高等数学上册必背的知识点期末考试备考的重点知识

合集下载

高等数学(上册)重点总结

高等数学(上册)重点总结

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限: ⑴当∞→x时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x →时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x xx ==⇔=+-→→→)(lim )(lim )(lim 000㈡无穷大量和无穷小量 1.无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。

《高等数学》(上)期末复习知识要点

《高等数学》(上)期末复习知识要点

1、 四则运算法则与复合运算法则(换元法);2、 初等函数的连续性(代入法): 00lim ()()x x f x f x →=;3、 两个重要极限:1)0sin lim1x x x→=,【特征:0sin lim 1→=】2)1lim(1)x x e x →∞+=(或1lim(1)n n e n→∞+=,10lim(1)x x x e →+=);【特征:1lim(1)e →∞+= 】4、 存在准则:1)夹逼准则,2)单调有界准则;5、 洛必达法则:未定式00或∞∞(其它类型未定式:000,,,1,0∞⋅∞∞−∞∞必须转化); 6、 等价无穷小量替换:只适用于乘除,加减不适用.(当0x →时,21cos 2x x −∼, sin (tan ,arctan ,arcsin ,1,ln(1)),x x x x x e x x −+∼(1)1a x x α+−∼(α为常数)等等)7、 无穷小的性质:有界量与无穷小的乘积、有限个无穷小的和与乘积均为无穷小等 8、 泰勒公式(麦克劳林公式); 9、 微分中值定理;10、 定积分或导数定义*: 1)*【定积分定义】、设()f x 在[,]a b 上可积,则1lim ()()nb a n i b a b af a i f x dx n n→∞=−−+⋅=∑∫; 2)【导数定义】设()f x 在点a 处可导,则0()()()()lim()lim ()x ah f x f a f a h f a f a f a x a h→→−+−′′==−或.1、 函数()f x 在点0x 处连续000lim ()()lim ()lim ()()x x x x x x f x f x f x f x f x +−→→→⇔=⇔==;2、 间断点:1)第一类间断点:可去,跳跃;2)第二类间断点:无穷,振荡等.3、 连续函数的运算性质:连续函数的加减乘除仍为连续函数;连续函数的复合函数仍为连续函数 4、 初等函数的连续性:一切初等函数在其定义区间内处处连续 5、 闭区间上连续函数的性质:1)有界性;2)最大值最小值定理;3)零点定理【闭上连续两端异号零点在开内】;4)介值定理及其推论一、 极限及其求法:二、 函数的连续性《高等数学》(上)期末复习要点1、 定义: 1)0000000()()()()()limlimx x x f x f x f x x f x f x x x x →∆→−+∆−′==−∆; 2)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→−+∆−′==−∆3)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x−−−→∆→−+∆−′==−∆4)000()()()f x f x A f x A +−′′′==⇔= 2、 求导法则:【必须牢记18个基本导数公式】 1) 显函数()y f x =:I、四则运算法则: ()[()()],[()()],[],[()]()u x u x v x u x v x ku x v x ′′′′±⋅; II、复合函数的求导法则:设(),()y f u u g x ==都可导,则[()]y f g x =的导数为(){[()]}()()[()]()u g x d f g x f u g x f g x g x dx =′′′′=⋅=⋅,或dy dy du dx du dx=⋅ III、反函数的求导法则:1dy dx dxdy= IV、对数求导法则(特别适用于幂指函数):()y f x =,ln ||ln |()|y f x == (化简),y y′⇒= 2) 参数方程:()()x x t y y t =⎧⎨=⎩,()dy dydxg t dtdt dx == ,22()()d y dg t dg t dxdt dtdx dx=== , 其它阶同理可求.3) 隐函数:(,)0F x y =(方程两边对x 求导,注意y 为x 的函数)10x y dyF F dx′′⇒⋅+⋅= 3、 高阶导数:234(4)()234(),(),(),,()n n n d y d y d y d y f x f x f x f x dx dx dx dx′′′′′==== 等4、 微分()dy f x dx ′=5、 关系:可微与可导等价;可导必连续,反之未必.三、 导数与微分1、 曲线的切线与法线方程:00()y y k x x −=−,0()k f x ′=切,01/()k f x ′=−法;2、 微分中值定理:首先必须验证定理的条件是否满足,然后根据定理下结论!1)Rolle 定理:()0()f a b ξξ′=<<;2)Lagrange 中值定理:()()()()()f b f a f b a a b ξξ′−=−<<;估计函数值之差3)Cauchy 中值定理:()()()()()()()f b f a f a bg b g a g ξξξ′−=<<′−;4)Taylor 中值定理:()(1)100000()()()()()()!(1)!k n nkn k f x f f x x x x x x x k n ξξ++==−+−+∑在与之间 3、 洛必达法则:00()()limlim ()()f x f x org x g x ∞∞′′,其它型未定式必须转化 4、 泰勒公式:熟悉5个常见带Peano 型余项的Maclaurin 公式5、 函数的单调性【一阶导符号判定】、极值、最值及其函数图形的凹凸性【二阶导符号判定】、拐点和渐近线 6、 不等式的证明:1)单调性;2)中值定理;3)凹凸性;4)最值 7、 方程根的存在性及唯一性:1)零点定理;2)Rolle 定理;3)单调性;4)极值最值等等 8、 恒等式的证明:若在区间I 上()0f x ′≡,则在区间I 上()f x C ≡2π1、 基本性质:线性,对积分区间的可加性,保号性(特别课后Ex.7:用连续性与不恒等于去等号),定积分中值定理【()()()()baf x dx f b a a b ξξ=−<<∫】,定积分的奇偶对称性、周期性.2、()()f x dx F x C =+∫与Newton-Leibniz 公式:()()bba af x dx F x =∫,(()()F x f x ′=)3、 换元法:1)第一类(凑微分法);2)第二类:三角代换,倒代换等4、 分部积分法:1)三指动,幂不动;2)幂动,反对不动;3)凑同类所求便再现.5、 积分上限函数的导数:()()x a d f t dt f x dx =∫, ()()[()]()g x a d f t dt f g x g x dx′=⋅∫, 其中()f x 连续,()g x 可导,a 为常数,积分中的表达式()f t 必须与x 无关6、 有理函数的积分【假分式用除法化为多项式加真分式,真分式因式分解化为部分分式】以及可化为有理函数的积分【①三角函数有理式的积分:万能代换tan()2xt = ()x ππ−<<;②简单根式:线性函数或分式函数的根式讨厌要换之,开方不同最小公倍数】7、 反常积分:无穷限的反常积分或瑕积分,广义Newton-Leibniz 公式,特别注意瑕点在积分区间内部的瑕积分四、 导数的应用sin n xdx 】五、积分:不定积分,定积分,反常积分【必须牢记24个基本积分公式以及I n =∫1、 平面图形的面积:1) 直角坐标,x y :a、 曲边梯形1{(,)|,0()}D x y a x b y f x =≤≤≤≤:()baA f x dx =∫;b、 上、下型{(,)|,()()}D x y a x b g x y f x =≤≤≤≤:[()()]baA f x g x dx =−∫;c、 左、右型{(,)|,()()}D x y c y d g y x f y =≤≤≤≤:[()()]dcA f y g y dy =−∫;d、 设曲边梯形1D 的曲边由参数方程:(),()x x t y y t ==给出,则()()()b aA f x dx y t x t dt βα′==⋅∫∫【先代公式后换元】2) 极坐标,ρθ(极坐标变换cos ,sin x y ρθρθ==): 设曲边扇形{(,)|,0()}D ρθαθβρρθ=≤≤≤≤,则21()2A d βαρθθ=∫ 2、 体积:CaseA、旋转体的体积:1) X-型或上下型{(,)|,0()}D x y a x b y f x =≤≤≤≤:I、绕x 轴 2()bx aV f x dx π=∫;II、绕y 轴 2()(0)by aV xf x dx a π=≥∫2) Y-型或左右型{(,)|,0()}D x y c y d x g y =≤≤≤≤: I、绕y 轴 2()dy cV g y dy π=∫;II、绕x 轴 2()(0)dx cV yg y dy c π=≥∫CaseB、平行截面面积为已知的立体{(,,)|,(,)}x x y z a x b y z D Ω=≤≤∈,若()x AreaD A x =,则()baV A x dx =∫3、 弧长:由不同方程,代不同公式 1)():()()x x t C t y y t αβ=⎧≤≤⎨=⎩,()s βααβ=<∫;2):(),C y f x a x b =≤≤,()as a b =<∫;3):(),C ρρθαθβ=≤≤,()s βαθαβ=<∫六、 定积分的应用【有公式代就代公式,否则用元素法】 (一) 一阶微分方程:(,,)0F x y y ′=,(,)y f x y ′=或(.)(,)0M x y dx N x y dy +=1、 可分离变量:()()f x dx g y dy =,积分之可得通解2、 齐次:()dy ydx xϕ=,令y u x =,可将原方程化为关于,x u 的可分离变量3、 线性:()()dyP x y Q x dx+=,通解为()()[()]P x dx P x dx y e Q x e dx C −∫∫=+∫;或利用常数变易法或利用积分因之法:()()P x dxx e µ∫=4、 伯努利:()()(0,1)n dyP x y Q x y n dx+=≠,令1n z y −=,可将原方程化为关于,x z 的线性. (二) 可降阶的高阶微分方程: I 、()()n yf x =【右端只含x 】:连续积分之;II 、(,)y f x y ′′′=【不显含y 】:令,y p ′=则dpy dx′′=,可将原方程化为关于,x p 的一阶. III 、(,)y f y y ′′′=【不显含x 】:令y p ′=,则dpy p dy′′=,可将原方程化为关于,y p 的一阶 (三) 概念与理论1、 概念:阶,解(特解,通解),初始条件,初值问题,积分曲线2、 线性微分方程的解的结构:1)齐次:()()0y P x y Q x y ′′′++=,通解:1122()()y C y x C y x =+,其中12(),()y x y x 为该方程线性无关的两个解. 2)非齐次:()()()y P x y Q x y f x ′′′++= 通解:()*()y Y x y x =+,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解. 3)设12*(),*()y x y x 分别为1()()()y P x y Q x y f x ′′′++= 与2()()()y P x y Q x y f x ′′′++=的特解,则12**()*()y y x y x =+为12()()()()y P x y Q x y f x f x ′′′++=+的特解.七、 微分方程附录I——基本求导公式:1221(1)()0(2)();(3)();(4)(ln ||);1(5)()ln ;(6)(log );(01)ln (7)(sin )cos ;(8)(cos )sin ;(9)(tan )sec ;(10)(cot )csc ;(11)(sec )sec tan ;(12)x x x x a C C x x e e x xa a a x a a x ax x x x x x x x x x x αααα−′′′′====′′==>≠′′′′==−==−′=,为常数;,为常数常数且(csc )csc cot ;(13)(arcsin )(14)(arccos )(17)(sh )ch ;(18)(ch )sh .x x x x x x x x x ′′=−=′=′′==附录II——基本积分公式:122(1)1(2)1;(3)ln ||;1(4);(5)01;ln (6)sin cos ;(7)cos sin ;(8)sec tan ;(9)csc cot ;(10)sec tan sec x x x xkdx kx C k x x dx C dx x C x a e dx e C a dx C a a a xdx x C xdx x C xdx x C xdx x C x xdx x C αααα+=+=+≠−=++=+=+>≠=−+=+=+=−+=+∫∫∫∫∫∫∫∫∫∫,为常数;,常数,常数且;(11)csccot csc;(12)tan ln |cos |;(13)cot ln |sin |;(14)sec ln |sec tan |;(15)csc ln |csc cot |;(16);(18)x xdx x C xdx x C xdx x C xdx x x C xdx x x C C =−+=−+=+=++=−+∫∫∫∫∫2200;(20)(21)ln(;(22)ln ||;(23)sh ch ;(24)ch sh .1331,2422sin cos n n n C x C x C xdx x C xdx x C n n n nI xdx xdx πππ=+=++=+=+−−⋅⋅⋅⋅⋅⎛⎞−===⎜⎟⎝⎠∫∫∫∫∫ 1342,253n n n n n n ⎧⎪⎪⎨−−⎪⋅⋅⋅⋅⎪−⎩ 为正偶数;为大于1的正奇数.。

