浙江2013年7月高等数学一试题

合集下载

2013年高考理数真题试卷(浙江卷)

2013年高考理数真题试卷(浙江卷)

第1页,总20页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2013年高考理数真题试卷(浙江卷)考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共10题)1. (2013•浙江)设集合S={x|x >﹣2},T={x|x 2+3x ﹣4≤0},则(∁R S )∁T=( ) A . (﹣2,1] B . (﹣∞,﹣4] C . (﹣∞,1] D . [1,+∞)2. (2013•浙江)已知x ,y 为正实数,则( )A . 2lgx+lgy =2lgx +2lgyB . 2lg (x+y )=2lgx •2lgyC . 2lgx•lgy =2lgx +2lgyD . 2lg (xy )=2lgx •2lgy3. (2013•浙江)在空间中,过点A 作平面π的垂线,垂足为B ,记B=f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2 , 则( ) A . 平面α与平面β垂直 B . 平面α与平面β所成的(锐)二面角为45° C . 平面α与平面β平行 D . 平面α与平面β所成的(锐)二面角为60°4. (2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则( )答案第2页,总20页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A . a=4B . a=5C . a=6D . a=75. (2013•浙江)已知 ,则tan2α=( )A .B .C .D .6. (2013•浙江)设∁ABC ,P 0是边AB 上一定点,满足,且对于边AB 上任一点P ,恒有则( )A . ∁ABC=90°B . ∁BAC=90°C . AB=ACD . AC=BC7. (2013•浙江)已知函数f (x )=Acos (ωx+φ)(A >0,ω>0,φ∁R ),则“f (x )是奇函数”是“φ= ”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件8. (2013•浙江)如图F 1、F 2是椭圆C 1: +y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )。

2013年高考理科数学浙江卷word解析版

2013年高考理科数学浙江卷word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(浙江卷)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+i B.-1+3iC.-3+3i D.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(R S)∪T=().A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg y B.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg y D.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“π2ϕ=”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若π2ϕ=,则f(x)=A cos(ωx+φ)=-A sin ωx,显然是奇函数.所以“f(x)是奇函数”是“π2ϕ=”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A .a =4B .a =5C .a =6D .a =7 答案:A解析:该程序框图的功能为计算1+112⨯+123⨯+…+11a a (+)=2-11a +的值,由已知输出的值为95,可知当a =4时2-11a +=95.故选A .6.(2013浙江,理6)已知α∈R ,sin α+2cos αtan 2α=( ). A .43 B .34 C .34- D .43- 答案:C解析:由sin α+2cos αsin α2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=10或10,当cos α=10sin α=10;当cos α时,sin α=.∴tan α=3或tan α=13-,∴tan 2α=34-.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB ·PC ≥0P B ·0P C,则( ). A .∠ABC =90° B .∠BAC =90°C .AB =ACD .AC =BC 答案:D解析:设PB =t AB(0≤t ≤1),∴PC =PB +BC =t AB +BC,∴PB ·PC =(t AB )·(t AB +BC )=t 22AB +t AB ·BC .由题意PB ·PC ≥0P B ·0P C, 即t 22AB +t AB ·BC ≥14AB 14AB BC ⎛⎫+ ⎪⎝⎭=214⎛⎫ ⎪⎝⎭2AB +14AB ·BC ,即当14t =时PB·PC 取得最小值. 由二次函数的性质可知:2142AB BC AB ⋅-=, 即:AB - ·BC=122AB , ∴AB ·12AB BC ⎛⎫+ ⎪⎝⎭=0.取AB 中点M ,则12AB +BC=MB +BC =MC ,∴AB ·MC=0,即AB ⊥MC . ∴AC =BC .故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ).A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案:C解析:当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x -1, ∵f ′(1)=e -1≠0,∴f (x )在x =1处不能取到极值;当k =2时,f (x )=(e x -1)(x -1)2,f ′(x )=(x -1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H ′(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x <1(x 0为H (x )的零点)时,f ′(x )<0,f (x )在(x 0,1)上为减函数. 当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数. ∴x =1是f (x )的极小值点,故选C .9.(2013浙江,理9)如图,F 1,F 2是椭圆C 1:24x +y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( ).A B C .32D 答案:D解析:椭圆C 1中,|AF 1|+|AF 2|=4,|F 1F 2|=又因为四边形AF 1BF 2为矩形, 所以∠F 1AF 2=90°.所以|AF 1|2+|AF |2=|F 1F 2|2,所以|AF 1|=2|AF 2|=2所以在双曲线C 2中,2c =2a =|AF 2|-|AF 1|=2e ==,故选D . 10.(2013浙江,理10)在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( ).A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60° 答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式5的展开式中常数项为A ,则A =__________. 答案:-10解析:T r +1=553255C C (1)rr rr r r r x x ---⎛⋅=⋅-⋅ ⎝=515523655(1)C (1)C r rr rrrr xx----=-.令15-5r =0,得r =3, 所以A =(-1)335C =25C -=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.11111111A EC ABC A B C ABC E A B C V V V ---=-=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z =kx +y ,其中实数x ,y 满足20,240,240.x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩若z 的最大值为12,则实数k =__________.答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A (0,2)或C (4,4)处取得. 若在A (0,2)处取得不符合题意;若在C (4,4)处取得,则4k +4=12,解得k =2,此时符合题意.14.(2013浙江,理14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有__________种(用数字作答).答案:480解析:如图六个位置.若C 放在第一个位置,则满足条件的排法共有55A 种情况;若C 放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A ,B ,再在余下的3个位置排D ,E ,F ,共24A ·33A 种排法;若C 放在第3个位置,则可在1,2两个位置排A ,B ,其余位置排D ,E ,F ,则共有22A ·33A 种排法或在4,5,6共3个位置中选2个位置排A ,B ,再在其余3个位置排D ,E ,F ,共有23A ·33A 种排法;若C 在第4个位置,则有22A 33A +23A 33A 种排法;若C 在第5个位置,则有24A 33A 种排法;若C 在第6个位置,则有55A 种排法.综上,共有2(55A +24A 33A +23A 33A +22A 33A )=480(种)排法.15.(2013浙江,理15)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于__________.答案:±1解析:设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由24,1y x y k x ⎧=⎨=(+)⎩联立,得k 2x 2+2(k 2-2)x+k 2=0,∴x 1+x 2=2222k k (-)-,∴212222212x x k k k +-=-=-+,1222y y k+=,即Q 2221,k k ⎛⎫-+ ⎪⎝⎭.又|FQ |=2,F (1,0),∴22222114k k ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,解得k =±1.16.(2013浙江,理16)在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =__________.答案:3解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a,0),则M ,02a ⎛⎫ ⎪⎝⎭,AB =(a ,-b ),AM =,2a b ⎛⎫- ⎪⎝⎭,cos ∠MAB =AB AMAB AM ⋅22a b +.又sin ∠MAB =13,∴cos ∠MAB=.∴22222222894a b aa b b ⎛⎫+ ⎪⎝⎭=⎛⎫(+)+ ⎪⎝⎭, 整理得a 4-4a 2b 2+4b 4=0,即a 2-2b 2=0,∴a 2=2b 2,sin ∠CAB3===. 17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则||||x b 的最大值等于__________.答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2xy .∴||||x =b x =0时,||0||x =b ; 当x ≠0时,||2||x ==≤b .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c . 解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=331664⨯=⨯, P (ξ=3)=2321663⨯⨯=⨯,P (ξ=4)=2312256618⨯⨯+⨯=⨯,P (ξ=5)=2211669⨯⨯=⨯, P (ξ=6)=1116636⨯=⨯, 所以ξ的分布列为(2)由题意知η所以E (η)=3a a b c a b c a b c ++=++++++,D (η)=22255551233339a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫-⋅+-⋅+-⋅= ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭, 化简得240,4110.a b c a b c --=⎧⎨+-=⎩解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(1)证明:PQ ∥平面BCD ;(2)若二面角C -BM -D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF =3FC ,连结OP ,OF ,FQ ,因为AQ =3QC ,所以QF ∥AD ,且QF =14AD .因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线, 所以OP ∥DM ,且OP =12DM .又点M 为AD 的中点,所以OP ∥AD ,且OP =14AD . 从而OP ∥FQ ,且OP =FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF . 又PQ ⊄平面BCD ,OF ⊂平面BCD , 所以PQ ∥平面BCD .(2)解:作CG ⊥BD 于点G ,作CH ⊥BM 于点H ,连结CH . 因为AD ⊥平面BCD ,CG ⊂平面BCD , 所以AD ⊥CG ,又CG ⊥BD ,AD ∩BD =D ,故CG ⊥平面ABD ,又BM ⊂平面ABD , 所以CG ⊥BM .又GH ⊥BM ,CG ∩GH =G ,故BM ⊥平面CGH , 所以GH ⊥BM ,CH ⊥BM .所以∠CHG 为二面角C -BM -D 的平面角,即∠CHG =60°. 设∠BDC =θ.在Rt △BCD 中,CD =BD cos θ=θ,CG =CD sin θ=θsin θ,BG =BC sin θ=2θ.在Rt △BDM 中,23BG DM HG BM θ⋅==.在Rt △CHG 中,tan ∠CHG =3cos sin CG HG θθ==所以tan θ从而θ=60°.即∠BDC =60°.方法二:(1)证明:如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系Oxyz .由题意知A (0,2),B (0,0),D (00). 设点C 的坐标为(x 0,y 0,0).因为3AQ QC = ,所以Q 00331,,4442x y ⎛⎫+ ⎪ ⎪⎝⎭.因为M 为AD 的中点,故M (01). 又P 为BM 的中点,故P 10,0,2⎛⎫ ⎪⎝⎭,所以PQ =0033,044x y ⎛⎫+ ⎪ ⎪⎝⎭. 又平面BCD 的一个法向量为u =(0,0,1),故PQ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)解:设m =(x ,y ,z )为平面BMC 的一个法向量.由CM =(-x 00y ,1),BM=(0,1),知000,0.x x y y z z ⎧-+)+=⎪⎨+=⎪⎩取y =-1,得m=00,1,y x ⎛- ⎝. 又平面BDM 的一个法向量为n =(1,0,0),于是|cos 〈m ,n 〉|=||1||||2⋅==m n m n,即200y x ⎛= ⎝⎭① 又BC ⊥CD ,所以CB ·CD=0, 故(-x 0,0y ,0)·(-x 00y ,0)=0,即x 02+y 02=2.②联立①,②,解得000,x y =⎧⎪⎨=⎪⎩(舍去)或0022x y ⎧=±⎪⎪⎨⎪=⎪⎩所以tan ∠BDC=又∠BDC 是锐角,所以∠BDC =60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:22221x y a b+=(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得1,2.b a =⎧⎨=⎩所以椭圆C 的方程为24x +y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =,所以||AB==.又l2⊥l1,故直线l2的方程为x+ky+k=0.由220,44,x ky kx y++=⎧⎨+=⎩消去y,整理得(4+k2)x2+8kx=0,故0284kx=-.所以|PD|=24k+.设△ABD的面积为S,则S=12|AB|·|PD|=24k+,所以S=32=当且仅当k=时取等号.所以所求直线l1的方程为y=x-1.22.(2013浙江,理22)(本题满分14分)已知a∈R,函数f(x)=x3-3x2+3ax-3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.解:(1)由题意f′(x)=3x2-6x+3a,故f′(1)=3a-3.又f(1)=1,所以所求的切线方程为y=(3a-3)x-3a+4.(2)由于f′(x)=3(x-1)2+3(a-1),0≤x≤2,故①当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a.②当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a-1.③当0<a<1时,设x1=1-x2=1则0<x1<x2<2,f′(x)=3(x-x1)(x-x2).由于f(故f(x1)+f(x2)=2>0,f(x1)-f(x2)=4(1-a0,从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<23时,f(0)>|f(2)|.又f(x1)-f(0)=2(1-a(2-3a)2>0,故|f(x)|max=f(x1)=1+2(1-a当23≤a<1时,|f(2)|=f(2),且f(2)≥f(0).又f(x1)-|f(2)|=2(1-a(3a-2)2,所以当23≤a<34时,f(x1)>|f(2)|.故f(x)max=f(x1)=1+2(1-a当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1. 综上所述,|f(x)|max=33,0,3 121,4331,.4a aa aa a⎧⎪-≤⎪⎪+(-<<⎨⎪⎪-≥⎪⎩。

2013年普通高等学校招生全国统一考试数学理试题(浙江卷)

2013年普通高等学校招生全国统一考试数学理试题(浙江卷)

