(教案)一元一次方程模型
《一元一次方程》的优秀教案(9篇)精选全文完整版
可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程教案(通用11篇)
一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
2024一元一次方程教案人教版数学七年级上册教案
2024一元一次方程教案人教版数学七年级上册教案一、教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
二、教学重难点重点:一元一次方程的解法。
难点:实际问题中的一元一次方程的应用。
三、教学准备1.教学课件2.实物投影仪3.小组讨论材料四、教学过程(一)导入新课1.情景引入:同学们,你们在生活中有没有遇到过这样的问题,比如:一个物品的价格是多少?一个物品的重量是多少?这些问题都可以通过一元一次方程来解决。
2.提问:同学们,你们知道什么是一元一次方程吗?(二)探究新知1.讲解一元一次方程的定义(1)引导学生观察一元一次方程的一般形式:ax+b=0(a、b是常数,a≠0)。
(2)讲解一元一次方程的解法:将方程两边同时加上或减去一个常数,使得方程的左边变为未知数的系数,右边变为常数。
2.讲解一元一次方程的解法(1)教师示范:解方程2x6=0。
(2)引导学生模仿:解方程3x+4=7。
(3)学生独立完成:解方程5x9=2。
3.小组讨论:如何将实际问题转化为方程?(1)引导学生观察实际问题,找出未知数和等量关系。
(2)小组讨论,给出解决方案。
4.练习:解下列方程(1)2x5=3(2)3x+4=11(3)4x7=5(4)5x+2=0(2)教师点评,强调注意事项。
(三)巩固提高1.小组讨论:如何运用一元一次方程解决实际问题?2.学生展示:展示解题过程,讲解思路。
3.练习:解决实际问题(1)一个物品的价格是50元,如果降价x元后,售价为45元,求x的值。
(2)一个水果摊上的苹果每斤5元,小明买了3斤,花费了y元,求y的值。
(3)一个长方形的长是宽的2倍,如果宽为x厘米,求长方形的长。
(四)课堂小结五、课后作业1.解下列方程(1)3x4=7(2)4x+5=9(3)5x3=2(4)2x+7=02.解决实际问题(1)一辆汽车行驶了x小时,平均速度为60千米/小时,求行驶的距离。
一元一次方程数学教案
一元一次方程数学教案第一章:一元一次方程的概念与解法一、教学目标1. 了解一元一次方程的概念,理解方程中的未知数、系数、常数等基本元素。
2. 学会一元一次方程的解法,能够熟练地求解简单的一元一次方程。
3. 能够应用一元一次方程解决实际问题,培养学生的数学应用能力。
二、教学内容1. 一元一次方程的概念:未知数、系数、常数等。
2. 一元一次方程的解法:加减法、乘除法、移项、化简等。
3. 一元一次方程的应用:实际问题求解。
三、教学重点与难点1. 重点:一元一次方程的概念、解法及应用。
2. 难点:一元一次方程的解法,特别是移项和化简。
四、教学方法1. 采用讲授法,讲解一元一次方程的概念、解法及应用。
2. 利用例题,引导学生掌握一元一次方程的解法。
3. 利用小组讨论法,让学生合作解决实际问题。
五、教学步骤1. 引入未知数、系数、常数等概念,讲解一元一次方程的定义。
2. 通过例题,讲解一元一次方程的解法,引导学生掌握解题步骤。
3. 布置练习题,让学生巩固一元一次方程的解法。
4. 利用小组讨论,让学生应用一元一次方程解决实际问题。
5. 总结本章内容,布置课后作业。
第二章:一元一次方程的解法与应用一、教学目标1. 掌握一元一次方程的解法,能够熟练地求解复杂的一元一次方程。
2. 培养学生的数学思维能力,提高学生解决实际问题的能力。
二、教学内容1. 一元一次方程的解法:加减法、乘除法、移项、化简等。
2. 一元一次方程的应用:实际问题求解。
三、教学重点与难点1. 重点:一元一次方程的解法及应用。
2. 难点:复杂一元一次方程的解法。
四、教学方法1. 采用讲授法,讲解一元一次方程的解法及应用。
2. 利用例题,引导学生掌握复杂一元一次方程的解法。
3. 利用小组讨论法,让学生合作解决实际问题。
五、教学步骤1. 通过复习,回顾一元一次方程的解法。
2. 讲解复杂一元一次方程的解法,引导学生掌握解题步骤。
3. 布置练习题,让学生巩固复杂一元一次方程的解法。
《一元一次方程》教案