高等数学上册知识点

高等数学上册知识点

高等数学上册知识点
一、函数及其图像:
1、函数的概念及性质:函数是将某种变量与它的值联系在一起的关系,它是一种统一表示结果和变量之间关系的方法,它具有映射和连续性
等特点。

2、函数的图像:函数的图像是把函数的定义域上的变量映射到它的
值域上的一条线或者曲线,可以使用数值的方式把函数的定义域上的点映
射到它的值域上的点,并且可以用图形的方式表示出来。

二、勾股定理及其相关知识:
1、勾股定理:勾股定理是指在一个直角三角形的两个直角顶点距离
的平方相等于其他两点距离的平方和,即a2+b2=c2。

2、直角三角形的等腰性:等腰三角形是指两个直角顶点距离相等,
此时正三角形就是等腰三角形,等腰三角形也是勾股定理成立的条件之一。

3、相似三角形:两个三角形在同一个基准点,角相等时,他们的对
应边都按照一定比例缩放,则他们是相似三角形,这也是勾股定理成立的
必要条件之一。

三、指数函数及其应用:
1、指数函数的概念及性质:指数函数是指使用次方表示的函数,它
具有可导和可微性质,可以用来描述一系列具有指数变化趋势的问题。

2、指数函数的应用:指数函数可以用来描述经济学中的投资回报率、人口增长率和物价水平等问题,也可以用来描。

高数上册知识点总结不挂科

高数上册知识点总结不挂科

高数上册知识点总结不挂科高等数学上册是高等数学的第一部分内容,主要包括数列、极限、函数、导数、微分与微分应用等内容。

高等数学上册的学习是后续数学学习的基础,因此对于学生来说,一定要认真学习,并掌握好其中的知识点。

一、数列数列是一组按照一定规律排列的数,它是高等数学中最基础的内容之一。

数列的概念、性质和应用是高等数学学习的重点之一。

1.1 数列的概念数列是指将按照一定的次序排列的一列数按照一定次序排列成的一个复数,例如{1,2,3,4,5…}就是一个数列,其中的数称为数列的项,用a1,a2,a3…表示。

1.2 数列的性质数列的常见性质包括:通项公式、公差、前n项和等内容。

1.3 数列的应用数列在实际生活和工程技术中有着重要的应用,例如在数学建模、物理问题、工程优化等领域都有着广泛的应用。

二、极限与函数极限是数学分析的一个重要概念,它是高等数学的核心内容之一。

而函数是数列的推广,是现代数学和工程技术中最重要的数学概念之一。

2.1 极限极限是数学分析中的一个重要概念,它描述了数列或函数在某一点或无穷远处的特定性质。

极限是高等数学中的一个核心内容,它在微积分、微分方程等数学分支中都有着重要的应用。

2.2 函数函数是数学中的一个基本概念,描述了自变量和因变量之间的对应关系。

函数在数学和工程技术中有着广泛的应用,在微积分、微分方程、概率统计等领域都有着重要的地位。

三、导数导数是微积分中的一个重要概念,用来描述函数在某一点的变化率。

导数的概念和性质是高等数学学习的重点内容,也是后续微积分学习的基础。

3.1 导数的定义导数的定义是描述函数在某一点的变化率,它可以通过极限的概念来进行定义。

3.2 导数的性质导数有着许多重要的性质,例如导数的几何意义、导数的计算法则、导数的应用等。

3.3 导数的应用导数在实际生活和工程技术中有着重要的应用,例如在物理问题、工程优化、金融经济等领域都有着广泛的应用。

四、微分与微分应用微分是导数的推广,它是微积分学中的一个重要内容。

大一上期末高数知识点

大一上期末高数知识点

大一上期末高数知识点高等数学是大学阶段的一门重要课程,它是学习许多理工科学科的基础。

大一上学期的高等数学内容较为广泛,包括了许多重要的知识点。

本文将对大一上期末高数的知识点进行归纳和总结。

一、数列与数学归纳法1. 数列的定义与性质2. 等差数列与等比数列3. 通项公式与求和公式4. 数列极限的概念与求解二、函数与极限1. 函数的定义与性质2. 基本初等函数及其图像3. 极限的基本性质与运算法则4. 无穷大与无穷小5. 函数的连续性与间断点三、导数与微分1. 导数的定义与几何意义2. 基本初等函数的导数3. 导数运算法则及其应用4. 高阶导数与隐函数求导5. 微分的定义与应用四、数理方程与不等式1. 一元二次方程与不等式2. 绝对值方程与不等式3. 方程与不等式组的解法4. 参数方程与方程求解五、定积分与不定积分1. 定积分的定义与性质2. 基本初等函数的不定积分3. 定积分的计算与应用4. 不定积分与定积分的关系六、微分方程1. 微分方程的基本概念与分类2. 可分离变量的微分方程3. 一阶线性微分方程4. 高阶线性常微分方程七、空间解析几何1. 空间直角坐标系与向量2. 空间中的点、直线与平面3. 空间曲线与曲面八、多元函数与偏导数1. 二元函数与二元函数的图像2. 偏导数的定义与计算3. 隐函数与全微分4. 多元函数的极值与条件极值以上便是大一上学期高等数学的主要知识点。