2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题1.已知i 是虚数单位,则=-+-)2)(1(i iA .i +-3 B. i 31+- C. i 33+- D.i +-12.设集合}043|{},2|{2≤-+=->=x x x T x x S ,则=⋃T S C R )(A .(2,1]- B. ]4,(--∞ C. ]1,(-∞ D.),1[+∞3.已知y x ,为正实数,则A.y x y x lg lg lg lg 222+=+B.y x y x lg lg )lg(222•=+C.y x y x lg lg lg lg 222+=•D.y x xy lg lg )lg(222•=4.已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件 B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件5.某程序框图如图所示,若该程序运行后输出的值是59,则A.4=aB.5=aC. 6=aD.7=a6.已知210cos 2sin ,=+∈αααR ,则=α2tan A.34B. 43C.43-D.34-7.设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有(第5题图)C P B P 00•≥•。

则A. 090=∠ABCB. 090=∠BACC. AC AB =D.BC AC =8.已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f kx ,则A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值 9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。

2013年普通高等学校招生全国统一考试数学(浙江卷)理

2013年普通高等学校招生全国统一考试数学(浙江卷)理

浙江理科选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+iB.-1+3iC.-3+3iD.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=().A.(-2,1]B.(-∞,-4]C.(-∞,1]D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg yB.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.”的().4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=π2A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若φ=π2,则f(x)=A cos(ωx+φ)=-A sinωx,显然是奇函数.所以“f(x)是奇函数”是“φ=π2”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A.a=4B.a=5C.a=6D.a=7答案:A解析:该程序框图的功能为计算1+11×2+12×3+…+1a(a+1)=2-1a+1的值,由已知输出的值为95,可知当a=4时2-1a+1=95.故选A.6.(2013浙江,理6)已知α∈R,sinα+2cosα=√102,则tan2α=().A.43B.34C.-34D.-43答案:C解析:由sin α+2cos α=√102得,sin α=√102-2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=√1010或3√1010, 当cos α=√1010时,sin α=3√1010; 当cos α=3√1010时,sin α=-√1010. ∴tan α=3或tan α=-13,∴tan 2α=-34.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B=14AB ,且对于边AB 上任一点P ,恒有PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ ≥P 0B ⃗⃗⃗⃗⃗⃗⃗ ·P 0C ⃗⃗⃗⃗⃗⃗ ,则( ). A.∠ABC=90° B.∠BAC=90° C.AB=AC D.AC=BC答案:D解析:设PB⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ (0≤t ≤1), ∴PC⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ , ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =(t AB ⃗⃗⃗⃗⃗ )·(t AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=t 2AB ⃗⃗⃗⃗⃗ 2+t AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ . 由题意PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ ≥P 0B ⃗⃗⃗⃗⃗⃗⃗ ·P 0C ⃗⃗⃗⃗⃗⃗ ,即t 2AB ⃗⃗⃗⃗⃗ 2+t AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ ≥14AB ⃗⃗⃗⃗⃗ (14AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =(14)2AB⃗⃗⃗⃗⃗ 2+14AB ⃗⃗⃗⃗⃗ ·BC , 即当t=14时PB ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗ 取得最小值.由二次函数的性质可知:-AB ⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 2AB⃗⃗⃗⃗⃗⃗ 2=14,即:-AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ 2, ∴AB ⃗⃗⃗⃗⃗ ·(12AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=0. 取AB 中点M ,则12AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ , ∴AB⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即AB ⊥MC. ∴AC=BC.故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x-1)k (k=1,2),则( ). A.当k=1时,f (x )在x=1处取到极小值 B.当k=1时,f (x )在x=1处取到极大值 C.当k=2时,f (x )在x=1处取到极小值 D.当k=2时,f (x )在x=1处取到极大值 答案:C解析:当k=1时,f (x )=(e x -1)(x-1),f'(x )=x e x -1,∵f'(1)=e -1≠0,∴f (x )在x=1处不能取到极值;当k=2时,f (x )=(e x -1)(x-1)2,f'(x )=(x-1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H'(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x<1(x 0为H (x )的零点)时,f'(x )<0,f (x )在(x 0,1)上为减函数. 当x>1时,f'(x )>0,f (x )在(1,+∞)上是增函数.∴x=1是f(x)的极小值点,故选C.9.(2013浙江,理9)如图,F1,F2是椭圆C1:x 24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是().A.√2B.√3C.32D.√62答案:D解析:椭圆C1中,|AF1|+|AF2|=4,|F1F2|=2√3.又因为四边形AF1BF2为矩形,所以∠F1AF2=90°.所以|AF1|2+|AF2|2=|F1F2|2,所以|AF1|=2-√2,|AF2|=2+√2.所以在双曲线C2中,2c=2√3,2a=|AF2|-|AF1|=2√2,故e=ca =√3√2=√62,故选D.10.(2013浙江,理10)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则().A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式(√x -√x3)5的展开式中常数项为A ,则A= .答案:-10解析:T r+1=C 5r (√x )5-r·(√x3)r =C 5r x5-r2·(-1)r·x -r3=(-1)r C 5rx5-r 2-r 3=(-1)r C 5rx15-5r 6.令15-5r=0,得r=3,所以A=(-1)3C 53=-C 52=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.V A 1EC 1-ABC =V A 1B 1C 1-ABC −V E -A 1B 1C 1=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z=kx+y ,其中实数x ,y 满足{x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k= . 答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A(0,2)或C(4,4)处取得.若在A(0,2)处取得不符合题意;若在C(4,4)处取得,则4k+4=12,解得k=2,此时符合题意.14.(2013浙江,理14)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).答案:480解析:如图六个位置若C放在第一个位置,则满足条件的排法共有A55种情况;若C放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A,B,再在余下的3个位置排D,E,F,共A42·A33种排法;若C放在第3个位置,则可在1,2两个位置排A,B,其余位置排D,E,F,则共有A22·A33种排法或在4,5,6共3个位置中选2个位置排A,B,再在其余3个位置排D,E,F,共有A32·A33种排法;若C在第4个位置,则有A22A33+A32A33种排法;若C在第5个位置,则有A42A33种排法;若C在第6个位置,则有A55种排法.综上,共有2(A55+A42A33+A32A33+A22A33)=480(种)排法.15.(2013浙江,理15)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q 为线段AB的中点,若|FQ|=2,则直线l的斜率等于.答案:±1解析:设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由{y2=4x,y=k(x+1)联立,得k2x2+2(k2-2)x+k2=0,∴x1+x2=-2(k 2-2)k2,∴x1+x22=-k2-2k2=-1+2k2,y1+y22=2k,即Q(-1+2k2,2 k ).又|FQ|=2,F(1,0),∴(-1+2k 2-1)2+(2k)2=4,解得k=±1.16.(2013浙江,理16)在△ABC 中,∠C=90°,M 是BC 的中点.若sin ∠BAM=13,则sin ∠BAC= .答案:√63解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a ,0),则M (a 2,0),AB ⃗⃗⃗⃗⃗ =(a ,-b ),AM ⃗⃗⃗⃗⃗⃗ =(a2,-b),cos ∠MAB=AB ⃗⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗||AM⃗⃗⃗⃗⃗⃗⃗ |=a 22+b2√a 2+b 2·√a 4+b 2.又sin ∠MAB=13,∴cos ∠MAB=√1-(13)2=√89.∴(a 22+b2)2(a 2+b 2)(a 24+b 2)=89,整理得a 4-4a 2b 2+4b 4=0, 即a 2-2b 2=0,∴a 2=2b 2, sin ∠CAB=a√a 2+b =a√3b 2=√2b √3b=√63.17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于 . 答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2+√3xy.∴|x ||b |=√x 2+y 2+√3xy,当x=0时,|x ||b |=0;当x ≠0时,|x ||b |=√(y x)2+√3yx +1=√(y x+√32)2+14≤2.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2,即d 2-3d-4=0, 故d=-1或d=4.所以a n =-n+11,n ∈N *或a n =4n+6,n ∈N *. (2)设数列{a n }的前n 项和为S n . 因为d<0,由(1)得d=-1,a n =-n+11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n.当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |={-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E η=53,D η=59,求a ∶b ∶c.解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518, P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136, 所以ξ的分布列为(2)由题意知η的分布列为所以E (η)=aa+b+c +2ba+b+c +3ca+b+c =53,D (η)=(1-53)2·aa+b+c +(2-53)2·ba+b+c +(3-53)2·c a+b+c =59, 化简得{2a -b -4c =0,a +4b -11c =0.解得a=3c ,b=2c ,故a ∶b ∶c=3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A-BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD=2,BD=2√2.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC.(1)证明:PQ ∥平面BCD ;(2)若二面角C-BM-D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF=3FC ,连结OP ,OF ,FQ ,因为AQ=3QC ,所以QF ∥AD ,且QF=14AD.因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线,所以OP ∥DM ,且OP=12DM.又点M 为AD 的中点,所以OP ∥AD ,且OP=14AD. 从而OP ∥FQ ,且OP=FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD.(2)解:作CG⊥BD于点G,作CH⊥BM于点H,连结CH.因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG,又CG⊥BD,AD∩BD=D,故CG⊥平面ABD,又BM⊂平面ABD,所以CG⊥BM.又GH⊥BM,CG∩GH=G,故BM⊥平面CGH,所以GH⊥BM,CH⊥BM.所以∠CHG为二面角C-BM-D的平面角,即∠CHG=60°.设∠BDC=θ.在Rt△BCD中,CD=BD cosθ=2√2cosθ,CG=CD sinθ=2√2cosθsinθ,BG=BC sinθ=2√2sin2θ.在Rt△BDM中,HG=BG·DMBM =2√2sin2θ3.在Rt△CHG中,tan∠CHG=CGHG =3cosθsinθ=√3.所以tanθ=√3.从而θ=60°.即∠BDC=60°.方法二:(1)证明:如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知A (0,√2,2),B (0,-√2,0),D (0,√2,0). 设点C 的坐标为(x 0,y 0,0).因为AQ⃗⃗⃗⃗⃗ =3QC ⃗⃗⃗⃗⃗ ,所以Q (34x 0,√24+34y 0,12). 因为M 为AD 的中点,故M (0,√2,1). 又P 为BM 的中点,故P (0,0,12),所以PQ ⃗⃗⃗⃗⃗ =(34x 0,√24+34y 0,0). 又平面BCD 的一个法向量为u =(0,0,1),故PQ ⃗⃗⃗⃗⃗ ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD. (2)解:设m =(x ,y ,z )为平面BMC 的一个法向量. 由CM ⃗⃗⃗⃗⃗⃗ =(-x 0,√2-y 0,1),BM ⃗⃗⃗⃗⃗⃗ =(0,2√2,1), 知{-x 0x +(√2-y 0)y +z =0,2√2y +z =0.取y=-1,得m =(y 0+√2x 0,-1,2√2).又平面BDM 的一个法向量为n =(1,0,0),于是|cos <m ,n >|=|m ·n ||m ||n |=|y 0+√2x |√9+(y 0+√2x 0)2=12,即(y 0+√2x 0)2=3.①又BC ⊥CD ,所以CB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0, 故(-x 0,-√2-y 0,0)·(-x 0,√2-y 0,0)=0,即x 02+y 02=2.②联立①,②,解得{x 0=0,y 0=-√2,(舍去)或{x 0=±√62,y 0=√22.所以tan ∠BDC=|√2-y 0|=√3.又∠BDC 是锐角,所以∠BDC=60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:x 2a2+y 2b 2=1(a>b>0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得{b =1,a =2.所以椭圆C 的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y=kx-1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d=√k +1,所以|AB|=2√4-d 2=2√4k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x+ky+k=0.由{x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx=0, 故x 0=-8k4+k 2.所以|PD|=8√k 2+14+k 2.设△ABD 的面积为S ,则S=12|AB|·|PD|=8√4k 2+34+k 2, 所以S=√4k +3+134k 2+3≤2√√4k 2+3·13√4k 2+3=16√1313, 当且仅当k=±√102时取等号.所以所求直线l 1的方程为y=±√102x-1.22.(2013浙江,理22)(本题满分14分)已知a ∈R ,函数f (x )=x 3-3x 2+3ax-3a+3. (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值. 解:(1)由题意f'(x )=3x 2-6x+3a ,故f'(1)=3a-3.又f (1)=1,所以所求的切线方程为y=(3a-3)x-3a+4. (2)由于f'(x )=3(x-1)2+3(a-1),0≤x ≤2,故①当a ≤0时,有f'(x )≤0,此时f (x )在[0,2]上单调递减,故|f (x )|max =max{|f (0)|,|f (2)|}=3-3a.②当a ≥1时,有f'(x )≥0,此时f (x )在[0,2]上单调递增, 故|f (x )|max =max{|f (0)|,|f (2)|}=3a-1. ③当0<a<1时,设x 1=1-√1-a ,x 2=1+√1-a , 则0<x 1<x 2<2,f'(x )=3(x-x 1)(x-x 2). 列表如下:由于f (x 1)=1+2(1-a )√1-a ,f (x 2)=1-2(1-a )√1-a , 故f (x 1)+f (x 2)=2>0,f (x 1)-f (x 2)=4(1-a )√1-a >0, 从而f (x 1)>|f (x 2)|.所以|f (x )|max =max{f (0),|f (2)|,f (x 1)}. 当0<a<23时,f (0)>|f (2)|.又f (x 1)-f (0)=2(1-a )√1-a -(2-3a )=22(1-a )√1-a+2-3a>0,故|f (x )|max =f (x 1)=1+2(1-a )√1-a . 当23≤a<1时,|f (2)|=f (2),且f (2)≥f (0).又f (x 1)-|f (2)|=2(1-a )√1-a -(3a-2)=22(1-a )√1-a+3a -2,所以当23≤a<34时,f (x 1)>|f (2)|. 故f (x )max =f (x 1)=1+2(1-a )√1-a .当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1.综上所述,|f(x)|max={3-3a,a≤0,1+2(1-a)√1-a,0<a<34,3a-1,a≥34.。

