觉冗余和统计冗余。
空间冗余是指图像中相邻像素之间的相关性,即相邻像素之间的值往往是相似的;视觉冗余是指人眼对于某些细节的感知能力有限,可以通过适当的处理来减少图像中的冗余信息;统计冗余是指图像中像素值的统计规律,往往存在一些重复出现的像素值。
编码是指将图像数据用更少的比特数表示的过程。
编码技术可以分为无损编码和有损编码两种。
无损编码是指在压缩图像的同时保证图像数据的完整性,即压缩后的图像可以完全恢复为原始图像;有损编码是指在压缩图像的同时,对图像数据进行一定的舍弃或近似处理,以达到更高的压缩比。
二、图像压缩的数学算法1. 离散余弦变换(DCT)离散余弦变换是一种常用的图像压缩算法,它将图像从空域转换到频域。
在频域中,图像的能量会集中在较低频率的系数上,而高频系数则往往包含了图像的细节信息。
通过保留较低频率的系数,可以实现对图像的有损压缩。
2. 小波变换(Wavelet Transform)小波变换是一种多尺度分析的方法,可以将图像分解为不同频率的子带。
与DCT相比,小波变换能够更好地捕捉图像的局部特征,因此在图像压缩中具有更好的效果。
3. 向量量化(Vector Quantization)向量量化是一种有损压缩算法,它将一组相似的像素值用一个代表向量来表示。
通过将相邻像素值聚类并用代表向量表示,可以大大减少图像数据的冗余信息,从而实现高效的压缩。
图像压缩编码方法综述
图像压缩编码方法综述【摘要】:图像压缩编码在图像处理中起着至关重要的作用,文章论述了图像压缩的必要性和可行性,介绍了几种常用的几种常用经典图像压缩方法和现代压缩的算法及应用情况。
【关键词】:图像压缩;经典压缩方法;现代压缩算法1. 图像压缩的必要性和可行性随着多媒体应用的普及和数字视频技术的发展, 以及网络上图像传输的增多, 对图像的处理变得越来越重要。
图像的数字化是必然的趋势, 但是经过数字化的图像所占的数据量相当庞大, 而信道带宽和存储空间的限制又给实际应用带来了很大的困难, 所以图像压缩已成为现代信息社会急待解决的问题。
虽然数字图像的数据量极为庞大,但这些数据之间往往是高度相关的。
换言之,其中存在着大量的冗余,数字图像压缩技术就是通过有效地消除图像的各种冗余,达到用尽可能少的数据表示和重建原始图像的目的。
一个常用的图像压缩系统模型如下:2. 图像压缩编码的分类2.1 传统图像压缩编码方法2.1.1 熵编码熵编码是纯粹基于信号统计特性的编码技术。
它是一种无损编码,解码后能无失真地恢复原图像。
其基本原理是给出出现概率大的符号一个短码字,而给出出现概率小的符号一个长码字,从而使得平均码长最短。
①霍夫曼编码霍夫曼编码〔Huffman encoding)是常用的压缩方法之一,它是通过用更有效的代码代替数据来实现的。
霍夫曼编码最初是为了对文本文件进行压缩而建立的,迄今已经有很多变体。
它的基本思路是出现频率越高的值,其对应的编码长度越短,反之出现频率越低的值,其对应的编码长度越长。
霍夫曼编码很少能达到8: 1的压缩比,此外它还有以下两个不足:其一它必须精确地统计出原始文件中每个值的出现频率,如果没有这个精确统计,压缩的效果就会大打折扣,甚至根本达不到压缩的效果。
其二它对于位的增删比较敏感。
由于霍夫曼编码的所有位都是合在一起的而不考虑字节分位,因此增加一位或者减少一位都会使译码结果面目全非。
②算术编码算术编码最早由Shannon提出,其核心思想是累积概率。
图像编码中的数据压缩技术介绍(一)
图像编码是指将数字图像转换为可传输或存储的比特流的过程。
数据压缩技术在图像编码中起着重要的作用,它可以减少图像的大小并降低传输或存储所需的空间。
本文将介绍一些常见的图像编码中的数据压缩技术。
一、无损压缩技术无损压缩技术是指在压缩图像的同时,保证恢复出的图像与原始图像完全一致。
其中,最常见的无损压缩技术是无损预测编码。
该技术利用了图像中像素之间的相关性,通过预测像素的值并编码预测误差的方式进行压缩。
无损预测编码包括差分脉冲编码调制(DPCM)和可变长度编码(VLC)等方法。
另外,无损压缩技术还包括比特平面编码。
该技术将原始图像分解为多个比特平面,并对每个平面进行编码。
这样可以根据图像内容的重要性有选择地进行编码,从而提高压缩的效果。
二、有损压缩技术有损压缩技术是指在压缩图像的同时,对图像进行一定程度的信息损失。
常见的有损压缩技术有离散余弦变换(DCT)和小波变换。
离散余弦变换将图像分解为一系列频域成分,通过对这些频域成分进行量化和编码来实现压缩。
由于人眼对高频细节的感知比较差,因此可以对高频部分进行较强的量化,从而实现更高的压缩比。
小波变换是近年来兴起的一种图像压缩技术。
它将图像分解为一系列不同尺度和方向的小波系数,并对这些系数进行量化和编码。
小波变换能够更好地提取图像的局部特征,从而实现更好的压缩效果。