掌握这些知识点,对于后续的学习以及理解其他学科都具有重要的作用。

希望同学们在期末考试中能够巩固这些知识,取得优异成绩!。

高等数学(上)重要知识点归纳

高等数学(上)重要知识点归纳

高等数学(上)重要知识点归纳高等数学是大学中非常重要的一门课程,它有助于学生加强数学思维能力,提高数学素养,增强解决实际问题的能力。

高等数学包含许多重要的知识点,这些知识点是学生在学习高等数学时必须掌握的。

以下是高等数学(上)的一些重要知识点的归纳:1. 数列和级数数列和级数是高等数学课程中最重要的内容之一。

数列和级数的概念与计算方法是学习高等数学过程中的核心。

数列是指按一定规律排列的一系列数,级数则是由数列的各项累加得到的。

对于一些特殊的数列和级数,学生需要单独地掌握计算方法。

例如,李逵数列、费马级数等等。

2. 函数的极限、导数和微分高等数学的函数理论始于与函数连续性、单调性、有界性等概念的初步掌握。

其中极限、导数和微分是非常重要的内容。

学生需要掌握函数的极限计算方法和定义,包括单侧极限和无穷极限。

导数和微分是函数的一个重要特征,通过导数和微分可以刻画函数的局部变化情况。

学生需要掌握求导和微分的各种方法和技巧。

3. 微积分学中的积分和微分方程微积分学最基本的内容就是导数和积分,而且积分在微积分中有着很重要的地位。

学生需要了解积分的定义,不定积分、定积分、变限积分等概念,并掌握积分的计算方法。

微分方程是数学模型的重要表现形式之一。

学生需要掌握微分方程的基本概念、分类和基本求解方法。

4. 无穷级数无穷级数是级数理论的一部分,它是一个重要的数学概念。

学生需要掌握无穷级数的定义和各种级数收敛定理。

在无穷级数的求和问题上,学生需要熟练掌握级数和的判断和计算方法。

5. 偏微分方程和泊松方程偏微分方程为数学物理方程提供了一种通用框架,它是高等数学(上)的一个重要课题。

学生需要了解偏微分方程的基本概念、分类和基本求解方法。

泊松方程是一个非常经典的偏微分方程问题。

学生需要掌握泊松方程的解法以及各个领域的应用。

综上所述,以上是高等数学(上)的一些重要知识点的归纳。

这些概念和方法在解决数学和物理问题中都扮演着非常重要的角色,因此学生需要将这些知识点牢记于心,并在练习中不断熟练掌握。

(完整版)高等数学上册知识点

(完整版)高等数学上册知识点

高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

高项必背知识点

高项必背知识点

高项必背知识点高等数学作为大学必修的一门课程,其中有许多重要的知识点值得我们深入学习和掌握。

下面将介绍几个高等数学中的必背知识点。

一、导数与微分1. 导数的定义:导数是函数在某一点的变化率,可以用极限的概念表示。

2. 导数的几何意义:导数表示函数在某一点的切线斜率。

3. 常见函数的导数:- 常数函数的导数为0;- 幂函数的导数为幂函数的指数乘以常数;- 指数函数的导数为指数函数的自变量的指数乘以常数;- 对数函数的导数为对数函数的自变量的导数的倒数;- 三角函数的导数。

二、积分与不定积分1. 定积分的定义:定积分是函数在某一区间上的面积或曲线长度,可以用极限的概念表示。

2. 定积分的性质:定积分具有线性性、可加性和保号性等性质。

3. 不定积分的定义:不定积分是定积分的逆运算,表示函数的原函数。

4. 常见函数的不定积分:- 幂函数的不定积分为幂函数的指数加1再乘以常数的倒数;- 指数函数的不定积分为指数函数再乘以常数的倒数;- 对数函数的不定积分为对数函数的自变量的导数;- 三角函数的不定积分。

三、微分方程1. 微分方程的定义:微分方程是含有未知函数及其导数的方程。

2. 常微分方程的分类:- 一阶微分方程:仅含有一阶导数的微分方程;- 二阶线性齐次微分方程:形式为y''+p(x)y'+q(x)y=0的微分方程;- 可降阶的高阶微分方程。

3. 常见的一阶微分方程解法:- 可分离变量的微分方程;- 齐次微分方程;- 一阶线性非齐次微分方程。

四、级数1. 数列与级数的关系:级数是数列的和,数列是级数的项。

2. 级数的收敛与发散:- 收敛级数的定义:级数的部分和数列存在有限极限;- 发散级数的定义:级数的部分和数列不存在有限极限。

3. 常见的级数测试方法:- 正项级数收敛判别法;- 比较判别法;- 极限判别法;- 比值判别法。

五、多元函数与偏导数1. 多元函数的定义:多元函数是自变量有多个的函数。

大一高数上册必考知识点

大一高数上册必考知识点

大一高数上册必考知识点一、函数与极限在大一高数上册中,函数与极限是学习的重点和基础。

学生需要了解以下几个必考知识点:1. 函数的定义与性质:函数的定义、定义域、值域、自变量、因变量等基本概念。

此外,还要了解一些特殊函数的性质,如一次函数、二次函数、常函数、反函数等。

2. 极限的定义与性质:了解极限的定义和符号表示,掌握极限存在与不存在的判定方法。

此外,还要熟悉一些常用的极限性质,如四则运算的极限、极限的唯一性等。

3. 无穷大与无穷小:理解无穷大和无穷小的概念及其性质。

掌握无穷小的比较、运算和性质。

4. 函数的连续性:了解连续函数的定义和性质,掌握函数连续性的判定方法,如极限存在的性质、闭区间上连续函数的性质等。

二、导数与微分导数与微分是大一高数上册的另一个重要内容,学生需要掌握以下必考知识点:1. 导数的概念和性质:了解导数的定义和符号表示,理解导数的几何意义和物理意义。

掌握导数与函数图像的关系,掌握导数的运算法则。

2. 可导性与连续性的关系:了解可导函数与函数的连续性的关系,掌握可导函数的判定方法。

3. 微分的概念与运算:了解微分的定义和性质,掌握微分的运算法则,如函数和的微分、函数积的微分、复合函数的微分等。

4. 高阶导数与高阶微分:理解高阶导数和高阶微分的概念,掌握高阶导数和高阶微分的定义和计算方法。

三、曲线图形与极值曲线图形与极值是大一高数上册的另一个考查重点,以下是必考知识点:1. 曲线的绘制和性质:学生需要掌握曲线的绘制方法,了解曲线的对称性、奇偶性等性质。