2013浙江高考数学试卷

2013浙江高考数学试卷

2013浙江高考数学试卷1. (1分)设A是集合$\{1,3,5,7\}$,B是集合$\{x|x=2k-1,k \in N \}$,则$A \cap B$是______答:$\{1, 3, 5, 7\} \cap \{1, 3, 5, 7\} = \{1, 3, 5, 7\}$2. (2分)若多项式$f(x)=x^3+ax^2+bx-3$与$g(x)=x^3+x^2-1$除以$(x-1)$的余数相同,就是说当$x=1$时,$f(x)$与$g(x)$的值相等,求$a+b$答:将$f(x)$与$g(x)$分别除以$(x-1)$,得到余数相同,即$f(1)=g(1)$代入$f(1)=g(1)$,即$a+b=1$3. (3分)已知等差数列$\{a_n\}$的前5项依次为$-3,4,11,18,25$,则$a_6=$____答:已知数列前五项为-3, 4, 11, 18, 25,可以列出方程组$$\begin{cases}a_1 = a + 0d = -3\\a_2 = a + 1d = 4\\a_3 = a + 2d = 11\\a_4 = a + 3d = 18\\a_5 = a + 4d = 25\end{cases}$$解得$a = -12, d=7$,故$a_6 = a_5 + d = 25 + 7 = 32$4. (4分)函数$f(x) = \frac{1}{2} x^3-3x^2+5x+m$ (a为常数)在$x=1$处的切线方程为$y=x+2$,求a的值答:切线方程为$y = x + 2$,则$f'(1) = 1$即$f'(x) = \frac{3}{2} x^2 - 6x + 5$,$f'(1) = \frac{3}{2} - 6 + 5 = 1$解得$a = 3$5. (5分)如图所示,正方形ABCD中点E,F,G,H依次连接,连接EH,交线段AF于点P,若AP:PF = 3:2,求BP:PF![](img)答:根据相似三角形性质,$\triangle AEP \sim \triangle CBP$,则$AP : EP = BP : CP$又根据AP:PF = 3:2,EP:PF = 3:2,所以EP = 3x,PF = 2x由$\triangle AEP \sim \triangle CBP$可知, $\frac{AP}{BP} =\frac{EP}{CP} = \frac{3x}{3x+2x} = \frac{3}{5}$即$BP:PF = 3:2$6. (6分)记$P_n=(2n^3-n^2-n)^k$,其中k>0,POQ为一单位正方形,且$\angle POQ=45^\circ$,正方形内部的角的度数之和为_______答:正方形内部的角的度数之和为$360^\circ$,且$POQ=135^\circ$,故其余角之和为$360^\circ - 135^\circ = 225^\circ$7. (7分)如下图,$AB\bot AC,AD=AC,BD・ BC=27,$则$BD+CD$的值为_______![](img)答:根据题意,$AD = AC$,则$AB = BC = 27^{\frac{1}{2}}$由勾股定理可知$BD = 9, CD = 3$,故$BD + CD = 12$8. (8分)如图所示,$AB//DC,DZ$是$BD$的中线,$\frac{AC}{BC} = 2:3$,求证:$AB = 2ZC$![](img)答:由题意,$DZ = \frac{1}{2} BD = \frac{1}{2} AD = \frac{1}{2} AC$又$\frac{AC}{BC} = 2:3$,则$AC = 2k, BC = 3k, AB = 5k$又$DZ = \frac{1}{2} AC = k$故$AB = 2ZC$9. (9分)在$\triangle ABC$中,点$D$在$\overline{BC}$边上,$AD$平分角$A$,$m\angle B=45^\circ$,且$\angle CAD = 15^\circ$,$BD=2,DC=1$,则$AB:AC$的值为________答:根据正弦定理有$$\frac{AB}{\sin(150^\circ)} = \frac{BD}{\sin(60^\circ)} =\frac{2}{\sin(60^\circ)}$$$$\frac{AC}{\sin(15^\circ)} = \frac{DC}{\sin(120^\circ)} =\frac{1}{\sin(60^\circ)}$$即$AB = 2\sin(150^\circ) = 2\sin(30^\circ) = 1$$AC = \frac{1}{\sin(15^\circ)} = \frac{1}{\sin(180^\circ - 165^\circ)} = \frac{1}{\sin(15^\circ)} = 4$故$AB:AC = 1:4$10. (10分)已知群$G = \{1,2,3,4,5,6\}, ∗$为二元运算,满足$a∗b$是$a+b$的一半,$a,b \in G$,则$(G,∗)$是否构成群,并说明理由。

2013年高考真题——理科数学(浙江卷)解析版(1)含答案

2013年高考真题——理科数学(浙江卷)解析版(1)含答案

浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i 是虚数单位,则(−1+i)(2−i)=A .−3+iB .−1+3iC .−3+3iD .−1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S ={x |x >−2},T ={x |x 2+3x −4≤0},则(R S )∪T = A .(−2,1]B .(−∞,−4]C .(−∞,1]D .[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(R S )={x |x ≤−2},T ={x |−4≤x ≤1},所以(R S )∪T =(−∞,1]。

3.已知x ,y 为正实数,则A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ∙ 2lg yC .2lg x ∙ lg y =2lg x +2lg yD .2lg (xy )=2lg x ∙ 2lg y 【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D 正确4.已知函数f (x )=A cos(ωx +φ)(A 〉0,ω>0,φR ),则“f (x )是奇函数”是“φ=错误!"的 A .充分不必要条件B .必要不充分条件 开始 S =1,k =1 k >a ? S =S +1k (k +1) k =k+1 输出S结束是 否 (第5题图)C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=错误!+kπ,k Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是错误!,则A.a=4 B.a=5C.a=6 D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知αR,sin α+2cos α=错误!,则tan2α=A.错误!B.错误!C.−错误!D.−错误!【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C由(sin α+2cos α)2=错误!可得错误!=错误!,进一步整理可得3tan2α−8tan α−3=0,解得tan α=3或tan α=−错误!,于是tan2α=错误!=−错误!.7.设△ABC,P0是边AB上一定点,满足P0B=错误!AB,且对于AB 上任一点P,恒有错误!∙错误!≥错误!∙错误!,则A.ABC=90B.BAC=90C.AB=AC D.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D由题意,设|错误!|=4,则|错误!|C=1,过点C作AB的垂线,垂足为H,在AB上A B任取一点P ,设HP 0=a ,则由数量积的几何意义可得,错误!∙错误!=|错误!||错误!|=(错误! −(a +1))|错误!|,错误!∙错误!=−|错误!||错误!|=−a ,于是错误!∙错误!≥错误!∙错误!恒成立,相当于(错误!−(a +1))|错误!|≥−a 恒成立,整理得|错误!|2−(a +1)|错误!|+a ≥0恒成立,只需∆=(a +1)2−4a =(a −1)2≤0即可,于是a =1,因此我们得到HB =2,即H 是AB 的中点,故△ABC 是等腰三角形,所以AC =BC8.已知e 为自然对数的底数,设函数f (x )=(e x −1)(x −1)k (k =1,2),则A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k =1时,方程f (x )=0有两个解,x 1=0,x 2=1,由标根法可得f (x )的大致图象,于是选项A ,B 错误;当k =2时,方程f (x )=0有三个解,x 1=0,x 2=x 3=1,其中1是二重根,由标根法可得f (x )的大致图象,易知选项C 正确。

浙江省2013年7月自学考试《高等数学(一)微积分》试题00020

浙江省2013年7月自学考试《高等数学(一)微积分》试题00020

绝密 ★ 考试结束前浙江省2013年7月高等教育自学考试高等数学(一)试题课程代码:00020请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.下列各对函数中,表示同一个函数的是A.()211x f x x =+-与g (x )=x -1 B.f (x )=lg x 2与g (x )=2lg x C.()f x =g (x )=sin x D.f (x )=| x |与g (x2.x =1是函数()f x =A.连续点B.可去间断点C.跳跃间断点D.第二类间断点3.下列函数中在给定的区间上满足罗尔定理条件的是A.f (x )=xe -x ,[0,1]B.(),010,1x x f x x ≤<⎧=⎨=⎩C.()45,1,123f x x =+[-] D.f (x )=| x |,[-1,1] 4.设()()221x x f t dt a a f x =⎰-,为连续函数,则f (x )等于A.2a 2xB.a 2x ln aC.2xa 2x -1D.2a 2x ln a5.设函数f (x ,y )=a (x -y )-x 2-y 2在点(2,-2)处取到极值,则A.a =2,(2,-2)为极大值点B.a =4,(2,-2)为极大值点C.a =-4,(2,-2)为极小值点D.a =4,(2,-2)为极小值点非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

高等数学测试题一(极限、连续)答案

高等数学测试题一(极限、连续)答案

高等数学测试题(一)极限、连续部分(答案)一、选择题(每小题4分,共20分) 1、 当0x →+时,(A )无穷小量。

A 1sin x xB 1x e C ln x D 1sin x x2、点1x =是函数311()1131x x f x x x x -<⎧⎪==⎨⎪->⎩的(C )。

A 连续点B 第一类非可去间断点C 可去间断点D 第二类间断点 3、函数()f x 在点0x 处有定义是其在0x 处极限存在的(D )。

A 充分非必要条件B 必要非充分条件C 充要条件D 无关条件4、已知极限22lim()0x x ax x→∞++=,则常数a 等于(A )。

A -1B 0C 1D 25、极限201lim cos 1x x e x →--等于(D )。

A ∞B 2C 0D -2二、填空题(每小题4分,共20分)1、21lim(1)xx x→∞-=2e -2、 当0x →+时,无穷小ln(1)Ax α=+与无穷小sin 3x β=等价,则常数A=33、 已知函数()f x 在点0x =处连续,且当0x ≠时,函数21()2x f x -=,则函数值(0)f =04、 111lim[]1223(1)n n n →∞+++∙∙+=15、 若lim ()x f x π→存在,且sin ()2lim ()x xf x f x x ππ→=+-,则lim ()x f x π→=1二、解答题1、(7分)计算极限 222111lim(1)(1)(1)23n n→∞--- 解:原式=132411111lim()()()lim 223322n n n n n n n n →∞→∞-++∙∙∙=∙= 2、(7分)计算极限 30tan sin lim x x xx →-解:原式=2322000sin 1sin 1cos 1cos 2lim lim lim cos cos 2x x x x x xx x x x x x x →→→--=== 3、(7分)计算极限 123lim()21x x x x +→∞++ 解:原式= 11122112221lim(1)lim(1)121211lim(1)lim(1)22x x x x x x x xx e x x +++→∞→∞+→∞→∞+=+++=+∙+=++4、(7分)计算极限 01x x e →-解:原式=201sin 12lim 2x x xx →=5、(7分)设3214lim 1x x ax x x →---++ 具有极限l ,求,a l 的值解:因为1lim(1)0x x →-+=,所以 321lim(4)0x x ax x →---+=,因此 4a = 并将其代入原式321144(1)(1)(4)lim lim 1011x x x x x x x x l x x →-→---++--===++6、(8分)设3()32,()(1)n x x x x c x αβ=-+=-,试确定常数,c n ,使得()()x x αβ解:32221()32(1)(2)(1)(2)3lim ,3,2(1)x x x x x x x x c n c x cα→=-+=-+-+=∴==- 此时,()()x x αβ7、(7分)试确定常数a ,使得函数21sin 0()0x x f x xa xx ⎧>⎪=⎨⎪+≤⎩在(,)-∞+∞内连续解:当0x >时,()f x 连续,当0x <时,()f x 连续。