三、熵编码在图像编码中,熵编码是一种常用的编码方法,它通过将出现概率较高的符号用较少的比特表示,从而实现数据的进一步压缩。
常见的熵编码算法有霍夫曼编码和算术编码。
霍夫曼编码是一种用于可变长度编码的熵编码方法。
它根据符号出现的概率构建一棵霍夫曼树,然后按照霍夫曼树的路径进行编码。
出现概率较高的符号使用较短的编码,而出现概率较低的符号使用较长的编码。
算术编码是一种更高效的熵编码方法。
它将整个消息看作一个区间,并通过不断缩小区间的方式进行编码。
算术编码能够实现非常高的压缩比,但由于算法的复杂性较高,实际应用中较少使用。
计算机视觉中的图像压缩与编码技术
计算机视觉中的图像压缩与编码技术随着计算机技术和网络通信的迅速发展,图像的使用量也急剧增加。
然而,高分辨率的图像往往占用较大的存储空间和传输带宽,对于存储和传输效率的要求也越来越高。
因此,图像压缩与编码技术成为了计算机视觉领域中的重要研究内容。
本文将介绍计算机视觉中常用的图像压缩与编码技术。
图像压缩与编码技术通过对图像的冗余信息进行削减,从而减小图像的体积,提高存储和传输效率。
常用的图像压缩与编码技术主要包括无损压缩和有损压缩。
无损压缩技术是指在压缩图像的同时不损失任何信息的技术。
这种压缩技术对于那些要求完全保留原始图像信息的应用场景非常重要。
常见的无损压缩技术主要有RLE(Run-Length Encoding)编码、LZW(Lempel-Ziv-Welch)编码和哈夫曼编码。
RLE编码是一种基于图像连续像素冗余特性的编码技术。
它通过统计图像中连续相同像素值的个数,并用一个计数符号和一个像素值符号来代替连续的相同像素值。
这种编码技术适合于连续像素值重复较多的图像。
LZW编码算法是一种基于前缀编码的无损压缩算法。
它通过构建字典来动态地更新编码映射表,将频繁出现的像素序列用更短的编码来表示,从而实现对图像的无损压缩。
LZW编码广泛应用于GIF图像格式。
哈夫曼编码是一种通过构建最优二叉树来实现对图像信息压缩的技术。
它通过将出现频率最高的像素值用较短的编码表示,出现频率较低的像素值用较长的编码表示,从而实现不同像素值对应编码长度的优化。
哈夫曼编码被广泛应用于JPEG 和PNG图像格式。
相对于无损压缩技术,有损压缩技术可以进一步减小图像的体积。
它通过牺牲一定的图像信息来获得更高的压缩比。
常见的有损压缩技术主要有基于变换的压缩技术和基于预测的压缩技术。
基于变换的压缩技术主要采用离散余弦变换(DCT)来将图像从空域转换到频域。
DCT将图像分解成一系列的频率分量,再根据频率分量的重要性对其进行量化和编码。
JPEG图像格式就是采用DCT进行压缩的典型例子。
图像编码中的数据压缩技术介绍(五)
图像编码中的数据压缩技术介绍图像编码是将图像数据转换为二进制编码的过程,以便在存储和传输中占用更少的空间和带宽。
数据压缩是图像编码中的关键技术,能够有效地减小图像文件的大小,并保持图像质量。
本文将介绍一些常用的图像编码中的数据压缩技术。
一、无损压缩技术无损压缩技术是指在压缩图像文件的同时,不会损失任何图像质量。
这种技术通常用于需要保留高质量图像的场景,如医学图像和卫星图像。
1. 预测编码预测编码是通过利用像素间的空间相关性来压缩图像数据。
在预测编码中,当前像素的值可以由它周围的像素预测出来。
这样,只需存储预测误差值即可,从而减小了数据的存储量。
2. 游程编码游程编码是一种压缩算法,它利用图像中相邻像素重复的性质来减小数据存储量。
游程编码将连续重复的像素值替换为一个像素值及其重复次数的表示,从而达到数据压缩的效果。
3. 哈夫曼编码哈夫曼编码是一种用于数据压缩的无损编码方法。
它通过将出现频率较高的像素值用较短的二进制码表示,而将出现频率较低的像素值用较长的二进制码表示,从而减小了数据的存储量。
二、有损压缩技术有损压缩技术是指在压缩图像文件的同时,会有一定程度的图像质量损失。
这种技术通常用于不要求高质量图像的场景,如互联网上的图像传输和存储。
1. 离散余弦变换(DCT)离散余弦变换是一种将图像从空间域转换到频域的技术。
在DCT 中,图像被分成小块,并对每个小块应用离散余弦变换。
这样,图像中的高频分量可以被移除或减小,从而减小了数据的存储量。
2. 小波变换小波变换是一种将图像从空间域转换到频域的技术,类似于DCT。
小波变换的特点是可以更好地处理图像中的局部变化和边缘信息,从而在压缩图像数据时产生更好的结果。
3. 量化量化是一种用于有损压缩的技术,它通过减少图像中的颜色深度或亮度级别来减小数据存储量。
量化的程度越高,图像的质量损失就越大,但数据的存储量也会越小。
总结:图像编码中的数据压缩技术是实现高效图像存储和传输的关键。
图像处理中的图像压缩与编码算法研究