2. 函数的单调性与增减性:理解函数的单调性和增减性的概念,掌握单调性与增减性的判定方法。

3. 驻点与极值:了解驻点和极值的概念,掌握极值与导数的关系,掌握极值的判定方法。

四、不定积分与定积分不定积分和定积分也是大一高数上册必考的内容,以下是必考知识点:1. 不定积分的概念和性质:了解不定积分的定义和性质,掌握常用函数的不定积分表达式,如多项式函数、三角函数、指数函数等。

大一高数上所有知识点总结

大一高数上所有知识点总结

大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。

高数(上)期末复习重点.doc

高数(上)期末复习重点.doc

高数(上册)期末复习要点第一章:1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法(变dx/变前面)2、分部积分法(注意加C )(最好都自己推导一遍,好记)定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。

(高等数学、考研数学通用)高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。

大一上期期末高数知识点

大一上期期末高数知识点

大一上期期末高数知识点高等数学作为理工科学生的必修课程,是培养学生数学思维和分析解决问题的能力的重要基础。

在大一上学期的高等数学学习中,我们接触到了许多重要的知识点。

下面将对这些知识点进行总结与回顾。

1. 函数与极限1.1 函数的概念与性质函数的定义、定义域、值域、图像等基本概念,函数的奇偶性、周期性等性质。

1.2 极限的概念与性质数列极限、函数极限的定义,极限的性质(唯一性、局部有界性、保号性等)、夹逼定理等。

2. 微分学2.1 导数与微分导数的定义与计算,导数的几何意义、物理意义以及导数与函数的关系。

2.2 微分中值定理极值与最值、费马定理、罗尔定理等微分中值定理的应用。

3. 积分学3.1 不定积分与定积分不定积分的定义、基本性质,定积分的定义与计算。

3.2 牛顿-莱布尼茨公式积分与微分的关系,牛顿-莱布尼茨公式的应用。

4. 微分方程4.1 常微分方程的基本概念常微分方程的定义、阶数、通解与特解。

4.2 一阶常微分方程可分离变量方程、一阶线性方程、齐次方程等的求解方法。

4.3 高阶常微分方程二阶常系数齐次线性方程、非齐次线性方程等的求解方法。

5. 空间解析几何5.1 空间直线与平面直线的方程、相交与平行等性质,平面的方程、位置关系等性质。

5.2 空间曲线与曲面参数方程与一般方程的转化,球、圆锥曲线及其方程。

6. 多元函数微分学6.1 多元函数的概念与性质多元函数的定义、极限、连续性等性质。

6.2 偏导数与全微分偏导数的定义与计算,全微分的概念与计算。

6.3 隐函数与偏导数隐函数的存在定理,偏导数的求导法则。

7. 多元函数积分学7.1 二重积分二重积分的定义与计算,极坐标下的二重积分。

7.2 三重积分三重积分的定义与计算,柱面坐标、球面坐标下的三重积分。

8. 无穷级数与函数项级数8.1 收敛级数与发散级数收敛级数与发散级数的概念与判别法。

8.2 幂级数幂级数的收敛半径、收敛域的判定。

以上是大一上期期末高数的知识点总结。

大一上高数上期末知识点

大一上高数上期末知识点

大一上高数上期末知识点高等数学是大学中的一门重要课程,对于理工科学生来说尤为关键。

而大一上学期的高等数学也是这门学科中的重要部分。

本文将为大家总结大一上高数上期末的重要知识点。

1. 数列与数列极限数列是由一系列有序数依次排列而成的,数列中的每一个数都有其特定的位置。

数列极限是指数列中的数随着位置的增大而趋向于某个固定的值,我们将这个固定值称为数列的极限。

2. 函数与函数极限函数是一种将自变量映射到因变量的关系,通常用符号f(x)表示。

函数极限是指当自变量趋近于某个特定值时,函数的值趋近于一个确定的值。

3. 导数与导函数导数是函数在某一点上的变化率,可以用极限来定义。

导函数是一个新的函数,它表示原函数的导数。

导数在物理学、经济学等领域中具有重要的应用。

4. 定积分定积分是计算曲线下面的面积的一种方法,也可以理解为曲线与x轴之间的有向面积。

定积分可以用来计算曲线长度、体积等问题。

5. 微分方程微分方程是描述变化率与变量之间关系的方程。

在物理学、工程学等领域中有着广泛的应用,如描述弹簧振动、电路运行等问题。

6. 二阶导数与高阶导数二阶导数是函数的导函数的导数,表示函数的变化率对自变量的变化率的变化率。

高阶导数则是指超过二阶的导数。

7. 泰勒展开泰勒展开是一种用多项式逼近函数的方法,通过将函数在某一点附近展开成无穷项的多项式,可以方便地计算函数的近似值。

8. 偏导数与多元函数偏导数是多元函数在某一变量上的导数,它表示函数在该变量上的变化率。

多元函数则是指Rn到R的映射。

9. 重积分与曲线积分重积分是计算空间中某一区域内的体积的方法,曲线积分则是计算曲线上的面积或与曲线相关的物理量的方法。

10. 空间解析几何空间解析几何是通过代数方法研究空间中图形的一门学科,它与向量、平面、直线等有关。

以上是大一上学期高等数学中的一些重要知识点,掌握这些知识对于学习后续的数学课程以及相关学科都具有重要的意义。

希望大家能够认真学习,充分掌握这些知识,为以后的学习打下坚实的基础。

高数重要知识点

高数重要知识点

高等数学上册重要知识点 第一章 函数与极限一. 函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim1l = 0,称f x 是比gx 高阶的无穷小,记以f x = 0)(x g ,称gx 是比fx 低阶的无穷小; 2l ≠ 0,称f x 与gx 是同阶无穷小;3l = 1,称f x 与gx 是等价无穷小,记以f x ~ gx 2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1 cos x ~ 2/2^x , x e 1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.夹逼定理设gx ≤ f x ≤ hx 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:10)(lim 0=→x f x x ,0)(lim 0=→x F x x ;2)(x f 与)(x F 在0x3)()(lim 0x F x f x x ''→存在或为无穷大,则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达H L 'ospital 法则.例1计算极限0e 1lim x x x→-.解 该极限属于“0”型不定式,于是由洛必达法则,得0e 1lim x x x →-0e lim 11x x →==. 例2计算极限0sin lim sin x axbx→.解 该极限属于“0”型不定式,于是由洛必达法则,得00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注 若(),()f x g x ''仍满足定理的条件,则可以继续应用洛必达法则,即二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: 1∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;2)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;3)()(lim 0x F x f x x ''→存在或为无穷大,则 注:上述关于0x x →时未定式∞∞∞∞型同样适用.例3计算极限lim (0)nx x x n e →+∞>.解 所求问题是∞∞型未定式,连续n 次施行洛必达法则,有lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法则时必须注意以下几点: 1洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; 2只要条件具备,可以连续应用洛必达法则;3洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.7.利用导数定义求极限基本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆如果存在8.利用定积分定义求极限基本格式⎰∑==∞→11)()(1lim dx x f n kf n n k n 如果存在三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f x 的间断点;如果f x 在间断点0x 处的左、右极限都存在,则称0x 是f x 的第一类间断点;第一类间断点包括可去间断点和跳跃间断点; 2第二类间断点第一类间断点以外的其他间断点统称为第二类间断点;常见的第二类间断点有无穷间断点和振荡间断点;四.闭区间上连续函数的性质在闭区间a ,b 上连续的函数f x ,有以下几个基本性质;这些性质以后都要用到;定理1.有界定理如果函数f x 在闭区间a ,b 上连续,则f x 必在a ,b 上有界;定理2.最大值和最小值定理如果函数f x 在闭区间a ,b 上连续,则在这个区间上一定存在最大值M 和最小值m ;定理3.介值定理如果函数f x 在闭区间a ,b 上连续,且其最大值和最小值分别为M 和m ,则对于介于m 和M 之间的任何实数c ,在a ,b 上至少存在一个ξ ,使得f ξ = c推论:如果函数f x 在闭区间a ,b 上连续,且f a 与f b 异号,则在a ,b 内至少存在一个点ξ ,使得f ξ = 0这个推论也称为零点定理第二章 导数与微分1.