2013年浙江省高考数学试卷(理科)答案与解析

2013年浙江省高考数学试卷(理科)答案与解析

2013年浙江省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.解答:解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选B.点评:本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁R S)∪T=()A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)考点:交、并、补集的混合运算;全集及其运算.专题:集合.分析:先根据一元二次不等式求出集合T,然后求得∁R S,再利用并集的定义求出结果.解答:解:∵集合S={x|x>﹣2},∴∁R S={x|x≤﹣2},T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},故(∁R S)∪T={x|x≤1}故选C.点评:此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范围.3.(5分)(2013•浙江)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:直接利用指数与对数的运算性质,判断选项即可.解答:解:因为a s+t=a s•a t,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.点评:本题考查指数与对数的运算性质,基本知识的考查.4.(5分)(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:φ=⇒f(x)=Acos(ωx+)⇒f(x)=Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f (x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.解答:解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选B.点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.5.(5分)(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=7考点:程序框图.专题:算法和程序框图.分析:根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.解答:解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则2﹣=.∴a=4,故选A.点评:本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.6.(5分)(2013•浙江)已知,则tan2α=()A.B.C.D.考点:二倍角的正切;同角三角函数间的基本关系.专题:三角函数的求值.分析:由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.解答:解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选C点评:本题考查二倍角的正切公式,涉及同角三角函数的基本关系,属中档题.7.(5分)(2013•浙江)设△ABC,P0是边AB上一定点,满足,且对于边AB 上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.A B=AC D.A C=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,=||•||=||﹣(a+1))||,•=﹣a,于是•≥••恒成立,整理得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.故选:D.点评:本题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8.(5分)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(e x﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f'(1)=0,再验证f (x)在x=1处取得极小值还是极大值即可得结论.解答:解:当k=1时,函数f(x)=(e x﹣1)(x﹣1).求导函数可得f'(x)=e x(x﹣1)+(e x﹣1)=(xe x﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(e x﹣1)(x﹣1)2.求导函数可得f'(x)=e x(x﹣1)2+2(e x﹣1)(x﹣1)=(x﹣1)(xe x+e x﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选C.点评:本题考查了函数的极值问题,考查学生的计算能力,正确理解极值是关键.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2=2,∴双曲线C2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系;二面角的平面角及求法.专题:空间位置关系与距离.分析:设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.解答:解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A点评:本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)设二项式的展开式中常数项为A,则A=﹣10.考点:二项式系数的性质.专题:排列组合.分析:先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.解答:解:二项式的展开式的通项公式为T r+1=••(﹣1)r•=(﹣1)r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.(4分)(2013•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24cm3.考点:由三视图求面积、体积.专题:立体几何.分析:先根据三视图判断几何体的形状,再利用体积公式计算即可.解答:解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V棱锥==24(cm3)故答案为:24.点评:本题考查几何体的三视图及几何体的体积计算.V椎体=Sh,V柱体=Sh.考查空间想象能力.13.(4分)(2013•浙江)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=2.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y得到最大值点A,即可得到答案.解答:解:可行域如图:由得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种情况.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;当k<0时,①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=4k+4,故k=2.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=0×k+2,故k不存在.综上,k=2.故答案为:2.点评:本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.14.(4分)(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)考点:排列、组合及简单计数问题.专题:排列组合.分析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.解答:解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置可以选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.点评:本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.15.(4分)(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.考点:直线与圆锥曲线的关系;直线的斜率.专题:圆锥曲线的定义、性质与方程.分析:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.解答:解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.点评:本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.16.(4分)(2013•浙江)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.考点:正弦定理.专题:解三角形.分析:作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.解答:解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,故答案为:点评: 本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属难题.17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x 、y ∈R .若、的夹角为30°,则的最大值等于 2 .考点:数量积表示两个向量的夹角. 专题: 平面向量及应用. 分析:由题意求得 =,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、 为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x +y,∴||===,∴====, 故当=﹣时,取得最大值为2,故答案为 2.点评: 本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.19.(14分)(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.解答:解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为ξ 2 3 4 5 6P(2)由题意知η的分布列为η 1 2 3PEη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.(15分)(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.解答:(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠BDC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°点评:本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,并且在已知二面角大小的情况下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.21.(15分)(2013•浙江)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.解答:解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.∴三角形ABD 的面积S △==,令4+k 2=t >4,则k 2=t ﹣4, f (t )===,∴S △=,当且仅,即,当时取等号,故所求直线l 1的方程为.点评:本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力. 22.(14分)(2013•浙江)已知a ∈R ,函数f (x )=x 3﹣3x 2+3ax ﹣3a+3. (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值. 专题:导数的综合应用. 分析: (1)求出原函数的导函数,求出函数取x=1时的导数值及f (1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a ≤0,0<a <1,a ≥1三种情况求|f (x )|的最大值.特别当0<a <1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a 的范围分析区间端点值与极值绝对值的大小. 解答: 解:(1)因为f (x )=x 3﹣3x 2+3ax ﹣3a+3,所以f ′(x )=3x 2﹣6x+3a , 故f ′(1)=3a ﹣3,又f (1)=1,所以所求的切线方程为y=(3a ﹣3)x ﹣3a+4;(2)由于f ′(x )=3(x ﹣1)2+3(a ﹣1),0≤x ≤2.故当a ≤0时,有f ′(x )≤0,此时f (x )在[0,2]上单调递减,故 |f (x )|max =max{|f (0)|,|f (2)|}=3﹣3a .当a ≥1时,有f ′(x )≥0,此时f (x )在[0,2]上单调递增,故 |f (x )|max =max{|f (0)|,|f (2)|}=3a ﹣1.当0<a <1时,由3(x ﹣1)2+3(a ﹣1)=0,得,.所以,当x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,2)时,f ′(x )>0,函数f (x )单调递增. 所以函数f (x )的极大值,极小值.故f (x 1)+f (x 2)=2>0,.从而f (x 1)>|f (x 2)|. 所以|f (x )|max =max{f (0),|f (2)|,f (x 1)}. 当0<a <时,f (0)>|f (2)|. 又=故.当时,|f (2)|=f (2),且f (2)≥f (0).又=.所以当时,f (x 1)>|f (2)|.故.当时,f (x 1)≤|f (2)|.故f (x )max =|f (2)|=3a ﹣1.综上所述|f (x )|max =.点评: 本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,正确的分类是解答(2)的关键,此题属于难题.。

2013年高考数学真题(理)-浙江

2013年高考数学真题(理)-浙江

2013年高考数学真题(理)-浙江(2013 浙江 理 1)已知i 是虚数单位,则(1)(2)i i -+-= A.3i -+ B.13i -+ C.33i -+ D.1i -+ 【答案】B【解析】本题考查复数的四则运算,属于容易题。

(2013 浙江 理 2)设集合{|2}S x x =>-,2{|340}T x x x =+-≤,则()R C S T ⋃= A.(21]-,B.(4]-∞-,C.(1]-∞,D.[1)+∞, 【答案】C【解析】因为(){|2}R C S x x =≤-,{|41}T x x =-≤≤,所以()(1]R C S T ⋃=-∞,.(2013 浙江 理 3)已知x ,y 为正实数,则A.lg lg lg lg 222x yx y +=+ B.lg()lg lg 222x y x y +=⋅ C.lg lg lg lg 222x yx y ⋅=+ D.lg()lg lg 222xy x y =⋅【答案】D【解析】由指数和对数的运算法则,易知选项D 正确。

(2013 浙江 理 4)已知函数()cos()(0f x A x A ωϕ=+>,0ω>,)R ϕ∈,则“()f x 是奇函数”是“2πϕ=”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】B【解析】由()f x 是奇函数可知(0)=0f ,即cos =0ϕ,解出=Z 2k k πϕπ+∈,,所以选项B正确。

(2013 浙江 理 5)某程序框图如图所示,若该程序运行后输出的值是95,则A.4a =B.5a =C.6a =D.7a = 【答案】A【解析】本题考查算法程序框图,属于容易题。

(2013 浙江 理 6)已知R α∈,sin 2cos αα+=,则tan 2α=A.43B.34C.34-D.43-【答案】C【解析】由可得,进一步整理可得,解得tan =3α或1tan = - 3α,于是.(2013 浙江 理 7)设ABC ∆,0P 是边AB 上一定点,满足014P B AB =,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅,则A.90ABC ∠=︒B.90BAC ∠=︒C.AB AC =D.AC BC =【答案】D【解析】由题意,设4AB =,则01P B =,过点C 作AB 的垂线,垂足为H ,在AB 上任取一点P ,设0H P a=,则由数量积的几何意义可得,((1))PB PC PH PB PB a PB⋅=⋅=-+⋅,0000P B P C P H P B a⋅=-=-;由于00PB PC P B PC ⋅≥⋅恒成立,相当于((1))P B a P B a -+≥-恒成立,整理得2(1)0P B a P B a -++≥恒成立,只需22(1)4(1)0a a a ∆=+-=-≤即可,于是a=1,因此我们得到HB=2,即H 是AB 的中点,故ABC ∆是等腰三角形,所以AC BC =。

2013年浙江高考数学理科试卷(带详解)

2013年浙江高考数学理科试卷(带详解)