图像处理中的图像压缩与编码算法研究摘要:图像处理技术在现代社会中得到了广泛的应用,图像的压缩和编码是图像处理的一个重要环节。
本文对图像压缩与编码的基本概念进行了介绍,并对目前常用的图像压缩与编码算法进行了研究与分析,包括无损压缩算法和有损压缩算法。
通过对不同算法的比较,总结出适用于不同应用场景的图像压缩与编码算法的特点与优势。
关键词:图像处理、图像压缩、图像编码、无损压缩、有损压缩一、介绍图像处理是指对图像进行一系列的数字化操作,以改善图像的质量或实现特定目标。
而图像的压缩和编码则是图像处理中的一个重要环节,通过减少图像占用的存储空间或传输带宽,提高图像的存储与传输效率。
二、图像压缩的基本概念图像压缩是指通过特定的算法和方法,将原始图像的数据量减少,从而减小图像占用的存储空间或传输带宽。
图像压缩可以分为无损压缩和有损压缩两种方法。
1. 无损压缩无损压缩是指在压缩图像的过程中,不丢失原始图像的任何信息。
常用的无损压缩算法有LZW算法、RLE算法和Huffman编码等。
2. 有损压缩有损压缩是指在压缩图像的过程中,为了减小数据量,会舍弃部分图像信息。
有损压缩可以进一步分为可见压缩和不可见压缩。
三、常用的图像压缩与编码算法1. LZW算法LZW(Lempel-Ziv-Welch)算法是一种无损压缩算法,常用于图像、文件和音频等数据的压缩。
该算法利用词典的方式来记录已出现过的字符序列,在压缩阶段,将新的字符序列添加到词典中,并输出其索引值作为压缩后的数据。
2. RLE算法RLE(Run Length Encoding)算法是一种简单的无损压缩算法,适用于一些有连续相同像素点的图像。
该算法将连续的相同像素的个数和像素值合并成一个元素,从而减少了存储或传输的数据量。
3. Huffman编码Huffman编码是一种无损压缩算法,通过根据字符出现的频率来赋予其不同的编码长度,进而减少数据的存储空间。
该算法通过构建Huffman树和进行前缀编码来实现对字符的压缩。
图像处理中的图像压缩与编码算法
图像处理中的图像压缩与编码算法图像处理是计算机科学与技术领域中的一个重要研究方向,而图像压缩与编码算法则是图像处理中的一个关键问题。
随着科技的不断发展,图像的获取和传输已经成为我们日常生活中不可或缺的一部分。
然而,图像数据的大量存储和传输给计算机系统带来了很大的挑战,因此图像压缩与编码算法应运而生。
图像压缩与编码算法的目标是通过减少图像数据的冗余信息,从而实现图像的压缩和传输。
一种常用的图像压缩方法是基于离散余弦变换(DCT)的压缩算法。
该算法将图像分解为一系列频率分量,然后对这些分量进行量化和编码。
在这个过程中,高频分量被量化为较低的精度,从而减少了图像数据的存储空间。
除了DCT压缩算法外,还有一种常用的图像压缩方法是基于小波变换的压缩算法。
小波变换将图像分解为不同尺度和方向的子图像,然后对这些子图像进行编码。
与DCT压缩算法相比,小波变换能够更好地保留图像的细节信息,因此在某些应用场景下具有更好的效果。
除了压缩算法,图像编码算法也是图像处理中的一个重要问题。
图像编码算法的目标是将压缩后的图像数据转换为可传输的比特流。
一种常用的图像编码算法是基于哈夫曼编码的算法。
该算法通过构建一棵哈夫曼树来实现对不同频率的像素值进行编码。
由于哈夫曼编码可以根据像素值出现的概率分布来进行编码,因此可以实现更高效的压缩。
除了DCT压缩算法和哈夫曼编码算法外,还有一些其他的图像压缩与编码算法。
例如,基于向量量化的压缩算法将图像数据划分为不同的向量,并将这些向量进行编码。
这种算法可以在一定程度上提高图像的压缩比。
此外,还有一些基于预测的压缩算法,通过对图像数据的空间和时间相关性进行建模来实现图像的压缩和编码。
总的来说,图像压缩与编码算法在图像处理中起着至关重要的作用。
通过减少图像数据的冗余信息,这些算法可以实现图像的高效压缩和传输。
在实际应用中,我们需要根据具体的需求选择合适的压缩和编码算法。
未来,随着科技的不断进步,图像压缩与编码算法将继续发展,并在各个领域中发挥更大的作用。
图像处理中的图像压缩与编码算法研究
图像处理中的图像压缩与编码算法研究图像处理技术是计算机科学和工程学中一个重要的研究方向。
其中,图像压缩与编码是图像处理领域的一个重要分支,旨在将图像数据经过压缩处理后,得到具有较小存储空间的图像数据,并且保持尽可能多的图像信息。
本文将从图像压缩和编码算法的基本原理、常见的压缩算法和编码算法和研究进展三个方面来进行论述。
1. 图像压缩的基本原理图像压缩的基本原理是通过对图像进行分析和转换,减少图像数据的冗余性,达到减小数据量的目的。
图像压缩主要分为有损压缩和无损压缩两种方式。
无损压缩是通过去除图像中的冗余信息来减小数据量,但是保持原有图像的完整性,不会对图像质量造成明显损失。
无损压缩的常见算法有Huffman编码、LZW编码等。