一元一次方程的教案一、教学目标(一)知识目标(1)对建立方程模型思想的渗透;(2)对一元一次方程及其有关概念的认识;(3)怎样设未知数,学会列方程(二)能力目标:(1)培养学生将实际问题转化为数学问题的能力;(2)培养学生的观察,比较,抽象,概括的能力;(3)训练学生思维的灵活性。
二、教学的重难点及教学设计(一)教学重点:对建立方程模型思想的渗透和对一元一次方程及其概念的认识。
(二)教学难点:设未知数,怎样列方程。
(三)教学设计要点:1、问题设计:用章前图中的汽车行驶问题,激发学生的学习动机,通过实际问题转化为列一元一次方程,引入新课。
2、教学内容的处理:①写一些一元一次方程让学生判断;②方程中一些式子的意义。
2、教学方法在独立探究合作交流与教师引导相结合。
三、教学过程(一)创设问题情境引入新课。
1、问题情境汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山,秀水两地之间,距离青山50千米,距秀水70千米。
王家庄到翠湖的路程有多远?①用算术的方法解决实际问题。
② 如果设王家庄到翠湖的路程为x 千米,你能列出方程吗?2、学生进行数学知识独立探究。
3、 合作讨论,交流探究的结果(请同学写出来)王家庄距青山 千米 王家距秀水 千米 从表中可以得出关于时间的数量关系:从王家庄到青山行车 小时,王家庄到秀水行车 小时。
根据汽车匀速的行驶,可知各段路的速度相等,列出方程570350+=-x x 350-x 的意义是: 570+x 的意义是: 用算术的方法解题时,列的算式,其中只能用已知数,二方程是根据问题中的等量关系列出的等式,其中即含有已知数,又含有字母,字母叫做未知数,常用字母(x,y,z 等字母表示)。
思考:对于上面的问题,你还能列出其他的方程吗?根据什么相等关系?4、 让学生比较,观察,概括出新方程的特点,说出其概念 与学过的算式到方程进行比较:相同:都是等式不同:方程含有未知数,且未知数的次数为一次。
一元一次方程教案最新7篇
一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
七年级数学上册(湘教版)第3章 一元一次方程 教案
第3章 一元一次方程 3.1 建立一元一次方程模型1.通过探究,了解方程及一元一次方程的概念并能识别、了解什么是方程的解并会检验. 2.能根据实际问题中的数量关系,设未知数,列出一元一次方程.阅读教材P 83~84,完成下列问题.(一)知识探究1.方程的概念:我们把含有未知数的等式叫做方程.2.只含有一个未知数,且未知数的次数(即指数)是 1 的整式方程,叫一元一次方程.任意写出一个以y 为未知数的一元一次方程:__答案不唯一,如y +1=2__.3.能使方程左、右两边相等的未知数的值叫做方程的解. (二)自学反馈1.如图是一个长方体形的电视机包装盒,它的底面宽为1.5米,长为1.8米,且包装盒的表面积为8.5平方米,设这个电视机包装盒的高为x ,则可以得到方程:__2(1.5×1.8+1.5x +1.8x)=8.5.2.小英把10元钱递给营业员买钢笔和铅笔,下面是小英和营业员的对话,你能根据他们的对话的内容算出铅笔是多少元一支吗?小英:买4支铅笔和一支钢笔;营业员:一支钢笔比一支铅笔多4元,应找你2元.解:设一支铅笔x 元,则一支钢笔要(x +4)元,依题意可得方程:4x +x +4=10-2____.3.已知方程:y -1=1y ,12x +6=0,x 2-3x +2=0,x -2y =1,x =3其中一元一次方程的个数是(B )A .1 个B .2 个C .3个D .4 个4.检验下列括号里数是不是它们前面的方程的解. x =10-4x (x =1,x =2).解:把x =1代入原方程得,左边=1,右边=6,左边≠右边,所以x =1不是方程x =10-4x 的解. 把x =2代入原方程得,左边=2,右边=2,左边=右边,所以x =2是方程x =10-4x 的解.活动1 小组讨论例1 判断下列式子是不是方程,是打“√”,不是打“×”. (1)5x +3y -6x =7 (√) (2)4x -7 (×) (3)5x>3 (×) (4)6x 2+x -2=0 (√) (5)1+2=3 (×) (6)-5x-m =11 (√)例2 已知2x m +1+3=7是关于x 的一元一次方程,则m =0. 例3 检验下列x 的值是不是方程2.5x +318=1 068的解. (1)x =300; (2)x =330.解:(1)把x =300代入原方程得, 左边=2.5×300+318=1 068. 左边=右边.