2013年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题1.已知i 是虚数单位,则(1i)(2i)-+-= ( ) A .3i -+ B. 13i -+ C. 33i -+ D.1i -+ 【测量目标】复数代数形式的四则运算. 【考查方式】求两个复数相乘的结果 【难易程度】容易 【参考答案】B【试题解析】(-1+i)(2-i)=- 2+i+2i+1=-1+3i ,故选B.2.设集合2{|2},{|340}S x x T x x x =>-=+-…,则()S T =R ð ( ) A .(2,1]- B.]4,(--∞ C.]1,(-∞ D.),1[+∞ 【测量目标】集合的基本运算.【考查方式】用描述法给出两个集合求补集的并. 【难易程度】容易 【参考答案】C【试题解析】∵集合S ={x |x >-2},∴S R ð={x |x …-2},由2x +3x -4…0得:T={x |-4…x …1},故(S R ð) T ={x |x …1},故选C.3.已知y x ,为正实数,则 ( )A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y += C.lg lg lg lg 222x yx y =+ D.lg()lg lg 222xy x y = 【测量目标】指数幂运算.【考查方式】给出指数型的函数,化简函数. 【难易程度】容易 【参考答案】D 【试题解析】因为s ta+=s a ta ,lg(xy )=lg x +lg y (x ,y 为正实数),所以()lg 2xy =lg +lg 2x y=lg 2xlg 2y ,满足上述两个公式,故选D.4.已知函数()cos()(0,0,)f x A x A ωϕωϕ=+>>∈R ,则“)(x f 是奇函数”是π2ϕ=的( )A .充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【测量目标】三角函数的性质,三角函数的诱导公式.【考查方式】给出含参量的三角函数表达式,由函数是奇函数判断命题条件. 【难易程度】中等 【参考答案】B【试题解析】若φ=π2,则f (x )=A cos(ωx +π2)⇒f (x )=-A sin(ωx )(A >0,ω>0,x ∈R )是奇函数;若f (x )是奇函数⇒f (0)=0,∴f (0)=A cos(ω×0+φ)=A cos φ=0.∴φ=k π+π2,k ∈Z ,不一定有φ=π2,“f (x )是奇函数”是“φ=π2”必要不充分条件.故选B.5.某程序框图如图所示,若该程序运行后输出的值是59,则 ( )A.4=aB.5=aC. 6=aD.7=a第5题图【测量目标】循环结构的程序框图.【考查方式】给出程序框图的输出值求输入的值. 【难易程度】容易 【参考答案】A【试题解析】由已知可得该程序的功能是:计算并输出S =1+112⨯+…+1(1)a a +=1+1-11a +=2-11a +.若该程序运行后输出的值是95,则2-11a +=95.∴a =4,故选A.6.已知,sin 2cos 2ααα∈+=R ,则=α2tan ( ) A.34 B. 43 C.43- D.34-【测量目标】二倍角,三角函数的诱导公式.【考查方式】给出正弦和余弦的方程求解二倍角的正切. 【难易程度】中等 【参考答案】C【试题解析】∵sin α+2cos α,又2sin α+2cos α=1,联立解得sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩或sin cos 10αα⎧=⎪⎪⎨⎪=⎪⎩,故tan α=sin cos αα =13-或tan α=3,代入可得tan2α=22tan 1tan αα-=212()311()3⨯---=34-或tan2α=22tan 1tan αα-=22313⨯-=34-.故选C.7.设0,ABC P △是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有00PB PC P B PC….则 ( ) A. 90ABC ∠= B. 90BAC ∠=C. AC AB =D.BC AC =【测量目标】平面向量的算量积运算,向量的坐标运算.【考查方式】在三角形中给出定点在三角形中的位置,求定点与各顶点所成向量数量积的大小.【难易程度】中等 【参考答案】D【试题解析】以AB 所在的直线为x 轴,以AB 的中垂线为y 轴建立直角坐标系,设AB =4,C (a ,b ),P (x ,0),则0BP =1,A (-2,0),B (2,0),0P (1,0),∴0P B =(1,0),PB =(2-x ,0),PC =(a -x ,b ),0PC =(a -1,b ),∵恒有PB PC ≥00P B PC ,∴(2-x )(a -x )≥a -1恒成立,整理可得2x - (a +2)x +a +1≥0恒成立,∴Δ=()22a +-4(a +1)≤0,即Δ=2a ≤0,∴a =0,即C 在AB 的垂直平分线上,∴AC =BC ,故△ABC 为等腰三角形,故选D.第7题图8.已知e 为自然对数的底数,设函数()(e 1)(1)(1,2)x k f x x k =--=,则 ( ) A .当1=k 时,)(x f 在1=x 处取得极小值 B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值【测量目标】利用导数求函数的极值.【考查方式】给出含未知量的函数表达式,判断函数何时取得极值. 【难易程度】中等 【参考答案】C【试题解析】当k =2时,函数f (x )=(e x-1)2(1)x -.求导函数可得()f x '=e x 2(1)x -+2(e x -1)(x -1)=(x -1)(x e x +e x -2),∴当x =1,()f x '=0,且当x >1时,()f x '>0,当12<x <1时,()f x '<0,故函数f (x )在(1,+∞)上是增函数;在(12,1)上是减函数,从而函数f (x )在x =1取得极小值.对照选项.故选C.第8题图9.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是 ( )第9题图A.2 B.3 C.23 D.26【测量目标】椭圆和双曲线的简单几何性质.【考查方式】椭圆和双曲线相交焦点和交点构成矩形,求双曲线的离心率. 【难易程度】较难 【参考答案】D【试题解析】|1AF |=x ,|2AF |=y ,x y <∵点A 为椭圆1C :24x +2y =1上的点,∴2a =4,b =1,c|1AF |+|2AF |=2a =4,即x +y =4①;又四边形12AF BF 为矩形,∴21AF +22AF =212F F ,即2x +2y =()22c=(2=12②,由①②得:22412x y x y +=⎧⎨+=⎩,解得x =2-y2x y ==-,设双曲线2C 的实轴长为12a ,焦距为12c ,则12a =|2AF |-|1AF |=y -x12c=2C 的离心率e =11c a故选D. 10.在空间中,过点A 作平面π的垂线,垂足为B ,记π()B f A =.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( ) A .平面α与平面β垂直 B. 平面α与平面β所成的(锐)二面角为45C. 平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60【测量目标】空间中点、线、面之间的位置关系,二面角. 【考查方式】给出两个平面判断面面之间的位置关系. 【难易程度】较难 【参考答案】A【试题解析】设1P =()f P α,则根据题意,得点1P 是过点P 作平面α垂线的垂足,∵1Q =()[]f f P βα=1()f P β,∴点1Q 是过点1P 作平面β垂线的垂足,同理,若2P =()f P β,得点2P 是过点P 作平面β垂线的垂足,因此2Q =()[]f f P αβ表示点2Q 是过点2P 作平面α垂线的垂足,∵对任意的点P ,恒有1PQ =2PQ ,∴点1Q 与2Q 重合于同一点,由此可得,四边形112PPQ P 为矩形,且∠112PQ P 是二面角α﹣l ﹣β的平面角,∵∠112PQ P 是直角,∴平面α与平面β垂直,故选A.第10 题图二、填空题 11.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【测量目标】二项式定理.【考查方式】给出含根式的二项式,求解展开式中常数项的系数. 【难易程度】容易 【参考答案】-10【试题解析】二项式5的展开式的通项公式为 1r T +=5325C (1)rr r rx x --- =15565(1)C r rr x-- .令1556r-=0,解得r =3,故展开式的常数项为-35C =-10.故答案为-10.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于________3cm .第12题图【测量目标】由三视图求几何体的表面积和体积. 【考查方式】给出几何体的三视图,求几何体的体积. 【难易程度】中等 【参考答案】24【试题解析】几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,棱柱的高为5,被截取的棱锥的高为3.如图:V =V 棱柱-V 三棱锥=12×3×4×5-13×12×3×4×3=24(3cm ),故答案为:24.第12题图13.设y kx z +=,其中实数y x ,满足20240240x y x y x y +-⎧⎪-+⎨⎪--⎩………,若z 的最大值为12,则实数=k ________.【测量目标】二元线性规划求目标函数的最值.【考查方式】给出可行域的不等式和目标函数的最大值,求目标函数中未知数的值. 【难易程度】中等 【参考答案】2【试题解析】可行域如图:由24=024=0x y x y -+⎧⎨--⎩得:A (4,4),同样地,得B (0,2),(步骤1)①当k >-12时,目标函数z =kx +y 在x =4,y =4时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=4k +4,故k =2. (步骤2) ②当k ≤-12时,目标函数z =kx +y 在x =0,y =2时取最大值,即直线z =kx +y 在y 轴上的截距z 最大,此时,12=0×k +2,故k 不存在.综上,k =2.故答案为:2. (步骤3)第13题图14.将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【测量目标】排列组合及其应用.【考查方式】给出六个字母和限定条件求排法的种数. 【难易程度】中等 【参考答案】480【试题解析】按C 的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可. (步骤1)当C 在左边第1个位置时,有55A =120种,当C 在左边第2个位置时2343A A =72种,(步骤2)当C 在左边第3个位置时,有2333A A +2323A A =48种,共为240种,乘以2,得480.则不同的排法共有 480种.故答案为:480. (步骤3)15.设F 为抛物线x y C 4:2=的焦点,过点)0,1(-P 的直线l 交抛物线C 于两点B A ,,点Q为线段AB 的中点,若2||=FQ ,则直线l 的斜率等于________. 【测量目标】直线与抛物线的位置关系.【考查方式】给出抛物线方程和直线过的定点和直线与抛物线交线的长度求直线斜率. 【难易程度】较难 【参考答案】不存在【试题解析】由题意设直线l 的方程为my =x +1,联立214my x y x=+⎧⎨=⎩得到2y -4my +4=0,(步骤1)Δ=162m -16=16(2m -1)>0.设A (1x ,1y ),B (2x ,2y ),Q (0x ,0y ).∴1y +2y =4m ,∴0y =122y y +=2m ,(步骤2)∴0x =m 0y -1=22m -1.∴Q (22m -1,2m ),(步骤3)由抛物线C :2y =4x 得焦点F (1,0).∵|QF |=2=2,化为2m =1,解得m =±1,不满足Δ>0.故满足条件的直线l 不存在. (步骤4)故答案为不存在. 16.ABC △中,90C ∠= ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 【测量目标】正弦定理和余弦定理解三角形.【考查方式】直角三角形中直角边的中点,求三角形中角的正弦值. 【难易程度】较难【参考答案】3【试题解析】如图,设AC =b ,AB =c ,CM =MB =2a,∠MAC =β,在△ABM 中,由正弦定理可得2sin sin ac BAM AMB=∠∠,代入数据可得21sin 3a c AMB =∠,解得2sin 3c AMB a ∠=,(步骤1)故πcos cos 2AMC β⎛⎫=-∠ ⎪⎝⎭=sin AMC ∠=()2sin πsin 3c AMB AMB a -∠=∠=,而在Rt △ACM 中,cos β=AC AM =23ca =,化简可得a 4-4a 2b 2+4b 4=(a 2-2b 2)=0,解之可得a,(步骤2)再由勾股定理可得a 2+b 2=c 2,联立可得c,故在Rt △ABC 中,sin ∠BAC=BC a AB c ===骤3)第16题图17.设12,e e 为单位向量,非零向量12x y +b =e e ,,x y ∈R ,若12,e e 的夹角为π6,则||||x b 的最大值等于________.【测量目标】向量模的计算,向量的数量积,不等式性质. 【考查方式】给出单位向量和非零向量,求向量模的比值. 【难易程度】较难 【参考答案】2【试题解析】∵12,e e 为单位向量,1e 和2e 的夹角等于30°,(步骤1)∴12 e e =1×1×cos30°=2.∵非零向量12x y +b =e e ,(步骤2)∴===b (步骤3)∴x====b故当x y=x b取得最大值为2,故答案为 2. (步骤4) 三、解答题18.在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【测量目标】等差数列的通项公式和.【考查方式】给出等比数列的首相和三项成等比数列,求通项公式,和前n 项绝对值和. 【难易程度】容易【试题解析】(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或;(步骤1)(Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n剟时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--∴++++=++++==…(步骤2)②当12n …时,1231231112132123111230||||||||()11(2111)(21)2ln 2202()()2222n n n n a a a a a a a a a a a a n n n a a a a a a a a ∴++++=++++-+++---+=++++-++++=⨯-=…所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧⎪⎪++++=⎨-+⎪⎪⎩ 剟…;(步骤3)19.设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当1,2,3===c b a 时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若95,35==ηηD E ,求.::c b a 【测量目标】随机事件与概率,期望和方差.【考查方式】有放回取样的分布列和已知期望和方差求个数比. 【难易程度】中等【试题解析】(Ⅰ)由已知得到:当两次摸到的球分别是红红时2ξ=,此时331(2)664P ξ⨯===⨯;(步骤1)当两次摸到的球分别是黄黄,红蓝,蓝红时4ξ=,此时2231135(4)66666618P ξ⨯⨯⨯==++=⨯⨯⨯;(步骤2)当两次摸到的球分别是红黄,黄红时(3)P ξ=,此时32231(3)66663P ξ⨯⨯==+=⨯⨯;(步骤3)当两次摸到的球分别是黄蓝,蓝黄时(5)P ξ=,此时12211(5)66669P ξ⨯⨯==+=⨯⨯;(步骤4)当两次摸到的球分别是蓝蓝时P (6ξ=),此时111(6)P ξ⨯===;(步骤5)所以ξ的分布列是: 9所以:2225233555253(1)(2)(3)9333a b c E a b c a b c a b ca b c D a b c a b c a b c ηη⎧==++⎪⎪++++++⎨⎪==-⨯+-⨯+-⨯⎪++++++⎩,所以2,3::3:2:1b c a c a b c ==∴=.(步骤6)20.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为60,求BDC ∠的大小.第20题图【测量目标】空间直线与平面的位置关系,异面直线成角.【考查方式】给出四面体和直线间的位置和长度关系求解二面角大大小. 【难易程度】中等【试题解析】(Ⅰ)方法一:如图,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以PF BD ;(步骤1)又因为3AQ QC =且3AF FD =,所以QF CD ,所以面PQF 面BDC ,且PQ ⊂面PQF ,所以PQ 面BDC ;(步骤2)第20题图方法二:如图所示,第20题图取BD 中点O ,且P 是BM 中点,所以12PO MD ;取CD 的三等分点H ,使3DH C H =,且3AQ QC =,所以1142QH AD MD,(步骤1)所以PO QH 四边形PQHO 是平行四边形PQ OH ∴ ,且OH BCD ⊂面,所以PQ 面BDC ;(步骤2) (Ⅱ)如图所示,第20题图由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥面,过G 作GH BM ⊥于H ,连结CH ,所以CHG ∠就是C BM D --的二面角;(步骤3)由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在Rt BCG △中,2s i ns i n BG BCG BG BCααα∠=∴=∴=,(步骤4)所以在Rt BHG △中,13HG =∴=,所以在Rt CHG △中tan tan 603CG CHG HG ∠==== (步骤5)tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;(步骤6)21.如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D .(1)求椭圆1C 的方程; (2)求ABD △面积取最大值时直线1l 的方程.第21题图【测量目标】直线与椭圆的位置关系,直线与圆的位置关系.【考查方式】给出定点和圆的方程,由直线与椭圆、圆的位置关系求椭圆方程和直线方程. 【难易程度】较难【试题解析】(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=;(步骤1)(Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l yx x k y k k=--⇒++=,所以圆心(0,0)到直线1:110l yk x k x y =-⇒--=的距离为d =,(步骤2)所以直线1l 被圆224x y +=所截的弦AB ==;(步骤3)由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,(步骤4) 所以228||44D P k x x DP k k +=-∴==++,(步骤5)所以11||||22444313ABDS AB DP k k k ====++++△23232===…(步骤6)当2522k k =⇒=⇒=±时等号成立,此时直线1:1l y x =-(步骤7) 22.已知a ∈R ,函数.3333)(23+-+-=a ax x x x f(1)求曲线)(x f y =在点))1(,1(f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值. 【测量目标】利用导数求函数的最值问题.【考查方式】给出含有未知量的函数求函数的最大值. 【难易程度】较难【试题解析】(Ⅰ)由已知得:2()363(1)33f x x x a f a ''=-+∴=-,且(1)13333f a a =-++-=,所以所求切线方程为:1(33)(1)y a x -=--,即为:3(1)430a x y a --+-=;(步骤1)(Ⅱ)由已知得到:2()3633[(2)]f x x x a x x a '=-+=-+,其中44a ∆=-,当[0,2]x ∈时,(2)0x x -…,(步骤2)(1)当0a …时,()0f x '…,所以()f x 在[0,2]x ∈上递减,所以max |()|max{(0),(2)}f x f f =,(步骤3)因为max (0)3(1),(2)31(2)0(0)|()|(0)33f a f a f f f x f a =-=-∴<<∴==-;(步骤4) (2)当440a ∆=-…,即1a …时,()0f x '…恒成立,所以()f x 在[0,2]x ∈上递增,所以max |()|max{(0),(2)}f x f f =,(步骤5)因为max (0)3(1),(2)31(0)0(2)|()|(2)31f a f a f f f x f a =-=-∴<<∴==-;(步骤6) (3)当440a ∆=->,即01a <<时,212()363011f x x x a x x '=-+=∴==+,且1202x x <<<,即所以12()12(1()12(1f x a f x a =+-=--,且31212()()20,()()14(1)0,f x f x f x f x a ∴+=>=--<12()()4(1f x f x a -=-,所以12()|()|f x f x >,(步骤7)所以max 1|()|max{(0),(2),()}f x f f f x =;(步骤8) 由2(0)(2)3331003f f a a a -=--+>∴<<,所以 (ⅰ)当203a <<时,(0)(2)f f >,所以(,1][,)x a ∈-∞+∞ 时,()y f x =递增,(1,)x a ∈时,()y f x =递减,所以max 1|()|max{(0),()}f x f f x =,(步骤9)因为21()(0)12(1332(1(23f x f a a a a -=+-+=--=,又因为203a <<,所以230,340a a ->->,所以1()(0)0f x f ->,所以m a x 1|()|()12(1f x f x a ==+-10)(ⅱ)当213a <…时,(2)0,(0)0f f ><,所以max 1|()|max{(2),()}f x f f x =,因为21()(2)12(1312(1(32)f x f a a a a -=+-+=--=,此时320a ->,当213a <<时,34a -是大于零还是小于零不确定,所以 ① 当2334a <<时,340a->,所以1()|(2)|f x f >,所以此时max 1|()|()12(1f x f x a ==+-(步骤11) ② 当314a <…时,340a-<,所以1()|(2)|f x f …,所以此时m a x|()|(2)31f x f a ==-(步骤12)综上所述:max 33,(0)3|()|12(1)4331,()4a a f x a a a a ⎧-⎪⎪=+-<<⎨⎪⎪-⎩…….(步骤13)。