这些算法通过统计图像中像素值、颜色分布以及像素值的空间相关性等信息,生成对应的编码表,将图像数据进行重新编码,从而减少图像数据的冗余性。
有损压缩则在无损压缩的基础上,进一步去除图像中的冗余信息,并且对图像数据进行一定的量化处理,从而达到更高的压缩比。
这种方法会对图像质量产生一定的影响。
有损压缩的常见算法有JPEG、JPEG2000等。
这些算法主要通过离散余弦变换(DCT)和量化等技术,将图像数据转换为频域的数据,并按照一定的量化表将高频部分进行抽样和舍弃,从而减小数据量。
2. 常见的压缩算法(1)Huffman编码:Huffman编码是一种无损压缩算法,通过统计图像中不同像素值的出现频率,生成唯一对应的编码表。
频率较高的像素值使用较短的编码,频率较低的像素值使用较长的编码,这样可以达到减少数据量的目的。
(2)JPEG压缩:JPEG压缩是一种有损压缩算法,广泛应用于图像压缩领域。
JPEG压缩主要通过将图像数据进行二维DCT变换和量化处理,将高频部分进行抽样和舍弃,从而减小数据量。
同时,JPEG还支持调整压缩比,可以在保证图像质量的前提下适当减小数据量。
(3)JPEG2000压缩:JPEG2000是JPEG的升级版压缩算法,它采用基于小波变换的压缩方法,在保持较好图像质量的同时,进一步提高了压缩比。
图像压缩的几种常见算法介绍
图像压缩的几种常见算法介绍1哈夫曼编码2预测编码3 LZW编码4算术编码5 变换编码1哈夫曼编码哈夫曼编码(Huffman Coding)是一种编码方式,哈夫曼编码是可变字长编码(Variable-Length Coding, VLC)的一种。
Huffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫作Huffman编码。
以哈夫曼树即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。
在计算机信息处理中,“哈夫曼编码”是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩。
这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。
这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。
这种方法是由David. A. Huffman发展起来的。
例如,在英文中,字母e的出现概率很高,而z的出现概率最低。
当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用1比特(bit)来表示,而z则可能花去25比特(不是26)。
用普通的表示方法时,每个英文字母均占用一个字节(byte),即8位。
二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。
倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。
哈夫曼压缩是无损的压缩算法,一般用来压缩文本和程序文件。
哈夫曼压缩属于可变代码长度算法族。
意思是个体符号(例如,文本文件中的字符)用一个特定长度的位序列替代。
因此,在文件中出现频率高的符号,使用短的位序列,而那些很少出现的符号,则用较长的位序列。
图1 霍夫曼信源化简图2 霍夫曼编码分配过程2预测编码预测编码是根据离散信号之间存在着一定关联性的特点,利用前面一个或多个信号预测下一个信号,然后对实际值和预测值的差(预测误差)进行编码。
浅谈图像压缩编码方式
浅谈图像压缩编码方式随着多媒体技术的迅速发展,数字图像压缩编码技术也受到了越来越多的关注,其在现代多媒体通信中的核心地位日渐突出。
本文主要阐述两种图像编码方式:JPEG方式和MPEG方式。
标签:图像压缩编码JPEG MPEG由于数字图像信息包含二维或三维空间上的扩展信息或时间变化的信息,所以其数据量是非常庞大的。
而在现实中能利用的信道和存储媒体中,受其通信和存储的容量或速度制约,是无法自由地传送和存储庞大的数字图像。
因此,需要在保持原图像中包含的本质信息的基础上,对通信和存储时必需的数据进行压缩。
图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。
利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。
本文对当前多媒体中应用最为广泛的图像压缩编码方式:JPEG、MPEG进行阐述。
一、JPEG——静态图像压缩编码方式对灰度或彩色静止图像的压缩编码方式就是JPEG标准。