所以x =300是方程2.5x +318=1 068的解. (2)把x =330代入原方程得,左边=2.5×330+318=1143. 左边≠右边.所以x =330不是方程2.5x +318=1 068的解. 活动2 跟踪训练1.下列四个式子中,是一元一次方程的是(B ) A .2x -6 B .x -1=0 C .2x +y =5D .12x +3=1 2.若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为(B ) A .-0.5 B .-1 C .0 D .13.下列方程中,解为x =4的方程是(C ) A .7x =3x -4 B .3+x =-1 C .x -5=3-xD .x2=8 4.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x 个月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?3.2 等式的性质1.通过探究,了解什么是等式,等式与方程的区别和联系.2.掌握等式的两条性质,并能运用这两条性质对等式进行变形.(重难点) 3.经历探究,培养观察、分析、归纳的数学思维和能力.阅读教材P 87~88,完成下列问题.(一)知识探究1.探究:观察下图中左右两个天平,你能发现什么规律?从左往右看,是在平衡的天平的两边都加上同样的量,结果天平还是平衡; 从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是平衡.等式性质1:等式两边都加上(或减去)同一个数(或式子),所得结果仍是等式.2.探究:观察下图中左右两个天平,你能发现什么规律?从左往右看,是在平衡的天平的两边都乘以同一个量,结果天平还是平衡; 从右往左看,是在平衡的天平的两边都除以同一个量,结果天平还是平衡.等式性质2:等式两边都乘(或除以)同一个数(或式)(除数或除式不能为0),所得结果仍是等式. (二)自学反馈1.把方程12x =1变形为x =2,其依据是(B )A .等式性质1B .等式性质2C .分式的基本性质D .不等式的性质1 2.下列说法中,正确的个数是(C )①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个3.(1)若2x -a =3,则2x =3+a ,这是根据等式性质1,在等式两边同时加上a . (2)若-2x =4,则x =-2,这是根据等式性质2,在等式两边同时除以2.活动1 小组讨论例1 填空,并说明理由.(1)如果a +2=b +7,那么a =____________; (2)如果3x =9y ,那么 x =____________; (3)如果12a =13b ,那么3a =____________.解:(1)因为a +2=b +7 ,由等式性质1可知, 等式两边都减去2,得a + 2 - 2=b + 7 -2, 即 a =b + 5 .(2)因为3x =9y ,由等式性质2可知,等式两边都除以3,得 3x 3=9y 3, 即x =3y.(3)因为12a =13b ,由等式性质2可知,等式两边都乘6,得 12a ×6=13b ×6, 即3a =2b .例2 判断下列等式变形是否正确,并说明理由. (1)如果a -3=2b -5,那么a =2b -8; (2)如果2x -14=4x -25,那么10x -5=16x -8.解:(1)错误.由等式性质1可知,等式两边都加上3,得 a -3+3=2b -5+3,即a =2b -2. (2)正确.由等式性质2可知,等式两边都乘20,得 2x -14×20=4x -25×20, 即5(2x -1)=4(4x -2). 去括号,得10x -5=16x -8.活动2 跟踪训练1.下列变形不正确的是(D ) A .若x -1=3,则x =4B .若3x -1=x +3,则2x -1=3C .若2=x ,则x =2D .若5x -4x =8,则5x +8=4x2.如果a =b ,那么下列等式一定成立的是(B ) A .a -c =c -b B .ac +b =bc +a C .a c =b cD .a b=1 3.如图,天平中的物体a 、b 、c 使天平处于平衡状态,则物体a 与物体c 的重量关系是(B )A .2a =3cB .4a =9cC .a =2cD .a =c4.已知x 、y 都是整数,利用等式性质,将下列各小题中的等式进行变形,然后填空.