复合函数运算法则设y = f u ,u = x ,如果 x 在x 处可导,f u 在对应点u 处可导,则复合函数y = f x 在x 处可导,且有)('))(('x x f dxdudu dy dx dy φφ==对应地dx x x f du u f dy )('))((')('φφ==,由于公式du u f dy )('=不管u 是自变量或中间变量都成立;因此称为一阶微分形式不变性; 2.由参数方程确定函数的运算法则设x = t ,y =)(t ϕ确定函数y = yx ,其中)('),('t t ϕφ存在,且)('t φ≠ 0,则)(')('t t dx dy φϕ= 二阶导数3.反函数求导法则设y = f x 的反函数x = gy ,两者皆可导,且f ′x ≠ 0 则)0)('())(('1)('1)('≠==x f y g f x f y g4 隐函数运算法则可以按照复合函数理解设y = yx 是由方程Fx , y = 0所确定,求y ′的方法如下:把Fx , y = 0两边的各项对x 求导,把y 看作中间变量,用复合函数求导公式计算,然后再解出y ′ 的表达式允许出现y 变量 5 对数求导法则 指数类型 如x x y sin =先两边取对数,然后再用隐函数求导方法得出导数y ′; 对数求导法主要用于:①幂指函数求导数②多个函数连乘除或开方求导数注意定义域 P106 例6关于幂指函数y = f xg x 常用的一种方法,y = )(ln )(x f x g e 这样就可以直接用复合函数运算法则进行; 6 可微与可导的关系f x 在0x 处可微 f x 在0x 处可导;7 求n 阶导数n ≥ 2,正整数先求出 y ′, y ′′,…… ,总结出规律性,然后写出yn ,最后用归纳法证明;有一些常用的初等函数的n 阶导数公式 (1) x n x e y e y ==)(, (2) n x n x a a y a y )(ln ,)(== (3) x y sin =,)2sin()(πn x y n += (4) x y cos =,)2cos()(πn x y n +=5x y ln =,n n n x n y ----=)!1()1(1)(第三章 微分中值定理与导数应用一 罗尔定理 设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;3 f a = f b 则存在ξ ∈a ,b ,使得f ′ξ = 0二 ★拉格朗日中值定理证明不等式 P134 9、10设函数 f x 满足1在闭区间a ,b 上连续;2在开区间a ,b 内可导;则存在ξ ∈a ,b ,使得)(')()(ξf ab a f b f =-- 推论1.若f x 在a ,b 内可导,且f ′x ≡ 0,则f x 在a ,b 内为常数;推论2.若f x , gx 在a ,b 内皆可导,且f ′x ≡ g ′x ,则在a ,b 内f x = gx + c ,其中c 为一个常数; 三 柯西中值定理设函数f x 和gx 满足:1在闭区间a ,b 上皆连续;2在开区间a ,b 内皆可导;且g ′x ≠0则存在ξ ∈a ,b 使得)(')(')()()()(ξξg f a g b g a f b f =--)(b a <<ξ注:柯西中值定理为拉格朗日中值定理的推广,特殊情形gx = x 时,柯西中值定理就是拉格朗日中值定理;四 ★泰勒公式① 估值 ② 求极限麦克劳林 P145 T10 定理 1.皮亚诺余项的n 阶泰勒公式 设f x 在0 x 处有n 阶导数,则有公式,称为皮亚诺余项对常用的初等函数如x e ,sin x ,cos x ,ln1+ x 和α)1(x + α 为实常数等的n 阶泰勒公式都要熟记;定理2拉格朗日余项的n 阶泰勒公式设f x 在包含0 x 的区间a ,b 内有n +1阶导数,在a ,b 上有n 阶连续导数,则对x ∈a ,b ,有公式,,称为拉格朗日余项上面展开式称为以0 x 为中心的n 阶泰勒公式;当0x =0 时,也称为n 阶麦克劳林公式;导数的应用一 基本知识设函数f x 在0x 处可导,且0x 为f x 的一个极值点,则0)('0=x f ;我们称x 满足0)('0=x f 的0x 称为)(x f 的驻点,可导函数的极值点一定是驻点,反之不然;极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断; 极值点判断方法)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.② 第二充分条件)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.二 凹凸性与拐点 1.凹凸的定义设f x 在区间I 上连续,若对任意不同的两点1 2 x , x ,恒有 则称f x 在I 上是凸凹的;在几何上,曲线y = f x 上任意两点的割线在曲线下上面,则y = f x 是凸凹的;如果曲线y = f x 有切线的话,每一点的切线都在曲线之上下则y = f x 是凸凹的; 2 拐点的定义曲线上凹与凸的分界点,称为曲线的拐点; 3 凹凸性的判别和拐点的求法 设函数f x 在a ,b 内具有二阶导数)(''x f ,如果在a ,b 内的每一点x ,恒有)(''x f > 0,则曲线y = f x 在a ,b 内是凹的; 如果在a ,b 内的每一点x ,恒有)(''x f < 0,则曲线y = f x 在a ,b 内是凸的; 求曲线y = f x 的拐点的方法步骤是: 第一步:求出二阶导数)(''x f ;第二步:求出使二阶导数等于零或二阶导数不存在的点k x x x ,...2,1 ;第三步:对于以上的连续点,检验各点两边二阶导数的符号,如果符号不同,该点就是拐点的横坐标; 第四步:求出拐点的纵坐标; 四 渐近线的求法 五 曲率第四章 不定积分一基本积分表:二 换元积分法和分部积分法 换元积分法1第一类换元法凑微分:[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2第二类换元法变量代换:[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ分部积分法使用分部积分法时被积函数中谁看作)(x u 谁看作)('x v 有一定规律;记住口诀,反对幂指三为)(x u ,靠前就为)(x u ,例如xdx e x arcsin ⎰,应该是x arcsin 为)(x u ,因为反三角函数排在指数函数之前,同理可以推出其他; 三 有理函数积分 有理函数:)()()(x Q x P x f =其中)()(x Q x P 和是多项式; 简单有理函数: ⑴21)()(,1)()(x x P x f x x P x f +=+=⑵))(()()(b x a x x P x f ++=⑶ba x x P x f ++=2)()()(1、“拆”;2、变量代换三角代换、倒代换、根式代换等.第五章 定积分一概念与性质1、 定义:∑⎰=→∆=ni ii bax f dx x f 1)(lim )(ξλ2、 性质:10条(3)3 基本定理变上限积分:设⎰=Φxadtt f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ N —L公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰4 定积分的换元积分法和分部积分法第六章 定积分的应用(一)平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二)体积1、 旋转体体积: a 曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=ba xdx x f V )(2πb 曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=baydx x xf V )(2π 柱壳法2、 平行截面面积已知的立体:⎰=badx x A V )((三)弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()( 极坐标:[][]⎰'+=βαθθρθρd s 22)()(第七章 微分方程(一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程.阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同.特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdux u dx dy +=;或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dxx P )()()((五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''不显含有y ,令p y =',则p y '='';3、),(y y f y '=''不显含有x ,令p y =',则dy dppy =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程1、)()(x P e x f m x λ=设特解)(*x Q e x y m x k λ=,其中⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]xx R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