JPEG系统可分为基本系统和扩充系统两种:基本系统由基于DCT(离散余弦变换)和Huffman编码组成,所有符合JPEG标准的设备必须符合基本系统;扩充系统提供不同的选择,除基本系统之外,还提供其他编码方式,如,渐进型编码、算术码、无失真编码、分层编码等。
基于DCT(离散余弦变换)的有损压缩算法,一般情况下能把数据量压缩到1/10~1/20的程度而重建的图像质量达到人眼难以观察出来的要求,因此这种算法得到了广泛的应用。
基于DCT的JPEG方式的基本结构如图1所示。
其基本原理是在Y(亮度信号),Gr(色差信号),Cb(各种图像)时,利用人眼视觉特性,把Gr、Cb变成Y的1/2×1/2的分辨率后进行编码。
编码时首先将输入图像分割成8×8相素的矩形块,并以块为单位计算DCT。
对DCT变换后的数据,分别进行符合直流、交流成分性质的量化,量化时的步幅,与各系数对应地以量化表的形式给出。
图像压缩编码的方法概述
图像压缩编码的方法概述摘要:在图像压缩的领域,存在各种各样的压缩方法。
不同的压缩编码方法在压缩比、压缩速度等方面各不相同。
本文从压缩方法分类、压缩原理等方面分析了人工神经网络压缩、正交变换等压缩编码方法的实现与效果。
关键词:图像压缩;编码;方法图像压缩编码一般可以大致分为三个步骤。
输入的原始图像首先需要经过映射变换,之后还需经过量化器以及熵编码器的处理最终成为码流输出。
一、图像压缩方法的分类1.按照原始信息和压缩解码后的信息的相近程度分为以下两类:(1)无失真编码又称无损编码。
它要求经过编解码处理后恢复出的图像和原图完全一样,编码过程不丢失任何信息。
如果对已量化的信号进行编码,必须注意到量化所产生的失真是不可逆的。
所以我们这里所说的无失真是对已量化的信号而言的。
特点在于信息无失真,但压缩比有限。
(2)限失真编码中会损失部分信息,但此种方法以忽略人的视觉不敏感的次要信息的方法来得到高的压缩比。
图像的失真怎么度量,至今没有一个很好的评判标准。
在由人眼主观判读的情况下,唯有人眼是对图像质量的最有利评判者。
但是人眼视觉机理到现在为止仍为被完全掌握,所以我们很难得到一个和主观评价十分相符的客观标准。
目前用的最多的仍是均方误差。
这个失真度量标准并不好,之所以广泛应用,是因为方便。
2.按照图像压缩的方法原理可分为以下三类:(1)在图像编码过程中映射变换模块所做的工作是对编码图像进行预测,之后将预测差输出供量化编码,而在接受端将量化的预测差与预测值相加以恢复原图,则这种编码方法称为预测编码。
预测编码中,我们只对新的信息进行编码。
并且是利用去除邻近像素之间的相关性和冗余性的方法来达到压缩的目的。
(2)若压缩编码中的映射变换模块用某种形式的正交变换来代替,则我们把这种方式的编码方法称为变换编码。
在变换编码中常用的变换方法有很多,我们主要用到的有离散余弦变换(DCT),离散傅立叶变换(DFT)和离散小波变换(DWT)等。
图像编码与压缩的关系解析(五)
图像编码与压缩的关系解析I. 引言图像编码与压缩是计算机图形处理领域的重要研究方向之一。
图像编码是指将图像数据转换成压缩格式的过程,而图像压缩则是通过降低图像数据的冗余性和利用人眼对图像的感知特性,减小图像数据的存储空间和传输带宽,同时尽量保持图像质量的过程。
本文将探讨图像编码与压缩之间的紧密关系。
II. 图像编码的基本原理1. 采样与量化图像编码的第一步是对原始图像进行采样,将连续的图像数据转换为离散的样本点。
常见的采样方法包括均匀采样和随机采样。
随后,对采样到的图像数据进行量化,将连续的像素值映射为离散的量化级别。
较高的量化级别能够保留较多的细节信息,但会增加编码的存储要求。
2. 编码与解码图像编码的目标是通过利用图像数据的统计特性,提取出能够表示图像内容的重要信息。
常见的编码方法包括无损编码和有损编码。
无损编码通过找到图像数据中存在的冗余性,提取冗余信息并进行适当的压缩,以实现不损失图像质量的压缩效果。
有损编码则通过舍弃一些对人眼不敏感的细节信息,以降低图像数据的存储与传输要求。
III. 图像压缩的原理与方法1. 空域压缩空域压缩方法通过对图像的像素值进行转换和编码,实现对图像数据的压缩。
其中,基于离散余弦变换的压缩方法(DCT)广泛应用于图像压缩领域。
DCT将图像数据从时域转换到频域,通过对图像频率成分进行量化和编码,实现图像的有损压缩。
此外,小波变换、小波包变换等方法也常被用于空域压缩。
2. 无损压缩无损压缩方法旨在通过数据重排、编码和预测等技术,实现对图像数据无损压缩。
代表性的无损压缩算法有无损预测编码(LPC)、无损遗传编码(LZW)和无损哈夫曼编码等。
这些方法通过寻找数据的统计特性和冗余信息,以减小数据的存储和传输负担,从而实现无损压缩。
IV. 图像编码与压缩的关系图像编码是图像压缩的基础和前提。
编码过程能够挖掘和利用图像数据中的冗余性和统计特性,从而实现对图像数据的有损或无损压缩。
图像压缩编码原理.