2013年浙江卷(理科数学)

2013年浙江卷(理科数学)

2013年普通高等学校招生全国统一考试理科数学(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 是虚数单位,则(1)(2)i i -+-=A .3i -+B .13i -+C .33i -+D .1i -+ 2.设集合{2}S x x =>-,2{340}T x x x =+-≤,则()R C S T =UA .(2,1]-B .(,4]-∞-C .(,1]-∞D .[1,)+∞ 3已知x ,y 为正实数,则A.lg lg lg lg 222x y x y +=+B.lg()lg lg 222x y x y +=⋅C.lg lg lg lg 222x y x y ⋅=+D.lg()lg lg 222xy x y =⋅4.已知函数()cos()f x A x ωϕ=+(0A >,0ω>,R ϕ∈),则“()f x 是奇函数”是“2πϕ=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.某程序框图如图所示,若该程序运行后输出的值是95,则a =A .4B .5C .6D .76.已知a R ∈,sin 2cos 2αα+=,则tan 2α= A .43 B .34 C .34- D .43-7.设ABC ∆,0P 是边AB 上一定点,满足014P B AB =,且对于AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅u u u r u u u r u u u r u u u r,则 A .90ABC ∠=o B .90BAC ∠=o C .AB AC = D .AC BC =8.已知e 为自然对数的底数,设函数()(1)(1)x k f x e x =--(1k =,2),则 A .当1k =时,()f x 在1x =处取到极小值 B .当1k =时,()f x 在1x =处取到极大值 C .当2k =时,()f x 在1x =处取到极小值 D .当2k =时,()f x 在1x =处取到极大值9.如图,1F ,2F 是椭圆1C :2214x y +=与双曲线2C 的公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若四边形12AF BF 为矩形,则2C 的离心率为ABC .3D10.在空间中,过点A 作平面π的垂线,垂足为B ,记()B f A π=.设α,β是两个不同的平面,对空间任意一点P ,1[()]Q f f P βα=,2[()]Q f f P αβ=,恒有12PQ PQ =,则A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45oC .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60o二、填空题:本大题共7小题,每小题4分,共28分. 11.设二项式5的展开式中常数项为A ,则A = . 12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于 3cm .13.设z kx y =+,其中实数x ,y 满足20240240x y x y x y +-≥⎧⎪-+≤⎨⎪--≤⎩,若z 的最大值为12,则实数k = .14.将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法有 种(用数字作答).15.设F 为抛物线C :24y x =的焦点,过点(1,0)F -的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若2FQ =,则直线l 的斜率等于 . 16.在ABC ∆中,90C ∠=o ,M 是BC 的中点.若1sin 3BAM ∠=,则sin BAC ∠=.17.设1e u r ,2e u u r 为单位向量,非零向量12b xe ye =+r u r u u r ,x ,y R ∈.若1e u r ,2e u u r的夹角为6π,则x br 的最大值等于 . 三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本小题满分14分)在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (Ⅰ)求d ,n a ;(Ⅱ)若0d <,求123n a a a a ++++L .设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(Ⅰ)当3a =,2b =,1c =时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量X 为取出此2球所得分数之和,求X 的分布列; (Ⅱ)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若53E η=,59D η=,求::a b c .20.(本小题满分15分)如图,在四面体A BCD -中,AD ⊥平面BCD ,BC CD ⊥,2AD =,BD =.M是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且3AQ QC =. (Ⅰ)证明:PQ ∥平面BCD ;(Ⅱ)若二面角C BM D --的大小为60o ,求BDC ∠的大小.21.(本小题满分15分)如图,点(0,1)P -是椭圆1C :22221x y a b+=(0a b >>)的一个顶点,1C 的长轴是圆2C :224x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A ,B 两点,2l 交椭圆1C 于另一点D . (Ⅰ)求椭圆1C 的方程;(Ⅱ)求ABD ∆面积取最大值时直线1l 的方程.ABD PQM已知a R ∈,函数32()3333f x x x ax a =-+-+. (Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当[0,2]x ∈时,求()f x 的最大值.。

2013年高考浙江卷理科数学试题及答案

2013年高考浙江卷理科数学试题及答案

2013年普通高等学校招生全国统一考试理科数学(浙江卷)选择题部分(共50分)一、选择题:每小题5分,共50分. 1.已知i 是虚数单位,则(−1+i)(2−i)=A .−3+iB .−1+3iC .−3+3iD .−1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S ={x |x >−2},T ={x |x 2+3x −4≤0},则( R S )∪T =A .(−2,1]B .(−∞,−4]C .(−∞,1]D .[1,+∞) 【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为( R S )={x |x ≤−2},T ={x |−4≤x ≤1},所以( R S )∪T =(−∞,1]. 3.已知x ,y 为正实数,则A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ∙ 2lg yC .2lg x ∙ lg y =2lg x +2lg yD .2lg(xy )=2lg x ∙ 2lg y【命题意图】本题考查指数和对数的运算性质,属于容易题 【答案解析】D 由指数和对数的运算法则,易知选项D 正确4.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f (x )是奇函数可知f (0)=0,即cos φ=0,解出φ=π2+k π,k ∈Z ,所以选项B 正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A .a =4B .a =5C .a =6D .a =7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A 6.已知α∈R ,sin α+2cos α=102,则tan2α= A .43B .34C .−34D .−43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=⎝⎛⎭⎫1022可得sin 2α+4cos 2α+4sin αcos α sin 2α+cos 2α=104,进一步整理可得3tan 2α−8tan α−3=0,解得tan α=3或tan α=−13,于是tan2α=2tan α1−tan 2α=−34.(第5题图)7.设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于AB 上任一点P ,恒有→PB ∙→PC ≥→P 0B ∙→P 0C ,则A .∠ABC =90︒B .∠BAC =90︒ C .AB =ACD .AC =BC 【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设|→AB |=4,则|→P 0B |=1,过点C 作AB 的垂线,垂足为H ,在AB 上任取一点P ,设HP 0=a ,则由数量积的几何意义可得,→PB ∙→PC =|→PH ||→PB |=(|→PB |−(a +1))|→PB |,→P 0B ∙→P 0C =−|→P 0H ||→P 0B |=−a ,于是→PB ∙→PC ≥→P 0B ∙→P 0C恒成立,相当于(|→PB |−(a +1))|→PB |≥−a 恒成立,整理得|→PB|2−(a +1)|→PB |+a ≥0恒成立,只需∆=(a +1)2−4a =(a −1)2≤0即可,于是a =1,因此我们得到HB =2,即H 是AB 的中点,故△ABC 是等腰三角形,所以AC =BC 8.已知e 为自然对数的底数,设函数f (x )=(e x −1)(x −1)k (k =1,2),则 A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k =1时,方程f (x )=0有两个解,x 1=0,x 2=1,由标根法可得f (x )的大致图象,于是选项A ,B 错误;当k =2时,方程f (x )=0有三个解,x 1=0,x 2=x 3=1,其中1是二重根,由标根法可得f (x )的大致图象,易知选项C 正确。

2013年浙江省高考数学试卷(理科)

2013年浙江省高考数学试卷(理科)