高数大一上册知识点笔记

高数大一上册知识点笔记

高数大一上册知识点笔记1. 函数与极限:- 函数的概念及基本性质- 极限的定义与性质- 极限运算法则2. 导数与微分:- 导数的定义与计算- 导数的几何意义与物理意义- 微分的概念与计算3. 微分中值定理与高阶导数:- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 高阶导数的概念与计算4. 不定积分与定积分:- 不定积分的定义与基本性质- 基本积分公式与常用积分公式 - 定积分的概念与性质- 牛顿-莱布尼茨公式5. 定积分的应用:- 曲线长度与曲面面积- 物理应用:质量、质心与静力学6. 微分方程:- 高阶导数与高阶线性微分方程 - 一阶线性微分方程- 可分离变量的一阶微分方程- 齐次线性微分方程7. 无穷级数:- 数列极限与数列的收敛性质 - 正项级数与收敛判别法- 收敛级数的性质- 幂级数及其收敛域8. 函数序列与函数级数:- 函数序列的定义与性质- 函数序列的一致收敛性- 麦克劳林级数与泰勒级数9. 空间解析几何:- 空间直线与平面的方程- 空间曲线与曲面的方程- 空间直线与平面的位置关系 - 空间曲线与曲面的位置关系10. 多元函数与偏导数:- 多元函数的概念与性质- 偏导数的定义与计算- 高阶偏导数与混合偏导数11. 多元函数的极值与条件极值: - 多元函数的极值与最大最小值 - 条件极值与拉格朗日乘数法12. 重积分:- 二重积分的概念与计算- 二重积分的性质与应用- 三重积分的概念与计算- 三重积分的性质与应用13. 曲线与曲面积分:- 第一类曲线积分的概念与计算 - 第二类曲线积分的概念与计算- 曲面积分的概念与计算14. 广义积分:- 广义积分的概念与收敛性- 参数积分的概念与性质- Gamma函数与Beta函数的定义与性质这些是高数大一上册的主要知识点笔记,对于每个知识点,可以进一步展开,提供详细的定义、定理、公式和实例,以帮助理解和掌握相关内容。