大部分正交变换趋向将图像的大部分 能量集中到相对少数几个系数上,由于整 个能量守恒,因此这意味着许多变换系数 只含有很少的能量。
3.去相关性(Decorrelation)
当输入的像素高度相关时,变换系数 趋向于不相关。
4.
如果把f(x,y)看作是一个具有一定熵值
的随机函数,那么变换系数F(u,v)的熵值和 原来图像信号f(x,y)的熵值相等。
3.6.1
1.
对于函数Ψ(x)∈L2(R),当且仅当其傅 立叶变换Φ(ω)满足条件
2. 3.
一个一维函数 f(x) 的连续小波变换是 一个双变量的函数,变量比f(x)多一个。若 f(x)是一个二维函数,则它的连续小波变换 是
3.6.2 基于子带编码的快速小波变换
下面介绍基于子带编码的快速小波变
2.Huffman
3.Huffman
(1)Huffman方法构造出来的码不是惟 一的,主要有两个原因:一是在两个符号
概率相加给两条支路分配“ 0 ”和“ 1 ”时,
这一选择是任意的;二是当两个消息的概 率相等时,0,1分配也是随意的。
(2)Huffman编码对不同的信源,其编
码效率是不同的。
独立的,出现的概率为p(xi),
则符号xi所携带的信息量定义为
,
I(xi)=log2(1/p(xi))
2.信息“熵”
如果将信源所有可能时间的信息量进 行平均,就得到了信源中每个符号的平均
信息量,又称为信息的熵,可表示为
3.4.2 哈夫曼(Huffman)
Huffman 编码方法就是利用了这个定理, 它是一种效率高、方法简单的编码。信源 中符号出现的率相差越大, Huffman 编 码效果越好。
图像编码中的分块压缩方法探究
图像编码是一项广泛应用于数字图像处理和传输领域的重要技术。
其中一种常见的技术是分块压缩方法,其将图像分成多个块进行编码和解码。
本文将探究图像编码中的分块压缩方法,并讨论其原理、方法以及应用领域。
分块压缩方法基于一种观察:在图像中,相邻像素之间的相关性往往较高。
因此,通过将图像分成多个块并对每个块进行独立编码,可以有效减少图像数据的冗余,从而实现高效的压缩。
这一方法被广泛应用于各种数字图像压缩标准,如JPEG、HEVC等。
为了实现分块压缩,首先需要确定块的大小和块的数量。
一般来说,块的大小越大,编码效率越高,但也会增加解码的复杂度。
而块的数量则取决于图像的大小和应用场景的要求。
通常,块的大小为8x8、16x16等,块的数量可以根据图像的尺寸自动调整。
在图像编码中,一个重要的问题是如何对图像块进行编码。
一种常见的方法是基于变换编码,其中利用数学变换技术将空间域的图像块转换为频域的系数。
具体而言,离散余弦变换(DCT)是一种常用的变换方式,它将图像块转换为频域的系数,通过保留系数的高能量部分,可以实现更高的压缩效率。
除变换编码外,还可以采用基于预测的编码方法。
预测编码是一种通过利用已有的像素值来估计当前像素值,从而减少编码所需的比特数的方法。
预测方法常用于无损压缩中,如无损JPEG2000编码。
通过对图像块进行预测并计算预测残差,可以实现更低的编码复杂度和无损的图像压缩。
此外,分块压缩方法还可以结合熵编码技术,如哈夫曼编码或算术编码,进一步提高压缩比。
熵编码技术将出现概率较大的符号编码为较短的码字,而出现概率较小的符号编码为较长的码字,从而减少编码的比特数。
这一方法在图像编码标准中被广泛应用,如JPEG、PNG 等。
最后,图像编码中的分块压缩方法在许多应用领域得到了广泛的应用。
例如,在数字摄影中,分块压缩可以实现更高的图像质量和更小的存储空间。
在视频传输中,通过将视频帧分成多个块并进行独立编码,可以减少传输带宽并实现流畅的视频传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Computer Knowledge and Technology 电脑知识与技术第6卷第23期(2010年8月)浅析图像压缩编码方法徐飞(闽西职业技术学院,福建龙岩364021)摘要:该文描述了图像压缩编码的概念,原理以及主要分类,介绍了目前常见的三种图像压缩编码方法的原理,特点以及简单讨论了其中两种方法的MATLAB 代码实现。