20####省高考数学试卷〔理科〕一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.〔5分〕〔2013•##〕已知i是虚数单位,则〔﹣1+i〕〔2﹣i〕=〔〕A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i2.〔5分〕〔2013•##〕设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则〔∁R S〕∪T=〔〕A.〔﹣2,1]B.〔﹣∞,﹣4]C.〔﹣∞,1]D.[1,+∞〕3.〔5分〕〔2013•##〕已知x,y为正实数,则〔〕A.2lgx+lgy=2lgx+2lgy B.2lg〔x+y〕=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg〔xy〕=2lgx•2lgy4.〔5分〕〔2013•##〕已知函数f〔x〕=Acos〔ωx+φ〕〔A>0,ω>0,φ∈R〕,则"f〔x〕是奇函数〞是"φ=〞的〔〕A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.〔5分〕〔2013•##〕某程序框图如图所示,若该程序运行后输出的值是,则〔〕A.a=4 B.a=5 C.a=6 D.a=76.〔5分〕〔2013•##〕已知,则tan2α=〔〕A.B.C.D.7.〔5分〕〔2013•##〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则〔〕A.∠ABC=90°B.∠BAC=90°C.A B=AC D.A C=BC8.〔5分〕〔2013•##〕已知e为自然对数的底数,设函数f〔x〕=〔e x﹣1〕〔x﹣1〕k〔k=1,2〕,则〔〕A.当k=1时,f〔x〕在x=1处取得极小值B.当k=1时,f〔x〕在x=1处取得极大值C.当k=2时,f〔x〕在x=1处取得极小值D.当k=2时,f〔x〕在x=1处取得极大值9.〔5分〕〔2013•##〕如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是〔〕A.B.C.D.10.〔5分〕〔2013•##〕在空间中,过点A作平面π的垂线,垂足为B,记B=fπ〔A〕.设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα〔P〕],Q2=fα[fβ〔P〕],恒有PQ1=PQ2,则〔〕A.平面α与平面β垂直B.平面α与平面β所成的〔锐〕二面角为45°C.平面α与平面β平行D.平面α与平面β所成的〔锐〕二面角为60°二、填空题:本大题共7小题,每小题4分,共28分.11.〔4分〕〔2013•##〕设二项式的展开式中常数项为A,则A=_________.12.〔4分〕〔2013•##〕若某几何体的三视图〔单位:cm〕如图所示,则此几何体的体积等于_________cm3.13.〔4分〕〔2013•##〕设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=_________.14.〔4分〕〔2013•##〕将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有_________种〔用数字作答〕15.〔4分〕〔2013•##〕设F为抛物线C:y2=4x的焦点,过点P〔﹣1,0〕的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于_________.16.〔4分〕〔2013•##〕△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=_________.17.〔4分〕〔2013•##〕设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于_________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.〔14分〕〔2013•##〕在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.〔Ⅰ〕求d,a n;〔Ⅱ〕若d<0,求|a1|+|a2|+|a3|+…+|a n|.19.〔14分〕〔2013•##〕设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.〔1〕当a=3,b=2,c=1时,从该袋子中任取〔有放回,且每球取到的机会均等〕2个球,记随机变量ξ为取出此2球所得分数之和.,求ξ分布列;〔2〕从该袋子中任取〔且每球取到的机会均等〕1个球,记随机变量η为取出此球所得分数.若,求a:b:c.20.〔15分〕〔2013•##〕如图,在四面体A﹣BCD中,AD⊥平面BCD,.M是AD的中点,P 是BM的中点,点Q在线段AC上,且AQ=3QC.〔1〕证明:PQ∥平面BCD;〔2〕若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.21.〔15分〕〔2013•##〕如图,点P〔0,﹣1〕是椭圆的一个顶点,C1的长轴是圆的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于两点,l2交椭圆C1于另一点D〔1〕求椭圆C1的方程;〔2〕求△ABD面积取最大值时直线l1的方程.22.〔14分〕〔2013•##〕已知a∈R,函数f〔x〕=x3﹣3x2+3ax﹣3a+3.〔1〕求曲线y=f〔x〕在点〔1,f〔1〕〕处的切线方程;〔2〕当x∈[0,2]时,求|f〔x〕|的最大值.20####省高考数学试卷〔理科〕参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.〔5分〕〔2013•##〕已知i是虚数单位,则〔﹣1+i〕〔2﹣i〕=〔〕A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i考点:复数代数形式的乘除运算.专题:计算题.分析:直接利用两个复数代数形式的乘法法则,以与虚数单位i的幂运算性质,运算求得结果.解答:解:〔﹣1+i〕〔2﹣i〕=﹣2+i+2i+1=﹣1+3i, 故选B.点评:本题主要考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.〔5分〕〔2013•##〕设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则〔∁R S〕∪T=〔〕A.〔﹣2,1]B.〔﹣∞,﹣4]C.〔﹣∞,1]D.[1,+∞〕考点:交、并、补集的混合运算.分析:先根据一元二次不等式求出集合T,然后求得∁R S,再利用并集的定义求出结果.解答:解:∵集合S={x|x>﹣2},∴∁R S={x|x≤﹣2}由x2+3x﹣4≤0得:T={x|﹣4≤x≤1}, 故〔∁R S〕∪T={x|x≤1}故选C.点评:此题属于以一元二次不等式的解法为平台,考查了补集与并集的运算,是高考中常考的题型.在求补集时注意全集的X围.3.〔5分〕〔2013•##〕已知x,y为正实数,则〔〕A.2lgx+lgy=2lgx+2lgy B.2lg〔x+y〕=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg〔xy〕=2lgx•2lgy考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用指数与对数的运算性质,判断选项即可.解答:解:因为a s+t=a s•a t,lg〔xy〕=lgx+lgy〔x,y为正实数〕,所以2lg〔xy〕=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.点评:本题考查指数与对数的运算性质,基本知识的考查.4.〔5分〕〔2013•##〕已知函数f〔x〕=Acos〔ωx+φ〕〔A>0,ω>0,φ∈R〕,则"f〔x〕是奇函数〞是"φ=〞的〔〕A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:φ=⇒f〔x〕=Acos〔ωx+〕⇒f〔x〕=Asin〔ωx〕〔A>0,ω>0,x∈R〕是奇函数.f〔x〕为奇函数⇒f〔0〕=0⇒φ=kπ+,k∈Z.所以"f〔x〕是奇函数〞是"φ=〞必要不充分条件.解答:解:若φ=,则f〔x〕=Acos〔ωx+〕⇒f〔x〕=Asin〔ωx〕〔A>0,ω>0,x∈R〕是奇函数;若f〔x〕是奇函数,⇒f〔0〕=0,∴f〔0〕=Acos〔ω×0+φ〕=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ="f〔x〕是奇函数〞是"φ=〞必要不充分条件.故选B.点评:本题考查充分条件、必要条件和充要条件的判断,解题时要认真审题,仔细解答,注意三角函数性质的灵活运用.5.〔5分〕〔2013•##〕某程序框图如图所示,若该程序运行后输出的值是,则〔〕A.a=4 B.a=5 C.a=6 D.a=7考点:程序框图.专题:图表型.分析:根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.解答:解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则2﹣=.∴a=4,故选A.点评:本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.6.〔5分〕〔2013•##〕已知,则tan2α=〔〕A.B.C.D.考点:二倍角的正切;同角三角函数间的基本关系.专题:三角函数的求值.分析:由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.解答:解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选C点评:本题考查二倍角的正切公式,涉与同角三角函数的基本关系,属中档题.7.〔5分〕〔2013•##〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则〔〕A.∠ABC=90°B.∠BAC=90°C.A B=AC D.A C=BC 考点:平面向量数量积的运算.专题:计算题;平面向量与应用.分析:以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C〔a,b〕,P〔x,0〕,然后由题意可写出,,,,然后由结合向量的数量积的坐标表示可得关于x的二次不等式,结合二次不等式的知识可求a,进而可判断解答:解:以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C〔a,b〕,P〔x,0〕则BP0=1,A〔﹣2,0〕,B〔2,0〕,P0〔1,0〕∴=〔1,0〕,=〔2﹣x,0〕,=〔a﹣x,b〕,=〔a﹣1,b〕∵恒有∴〔2﹣x〕〔a﹣x〕≥a﹣1恒成立整理可得x2﹣〔a+2〕x+a+1≥0恒成立∴△=〔a+2〕2﹣4〔a+1〕≤0即△=a2≤0∴a=0,即C在AB的垂直平分线上∴AC=BC故△ABC为等腰三角形故选D点评:本题主要考查了平面向量的运算,向量的模与向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8.〔5分〕〔2013•##〕已知e为自然对数的底数,设函数f〔x〕=〔e x﹣1〕〔x﹣1〕k〔k=1,2〕,则〔〕A.当k=1时,f〔x〕在x=1处取得极小值B.当k=1时,f〔x〕在x=1处取得极大值C.当k=2时,f〔x〕在x=1处取得极小值D.当k=2时,f〔x〕在x=1处取得极大值考点:函数在某点取得极值的条件.专题:导数的综合应用.分析:通过对函数f〔x〕求导,根据选项知函数在x=1处有极值,验证f'〔1〕=0,再验证f〔x〕在x=1处取得极小值还是极大值即可得结论.解答:解:当k=2时,函数f〔x〕=〔e x﹣1〕〔x﹣1〕2.求导函数可得f'〔x〕=e x〔x﹣1〕2+2〔e x﹣1〕〔x﹣1〕=〔x﹣1〕〔xe x+e x﹣2〕,∴当x=1,f'〔x〕=0,且当x>1时,f'〔x〕>0,当<x<1时,f'〔x〕<0,故函数f〔x〕在〔1,+∞〕上是增函数;在〔,1〕上是减函数,从而函数f〔x〕在x=1取得极小值.对照选项.故选C.点评:本题考查了函数的极值问题,考查学生的计算能力,正确理解极值是关键.9.〔5分〕〔2013•##〕如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是〔〕A.B.C.D.考椭圆的简单性质.点:计算题;压轴题;圆锥曲线的定义、性质与方程.专题:分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义与性质即可求得C2的离心率.解解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,答:∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=〔2c〕2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a,焦距为2c,则2a=,|AF2|﹣|AF1|=y﹣x=2,2c=2=2,∴双曲线C2的离心率e===.故选D.点本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.评:10.〔5分〕〔2013•##〕在空间中,过点A作平面π的垂线,垂足为B,记B=fπ〔A〕.设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα〔P〕],Q2=fα[fβ〔P〕],恒有PQ1=PQ2,则〔〕A.平面α与平面β垂直B.平面α与平面β所成的〔锐〕二面角为45°C.平面α与平面β平行D.平面α与平面β所成的〔锐〕二面角为60°考点:空间中直线与平面之间的位置关系;平面与平面之间的位置关系;二面角的平面角与求法.专题:证明题;压轴题;空间位置关系与距离.分析:设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.解答:解:设P1=fα〔P〕,则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα〔P〕]=fβ〔P1〕,∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ〔P〕,得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ〔P〕]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A点评:本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.〔4分〕〔2013•##〕设二项式的展开式中常数项为A,则A=﹣10.考点:二项式系数的性质.专题:计算题.分析:先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.解答:解:二项式的展开式的通项公式为T r+1=••〔﹣1〕r•=〔﹣1〕r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.〔4分〕〔2013•##〕若某几何体的三视图〔单位:cm〕如图所示,则此几何体的体积等于24cm3.考点:由三视图求面积、体积.专题:计算题.分析:先根据三视图判断几何体的形状,再利用体积公式计算即可.解答:解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,棱柱的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V三棱锥=﹣×3=24〔cm3〕故答案为:24点评:本题考查几何体的三视图与几何体的体积计算.V椎体=Sh,V柱体=Sh.考查空间想象能力.13.〔4分〕〔2013•##〕设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=2.考点:简单线性规划.专题:不等式的解法与应用.分析:先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y得到最大值点A,即可得到答案.解答:解:可行域如图:由得:A〔4,4〕,同样地,得B〔0,2〕,①当k>﹣时,目标函数z=kx+y在x=4,y=4时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=4k+4,故k=2.②当k时,目标函数z=kx+y在x=0,y=2时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=0×k+2,故k不存在.综上,k=2.故答案为:2.点评:本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.14.〔4分〕〔2013•##〕将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种〔用数字作答〕考点:排列、组合与简单计数问题.专题:概率与统计.分析:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.解答:解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.点评:本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要掌握分类讨论的处理方法.15.〔4分〕〔2013•##〕设F为抛物线C:y2=4x的焦点,过点P〔﹣1,0〕的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.考点:直线与圆锥曲线的关系;直线的斜率.专题:圆锥曲线的定义、性质与方程.分析:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16〔m2﹣1〕>0.设A 〔x1,y1〕,B〔x2,y2〕,Q〔x0,y0〕.利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q〔2m2﹣1,2m〕,由抛物线C:y2=4x得焦点F〔1,0〕.再利用两点间的距离公式即可得出m与k,再代入△判断是否成立即可.解答:解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16〔m2﹣1〕>0.设A〔x1,y1〕,B〔x2,y2〕,Q〔x0,y0〕.∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q〔2m2﹣1,2m〕,由抛物线C:y2=4x得焦点F〔1,0〕.∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.点评:本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.16.〔4分〕〔2013•##〕△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.考点:正弦定理.专题:压轴题;解三角形.分析:作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.解答:解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos〔﹣∠AMC〕=sin∠AMC=sin〔π﹣∠AMB〕=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=〔a2﹣2b2〕=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,故答案为:点评:本题考查正弦定理的应用,涉与三角函数的诱导公式以与勾股定理的应用,属中档题.17.〔4分〕〔2013•##〕设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.考点:数量积表示两个向量的夹角.专题:压轴题;平面向量与应用.分析:由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.点评:本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.〔14分〕〔2013•##〕在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.〔Ⅰ〕求d,a n;〔Ⅱ〕若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:〔Ⅰ〕直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;〔Ⅱ〕利用〔Ⅰ〕中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:〔Ⅰ〕由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+〔n﹣1〕d=10﹣〔n﹣1〕=﹣n+11.当d=4时,a n=a1+〔n﹣1〕d=10+4〔n﹣1〕=4n+6.所以a n=﹣n+11或a n=4n+6;〔Ⅱ〕设数列{a n}的前n项和为S n,因为d<0,由〔Ⅰ〕得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.19.〔14分〕〔2013•##〕设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.〔1〕当a=3,b=2,c=1时,从该袋子中任取〔有放回,且每球取到的机会均等〕2个球,记随机变量ξ为取出此2球所得分数之和.,求ξ分布列;〔2〕从该袋子中任取〔且每球取到的机会均等〕1个球,记随机变量η为取出此球所得分数.若,求a:b:c.考点:离散型随机变量与其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:〔1〕ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;〔2〕先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.解答:解:〔1〕由题意得ξ=2,3,4,5,6,P〔ξ=2〕==;P〔ξ=3〕==;P〔ξ=4〕==;P〔ξ=5〕==;P〔ξ=6〕==.故所求ξ的分布列为ξ 2 3 4 5 6P〔2〕由题意知η的分布列为η 1 2 3PEη==Dη=〔1﹣〕2+〔2﹣〕2+〔3﹣〕2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.点评:本题主要考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.〔15分〕〔2013•##〕如图,在四面体A﹣BCD中,AD⊥平面BCD,.M是AD的中点,P 是BM的中点,点Q在线段AC上,且AQ=3QC.〔1〕证明:PQ∥平面BCD;〔2〕若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.考点:二面角的平面角与求法;直线与平面平行的判定.专题:计算题;空间位置关系与距离;空间角.分析:〔1〕取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;〔2〕过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.解答:〔1〕取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;〔2〕过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠BDC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°点评:本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,并且在已知二面角大小的情况下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.21.〔15分〕〔2013•##〕如图,点P〔0,﹣1〕是椭圆的一个顶点,C1的长轴是圆的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于两点,l2交椭圆C1于另一点D〔1〕求椭圆C1的方程;〔2〕求△ABD面积取最大值时直线l1的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;压轴题;圆锥曲线的定义、性质与方程.分析:〔1〕由题意可得b=1,2a=4,即可得到椭圆的方程;〔2〕设A〔x1,y1〕,B〔x2,y2〕,D〔x0,y0〕.由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx ﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.解答:解:〔1〕由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;〔2〕设A〔x1,y1〕,B〔x2,y2〕,D〔x0,y0〕.由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O〔0,0〕到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到〔4+k2〕x2+8kx=0,解得, ∴.∴三角形ABD的面积.∴=,当且仅当时取等号,故所求直线l1的方程为.点评:本题主要考查了椭圆的几何性质、直线与圆与椭圆的位置关系等基础知识,同时考查了推理能力和计算能力与分析问题和解决问题的能力.22.〔14分〕〔2013•##〕已知a∈R,函数f〔x〕=x3﹣3x2+3ax﹣3a+3.〔1〕求曲线y=f〔x〕在点〔1,f〔1〕〕处的切线方程;〔2〕当x∈[0,2]时,求|f〔x〕|的最大值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:压轴题;导数的综合应用.分析:〔1〕求出原函数的导函数,求出函数取x=1时的导数值与f〔1〕,由直线方程的点斜式写出切线方程;〔2〕求出原函数的导函数,分a≤0,0<a<1,a≥1三种情况求|f〔x〕|的最大值.特别当0<a<1时,仍需要利用导数求函数在区间〔0,2〕上的极值,然后在根据a的X围分析区间端点值与极值绝对值的大小.解答:解:〔1〕因为f〔x〕=x3﹣3x2+3ax﹣3a+3,所以f′〔x〕=3x2﹣6x+3a,故f′〔1〕=3a﹣3,又f〔1〕=1,所以所求的切线方程为y=〔3a﹣3〕x﹣3a+4;〔2〕由于f′〔x〕=3〔x﹣1〕2+3〔a﹣1〕,0≤x≤2.故当a≤0时,有f′〔x〕≤0,此时f〔x〕在[0,2]上单调递减,故|f〔x〕|max=max{|f〔0〕|,|f〔2〕|}=3﹣3a.当a≥1时,有f′〔x〕≥0,此时f〔x〕在[0,2]上单调递增,故|f〔x〕|max=max{|f〔0〕|,|f〔2〕|}=3a﹣1.当0<a<1时,由3〔x﹣1〕2+3〔a﹣1〕=0,得,.所以,当x∈〔0,x1〕时,f′〔x〕>0,函数f〔x〕单调递增;当x∈〔x1,x2〕时,f′〔x〕<0,函数f〔x〕单调递减;当x∈〔x2,2〕时,f′〔x〕>0,函数f〔x〕单调递增.所以函数f〔x〕的极大值,极小值.故f〔x1〕+f〔x2〕=2>0,.从而f〔x1〕>|f〔x2〕|.所以|f〔x〕|max=max{f〔0〕,|f〔2〕|,f〔x1〕}.当0<a<时,f〔0〕>|f〔2〕|.又=故.当时,|f〔2〕|=f〔2〕,且f〔2〕≥f〔0〕.又=.所以当时,f〔x1〕>|f〔2〕|.故.当时,f〔x1〕≤|f〔2〕|.故f〔x〕max=|f〔2〕|=3a﹣1.综上所述|f〔x〕|max=.点评:本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,正确的分类是解答〔2〕的关键,此题属于难题.。