大一上学期的高数课程重点在于奠定基础,熟练掌握这些知识点对于后续的学习和应用都具有重要意义。

高数上知识点总结

高数上知识点总结

高数上知识点总结高等数学是大学数学的重要组成部分,是大学生必学的一门基础学科。

它是数学的一门重要分支,以函数论、微积分、数学分析、线性代数等内容为主要内容。

对于大多数文理科学生来说,学好高数是非常必要的,也是通过继续深造的一个必要的前置知识。

接下来,我将为大家总结高等数学的几个重要知识点。

一、极限与连续极限是微积分理论的基础,也是函数概念的一种重要的运算扩张,对微积分和数学分析都有重要作用。

极限的概念最早来源于数列的极限,后来逐渐扩充至函数。

在高数学习中,通常先从数列极限开始,然后以函数极限为扩展。

在学习极限时,应重点掌握基本极限定理、函数极限的计算和应用。

连续是函数概念的重要性质之一,也是微积分理论的重要基础之一。

连续性是指函数在一个区间内连续无间断点,结论类似“错综复杂的曲线其实是由许多连续的线段组合而成”。

在数学上,连续性要求具备一定的极限存在条件,在学习中应当重点理解“左极限”与“右极限”的定义、概念、全局连续和局部连续等。

二、微积分基础微积分是对函数和变量的变化进行研究的数学分支,包括微分和积分,是在物理、工程、计算机等领域中广泛应用的一种数学工具。

在学习微积分时,应掌握导数的概念、运算方法和应用、高级微积分函数的基本属性等。

三、向量代数向量代数是线性代数的一个方面,是研究向量的空间和向量变化的数学分支。

向量代数在计算机图形学、物理学、化学、机械工业等领域有着广泛的应用。

在学习向量代数时,应了解向量的基本概念、向量的计算和性质、向量组的线性相关和线性无关等。

四、多元函数微积分多元函数微积分涵盖了多元函数的微分和积分,它在数学、物理、工程中应用广泛。

在学习多元函数微积分时,应掌握多元函数的定义、连续性、偏导数的基本概念和性质、微分学的基本定理等。

五、微积分进阶微积分进阶主要包括微分方程和多元复变函数等内容。

微分方程是研究数量变化规律的一种数学工具,其在很多学科领域中都有重要应用。

在学习微分方程时,应了解一阶微分方程和二阶微分方程等。

高等数学上期末复习资料大全

高等数学上期末复习资料大全

例17. 求圆柱螺旋线

的切线方程和法平面方程.
解:
由于
对应的切向量为
切线方程 x R
T
y
(R, 0, R z 0
k )2 k
,
k


k y
x Rz R0
2
R
k
0
法平面方程
即 Rx
R
x
k
z
k (2zk22k0)
0
M
0
(0
,
R
,
2
k
)
z
o
x
y
例18计算由椭圆
所围图形绕 x 轴旋转而
,
其中系数A1、B1、C1与A2、B2、C2不成比例.
考虑三元一次方程:
A1xB1yC1zD1(A2xB2 yC2zD2)0,

(A1A2)x(B1B2)y(C1C1)zD1D20,
其中为任意常数.
上述方程表示通过定直线L的所有平面的全体, 称为平面
束.
1. 函数的极值问题 第一步 利用必要条件在定义域内找驻点.
2 3
(极大)
(拐点)
(极小)
极大值;
极小值:
拐点:
例15 计算两条抛物线 所围图形的面积 .
解: 由
得交点 (0, 0) , (1, 1)
1
AdA0
x x2 dx
1 3
在第一象限所围
y y2 x (1,1) y x2
o x x d x1 x
平面图形的面积
平面直角坐标下图形的面积
y
z Fy
xz
.
导时,将方程 F(x,y,z)=0中x,y,z

(完整版)高数上册知识点

(完整版)高数上册知识点

高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。

间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。

无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。

(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。

3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。

2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。

高数上需要记住的知识点

高数上需要记住的知识点

高数上需要记住的知识点高等数学作为大学中的一门重要基础课程,是理工科学生必修的一门课程之一。

学好高等数学对于理解和掌握其他专业课程至关重要。

下面将介绍高数上需要记住的一些重要的知识点。

一、函数与极限函数是高等数学的核心概念之一。

在高数上,我们需要掌握函数的概念、性质以及一些常见函数的图像和性质。

同时,我们还需要了解极限的概念和性质,掌握通过极限来求解函数的连续性、导数和积分等问题的方法。

二、导数与微分导数作为函数的一种重要性质,是研究函数的变化率和趋势的重要工具。

在高数上,我们需要熟悉导数的定义、求导法则以及一些基本函数的导数公式。

掌握导数的概念和性质,能够帮助我们解决函数的最值、切线和曲线的凹凸性等问题。

三、微分方程微分方程是高等数学中的重要内容。

在高数上,我们需要掌握一阶常微分方程的基本概念、解法和应用,了解常微分方程在物理、生物、经济等领域中的具体应用。

四、定积分与不定积分定积分和不定积分是高数上的两个重要概念。

我们需要熟悉定积分和不定积分的定义、性质以及求解方法。

掌握积分的概念和性质,能够帮助我们解决曲线下面积、定积分的计算和应用等问题。

五、级数与数项级数级数是高等数学中的一个重要内容。

在高数上,我们需要了解级数的概念、性质以及级数的收敛与发散的判别方法。

同时,我们还需要掌握数项级数的概念、性质以及常用的收敛判别法则。

六、多元函数与偏导数多元函数是高等数学中的一个重要分支。

在高数上,我们需要掌握多元函数的概念、性质以及一些常见多元函数的图像和性质。

同时,我们还需要了解偏导数的概念和计算方法,能够求解多元函数的极值和函数的最优化问题。

七、二重积分二重积分是高等数学中的一种重要的积分形式。

在高数上,我们需要掌握二重积分的概念、性质以及求解方法。

能够应用二重积分来计算平面图形的面积、质量、重心等问题。

八、三重积分三重积分是高等数学中的一种重要的积分形式。

在高数上,我们需要了解三重积分的概念、性质以及求解方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档