关键词:图像压缩编码;编码原理;编码分类;编码方法;MATLAB中图分类号:TP301文献标识码:A 文章编号:1009-3044(2010)23-6584-03Analysis of the Image Compression Coding MethodXU Fei(Minxi Vocational &Technical College,Longyan 364021,China)Abstract:This paper is mainly about the concept,principle and classification of image compression coding,introduces the concepts and characteristic of three kinds of image compression coding methods that are common used,and discusses how to using matlab to accomplish the two common methods which mentions in the front.Key words:image compression coding;coding principle;coding classification;coding method;MATLAB现代社会是信息社会,随着信息技术的发展,图像信息被广泛应用于多媒体通信、计算机系统和网络中。
因为对图像的要求越来越高,图像信息量也越来越大,所以在传输之前需要进行信息处理,必须采用合适的方法对其进行压缩,因此有必要对图像压缩编码方法进行研究。
1图像压缩编码1.1概述图像压缩编码就是在满足一定保真度和图像质量的前提下,对图像数据进行变换、编码和压缩,去除多余的数据以减少表示数字图像时需要的数据量,便于图像的存储和传输。
即以较少的数据量有损或无损地表示原来的像素矩阵的技术,也称图像编码。
1.2图像压缩编码原理图像数据的压缩机理来自两个方面:一是利用图像中存在大量冗余度可供压缩;二是利用人眼的视觉特性。
1.2.1图像数据的冗余度1)空间冗余:在一幅图像中规则的物体和规则的背景具有很强的相关性。
2)时间冗余:电视图像序列中相邻两幅图像之间有较大的相关性。
3)结构冗余和知识冗余:图像从大面积上看常存在有纹理结构,称之为结构冗余。
4)视觉冗余:人眼的视觉系统对于图像的感知是非均匀和非线性的,对图像的变化并不都能察觉出来。
1.2.2人眼的视觉特性1)亮度辨别阈值:当景物的亮度在背景亮度基础上增加很少时,人眼是辨别不出的,只有当亮度增加到某一数值时,人眼才能感觉其亮度有变化。
人眼刚刚能察觉的亮度变化值称为亮度辨别阈值。
2)视觉阈值:视觉阈值是指干扰或失真刚好可以被察觉的门限值,低于它就察觉不出来,高于它才看得出来,这是一个统计值。
3)空间分辨力:空间分辨力是指对一幅图像相邻像素的灰度和细节的分辨力,视觉对于不同图像内容的分辨力不同。
4)掩盖效应:“掩盖效应”是指人眼对图像中量化误差的敏感程度,与图像信号变化的剧烈程度有关。
1.3图像压缩编码的分类根据编码过程中是否存在信息损耗可将图像编码分为:1)无损压缩:又称为可逆编码(Reversible Coding),解压缩时可完全回复原始数据而不引起任何失真;2)有损压缩:又称不可逆压缩(Non-Reversible Coding),不能完全恢复原始数据,一定的失真换来可观的压缩比。
根据编码原理可以将图像编码分为:1)熵编码:熵编码是编码过程中按熵原理不丢失任何信息的编码。
熵编码基本原理是给出现概率大的信息符号赋予短码字,出收稿日期:2010-06-10作者简介;徐飞(1982-),男,福建龙岩人,闽西职业技术学院,助教,理学学士,主要研究方向为数字图象,软件开发,软件测试。
ISSN 1009-3044Computer Knowledge and Technology 电脑知识与技术Vol.6,No.23,August 2010,pp.6584-6586,6589E-mail:eduf@ Tel:+86-551-56909635690964第6卷第23期(2010年8月)Computer Knowledge and Technology电脑知识与技术现概率小的信息符号赋予长码字,最终使得平均码长最小。
常见熵编码方法有哈夫曼编码、算术编码和行程编码(Run Length En-coding)。
2)预测编码:预测编码是根据离散信号之间存在着一定关联性的特点,利用前面一个或多个信号预测下一个信号进行,然后对实际值和预测值的差(预测误差)进行编码。
预测编码可分为帧内预测和帧间预测,常见的预测编码有差分脉码调制(Differential Pulse Code Modulation,DPCM)和自适应差分脉冲编码(Adaptive Differential Pulse Code Modulation,ADPCM)。
3)变换编码:变换编码通常是将空域图像信号映射变换到另一个正交矢量空间(变换域或频域),产生一批变换系数,然后对这些变换系数进行编码处理。
图像信号在空域描述时,数据之间相关性大,冗余量大,经过变换到变换域中去描述,数据相关性大大减少,冗余量减少,参数独立,数据量少,这样再进行适当的量化和编码就能得到较大的压缩比。