2013年浙江省高考数学试卷(理科)教师版

2013年浙江省高考数学试卷(理科)教师版

2013年浙江省高考数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i【分析】直接利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.【解答】解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选:B.2.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁R S)∪T=()A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)【分析】先根据一元二次不等式求出集合T,然后求得∁R S,再利用并集的定义求出结果.【解答】解:∵集合S={x|x>﹣2},∴∁R S={x|x≤﹣2},T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},故(∁R S)∪T={x|x≤1}故选:C.3.(5分)(2013•浙江)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy【分析】直接利用指数与对数的运算性质,判断选项即可.【解答】解:因为a s+t=a s•a t,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选:D.4.(5分)(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】φ=⇒f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.所以“f(x)是奇函数”是“φ=”必要不充分条件.【解答】解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选:B.5.(5分)(2013•浙江)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4B.a=5C.a=6D.a=7【分析】根据已知流程图可得程序的功能是计算S=1++…+的值,利用裂项相消法易得答案.【解答】解:由已知可得该程序的功能是计算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则2﹣=.∴a=4,故选:A.6.(5分)(2013•浙江)已知,,则tan2α=()A.B.C.D.【分析】根据同角三角函数关系式和万能公式化简后求出tanα,利用二倍角公式求出tan2α的值.【解答】解:由sinα+2cosα=,则(sinα+2cosα)2=,即sin2α+4sinαcosα+4cos2α=,可得,解得tanα=3.那么tan2α==.故选:C.7.(5分)(2013•浙江)设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC【分析】设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.【解答】解:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,=||•||=||2﹣(a+1)||,•=﹣a,于是•≥••恒成立,整理得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.故选:D.8.(5分)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(e x﹣1)(x ﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值【分析】通过对函数f(x)求导,根据选项知函数在x=1处有极值,验证f'(1)=0,再验证f(x)在x=1处取得极小值还是极大值即可得结论.【解答】解:当k=1时,函数f(x)=(e x﹣1)(x﹣1).求导函数可得f'(x)=e x(x﹣1)+(e x﹣1)=(xe x﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(e x﹣1)(x﹣1)2.求导函数可得f'(x)=e x(x﹣1)2+2(e x﹣1)(x﹣1)=(x﹣1)(xe x+e x﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对照选项.故选:C.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.10.(5分)(2013•浙江)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°【分析】设P1是点P在α内的射影,点P2是点P在β内的射影.根据题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,根据面面垂直的定义可得平面α与平面β垂直,得到本题答案.【解答】解:设P1=fα(P),则根据题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)设二项式的展开式中常数项为A,则A=﹣10.【分析】先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.=••(﹣1)r•=【解答】解:二项式的展开式的通项公式为T r+1(﹣1)r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.12.(4分)(2013•浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24cm3.【分析】先根据三视图判断几何体的形状,再利用体积公式计算即可.【解答】解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V棱锥==24(cm3)13.(4分)(2013•浙江)设z=kx+y,其中实数x,y满足,若z 的最大值为12,则实数k=2.【分析】先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y 得到最大值点A,即可得到答案.【解答】解:可行域如图:由得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种情况.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;当k<0时,①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=4k+4,故k=2.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,12=0×k+2,故k不存在.综上,k=2.14.(4分)(2013•浙江)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)【分析】按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.【解答】解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置可以选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.15.(4分)(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.【分析】由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.16.(4分)(2013•浙江)△ABC中,∠C=90°,M是BC的中点,若,则sin ∠BAC=.【分析】作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.【解答】解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,另解:设∠BAM为α,∠MAC为β,正弦定理得BM:sinα=AM:sin∠BBM:sinβ=AM又有sinβ=cos∠AMC=cos(α+∠B),联立消去BM,AM得sin∠Bcos(α+∠B)=sinα,拆开,将1化成sin2∠B+cos2∠B,构造二次齐次式,同除cos2∠B,可得tanα=,若,则cos∠BAM=,tan∠BAM=,解得tan∠B=,cosB=易得sin∠BAC=.另解:作MD⊥AB交于D,设MD=1,AM=3,AD=2,DB=x,BM=CM=,用△DMB和△CAB相似解得x=,则cosB=,易得sin∠BAC=.故答案为:17.(4分)(2013•浙江)设 、 为单位向量,非零向量 =x +y,x 、y ∈R .若、的夹角为30°,则的最大值等于 2 .【分析】由题意求得=,| |= =,从而可得===,再利用二次函数的性质求得的最大值.【解答】解:∵ 、 为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x +y ,∴| |= == ,∴= = = =, 故当 =﹣时,取得最大值为2,故答案为 2.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.【分析】(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=,,.19.(14分)(2013•浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,,求a:b:c.【分析】(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.【解答】解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为(2)由题意知η的分布列为Eη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.20.(15分)(2013•浙江)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.【分析】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.根据平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF 是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.根据线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,根据正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.【解答】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠BDC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°21.(15分)(2013•浙江)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【分析】(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联立即可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用基本不等式的性质即可得出其最大值,即得到k的值.【解答】解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆:的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.==,∴三角形ABD的面积S△令4+k2=t>4,则k2=t﹣4,f(t)===,=,当且仅,即,当时取等,∴S△故所求直线l1的方程为.22.(14分)(2013•浙江)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.【分析】(1)求出原函数的导函数,求出函数取x=1时的导数值及f(1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a≤0,0<a<1,a≥1三种情况求|f(x)|的最大值.特别当0<a<1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在根据a的范围分析区间端点值与极值绝对值的大小.【解答】解:(1)因为f(x)=x3﹣3x2+3ax﹣3a+3,所以f′(x)=3x2﹣6x+3a,故f′(1)=3a﹣3,又f(1)=1,所以所求的切线方程为y=(3a﹣3)x﹣3a+4;(2)由于f′(x)=3(x﹣1)2+3(a﹣1),0≤x≤2.故当a≤0时,有f′(x)≤0,此时f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3﹣3a.当a≥1时,有f′(x)≥0,此时f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a﹣1.当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得,.所以,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.所以函数f(x)的极大值,极小值.故f(x1)+f(x2)=2>0,>.从而f(x1)>|f(x2)|.所以|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<时,f(0)>|f(2)|.又=>故.当<时,|f(2)|=f(2),且f(2)≥f(0).又=.所以当<时,f(x1)>|f(2)|.故.当<时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a﹣1.综上所述|f(x)|max=,,<<,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 考试结束前
浙江省2013年7月高等教育自学考试
高等数学(一)试题
课程代码:00020
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.下列各对函数中,表示同一个函数的是
A.()211
x f x x =+-与g (x )=x -1 B.f (x )=lg x 2与g (x )=2lg x
C.()f x =g (x )=sin x
D.f (x )=| x |与g (x
2.x =1是函数()f x =
A.连续点
B.可去间断点
C.跳跃间断点
D.第二类间断点
3.下列函数中在给定的区间上满足罗尔定理条件的是
A.f (x )=xe -x ,[0,1]
B.(),010,1x x f x x ≤<⎧=⎨=⎩
C.()45,1,123f x x =
+[-] D.f (x )=| x |,[-1,1] 4.设()()221x x f t dt a a f x =⎰-,为连续函数,则f (x )等于
A.2a 2x
B.a 2x ln a
C.2xa 2x -1
D.2a 2x ln a 5.设函数f (x ,y )=a (x -y )-x 2-y 2在点(2,-2)处取到极值,则
A.a =2,(2,-2)为极大值点
B.a =4,(2,-2)为极大值点
C.a =-4,(2,-2)为极小值点
D.a =4,(2,-2)为极小值点
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、填空题(本大题共10小题,每小题3分,共30分)
6.设当x →0时,ax 2
与tan 2
3x 为等价无穷小,则a =__________. 7.极限1lim()1
x x x x →∞-=+__________. 8.曲线221(1)
x y x +=-的水平渐近线为__________. 9.设()21 0 0x e x f x x a x x ⎧>⎪=⎨⎪+≤⎩
-在x =0处连续,则常数a =__________.
10.曲线y =(x -1)3-1的拐点是__________.
11.已知某产品的销量Q 与价格P 之间的关系为P =150-0.01Q (元),则当Q =100件时的边际收益是__________.
12.设z =arctan
y x
,则dz =__________. 13.设(
)4
sin x k dx π+=⎰k =__________. 14.曲线y =e 2x -1在x =0处的切线是__________.
15.设D:| x |≤π,0≤y ≤1.则()2D
xy d σ+⎰⎰=__________.
三、计算题(一)(本大题共5小题,每小题5分,共25分)
16.求极限求3113lim().11x x x
→--- 17.
设函数y =,求,dy y ''.
18.设F (u ,v )可微,z =z (x ,y )由方程F (cx -az ,cy -bz )=0上所确定,其中a 、b 、c 是常数,计算.
z z a b x y ∂∂+∂∂. 19.设函数f (x )二次可微,且f (0)=0,f ′(0)=1,f ″(0)=2,试求()2
0lim .x f x x x →- 20.
求定积分1
四、计算题(二)(本大题共3小题,每小题7分,共21分)
21.求函数f (x )=12
x 2e -x 的单调区间与极值. 22.求解微分方程(y 2-6x )dy +2ydx =0.
23.已知f (x )的一个原函数是ln (x ,求()xf x dx '⎰
. 五、应用题(本大题9分)
24.求抛物线y (2,4)处的法线l 及x 轴所围成的平面图形绕x 轴旋转一周生成的旋转体体积.
六、证明题(本大题5分)
25.证明当x <0时,arctan x +3
3x x <.。

相关文档
最新文档