常用的正交变换有傅立叶(Fouries)变换、正弦变换、余弦变换、哈尔(Haar)变换、沃尔什(Walsh)变换、斜(Slant)变换和K-L(Karhunen-Loeve)变换等。
4)混合编码:混合编码是指综合使用了熵编码、预测编码或变换编码的编码方法,如JPEG标准和MPEG标准。
1.4图像压缩编码方法介绍1.4.1哈夫曼编码基本思想是统计一下灰度级的出现概率,建立一个概率统计表,将最常出现(概率大的)的灰度级用最短的编码,最少出现的灰度级用最长的编码。
步骤:1)将输入灰度级按概率大小由大到小排序;2)将最小的两个概率相加得到一个新的概率集合,重复第1步,直到只有两个概率集合为止;3)反向分配码字。
特点:1)码值不唯一;2)对不同概率分布的信源,哈夫曼编码的编码效率有所差别,对于二进制编码,当信源概率为2的负幂次方时,哈夫曼编码的编码效率可达100%,其平均码字长度也很短,而当信源概率为均匀分布时,其编码效果明显降低。
3)需先计算图像数据的概率特性形成编码表后才对图像编码,因此缺乏构造性。
1.4.2预测编码基本思想是通过提取每个像素中的信息并对它们编码来消除像素间的冗余,它是根据离散信号之间存在一定关联性的特点,利用前面一个或者多个信号对下一个信号进行预测,然后对实际值和预测的差值(预测误差)进行编码。
预测编码是比较易于实现的,如差分脉冲编预测编码(Differential Pulse Code Modulation,DPCM)方法。
在这种方法中,每一个像素灰度值,用先前扫描过的像素灰度值去减,求出他们的差值,此差值称为预测误差,预测误差被量化和编码与传送。
接收端再将此差值与预测值相加,重建原始图像像素信号。
由于量化和传送的仅是误差信号,根据一般扫描图像信号在空间及时间邻域内个像素的相关性,预测误差分布更加集中,即熵值比原来图像小,可用较少的单位像素比特率进行编码,使得图像数据得以压缩。
预测编码具有高的编码压缩比,其缺点就是降低了抗误码的能力。
DPCM的MATLAB实现代码如下:i1=imread('cameraman.tif');i1=rgb2gray(i1);i1=imcrop(i1,[2020350400]);i=double(i1);[m,n]=size(i);p=zeros(m,n);图1预测编码原理框图y=zeros(m,n);y(1:m,1)=i(1:m,1);p(1:m,1)=i(1:m,1);y(1,1:n)=i(1,1:n);p(1,1:n)=i(1,1:n);y(1:m,n)=i(1:m,n);p(1:m,n)=i(1:m,n);p(m,1:n)=i(m,1:n);y(m,1:n)=i(m,1:n);for k=2:m-1;for l=2:n-1;y(k,l)=(i(k,l-1)/2+i(k-1,l)/4+i(k-1,l-1)/8+i(k-1,l+1)/8);p(k,l)=round(i(k,l)-y(k,l));endendp=round(p);subplot(3,2,1),imshow(i1);title('原灰度图像');subplot(3,2,2),imshow(y,[0256]);title('利用三个相邻块线性预测后的图像');subplot(3,2,3),imshow(abs(p),[01]);title('编码的绝对残差图像');j=zeros(m,n);j(1:m,1)=y(1:m,1);j(1,1:n)=y(1,1:n);Computer Knowledge and Technology 电脑知识与技术第6卷第23期(2010年8月)j(1:m,n)=y(1:m,n);j(m,1:n)=y(m,1:n);for k=2:m-1;for l=2:n-1;j(k,l)=p(k,l)+y(k,l);endendfor r=1:mfor t=1:nd(r,t)=round(i1(r,t)-j(r,t));endendsubplot(3,2,4),imshow(abs(p),[01]);title('解码用的残差图像');subplot(3,2,5),imshow(j,[0256]);title('使用残差和线性预测重建后的图像');subplot(3,2,6),imshow(abs(d),[01]);title('解码重建后图像的误差');1.4.3变换编码基本思想是先将空间域图像通过某种正交变换,获得一系列变换系数。
在变换过程中,使图像变换系数能量相对集中,再对其变换系数,进行区域量化,按其所含能量大小,分配以不同的数据量(比特数)去描述,如高能量区域赋予多比特,反之,则短的比特数,这样可以提高压缩比。