(1)如果x +y =0,那么x =-y ,这就是说,如果两个数的和为0,那么这两个数互为相反数. (2)如果x =-y ,那么x +y =0,这就是说,如果两个数互为相反数,那么这两个数的和为0. (3)如果xy =1,那么x =1y ,这就是说,如果两个数的积为1,那么这两个数互为倒数.(4)如果x =1y ,那么xy =1,这就是说,如果两个数互为倒数,那么这两个数的积为1.活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?3.3 一元一次方程的解法 第1课时 移项、合并同类项1.通过探究,领会移项的实质就是等式的变形,记得移项一定要变号. 2.能依据等式性质1,运用移项法则解一元一次方程.(重难点)阅读教材P 90~91,完成下列问题. (一)知识探究1.利用等式的性质1,观察下列变形过程: (1)方程5x -2=8两边都加上2, 得5x -2+2=8+2,即5x =8+2.(2)方程4x =3x +50两边都减去3x , 得4x -3x =3x +50-3x ,即4x -3x =50.归纳:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.必须牢记,移项要变号. 2.解方程:4x -5=2x +3. 解:移项,得4x -2x =3+5, 合并同类项,得2x =8, 两边都除以2,得x =4.检验:把x =4代入原方程左、右两边, 左边=4×4-5=11, 右边=2×4+3=11, 左边=右边,因此,x =4是原方程的解.归纳:利用移项解一元一次方程的一般步骤:移项→合并同类项→系数化为1. (二)自学反馈1.方程3x -7=x +3,移项得(A )A .3x -x =7+3B .3x +x =7+3C .3x -x =-7+3D .3x +x =-7+3 2.方程6x =3+5x 的解是(B ) A .x =2 B .x =3 C .x =-2 D .x =-3活动1 小组讨论 例 解下列方程: (1)4x +3=2x -7 ; (2)-x -1=3-12x.解:(1)移项,得4x -2x =-7-3, 合并同类项,得2x =-10, 两边都除以2,得x =-5.检验:把x =-5分别代入原方程的左、右两边, 左边=4×(-5)+3=-17, 右边=2×(-5)-7=-17, 左边=右边.所以 x =-5 是原方程的解. (2)移项,得-x +12x =3+1.合并同类项,得-12x =4.两边都乘-2,得x =-8.检验:把x =-8分别代入原方程的左、右两边, 左边=(-8)-1=7, 右边=3-12×(-8)=7,左边=右边.所以x =-8 是原方程的解. 活动2 跟踪训练1.方程3x -1=8的解是(A )A .x =3B .x =4C .x =5D .x =62.若x =4是关于x 的方程x2-a =4的解,则a 的值为(D )A .-6B .2C .16D .-23.代数式1-2a 与a -2的值相等,则a 等于(B ) A .0 B .1 C .2 D .3 4.解下列方程: (1)7u -3=5u -4; 解:u =-12.(2)2.4y +2y +2.4=6.8. 解:y =1.活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?1.通过探究,学习并了解“去括号法则”是解方程的重要步骤. 2.能准确而熟练地运用“去括号法则”解带有括号的方程.(重难点)阅读教材P 92~93,完成下列问题.解方程“去括号”这一变形是运用了什么根据?去括号要注意什么? (一)知识探究要去括号,就要根据去括号法则及乘法分配律,特别是当括号前是“-”号时,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.(二)自学反馈 1.解方程:(1)2(x -2)=-(x +3); (2)2(x -4)+2x =7-(x -1); (3)-3(x -2)+1=4x -(2x -1). 解:(1)x =13.(2)x =165.(3)x =65.2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?解:初一有60人参加了搬砖.去括号不能漏乘并注意符号.活动1 小组讨论例 解方程:3(2x -1)=3x +1. 解:去括号,得 6x -3=3x +1, 移项,得6x -3x =1+3, 合并同类项,得3x =4, 两边都除以3,得x =43.因此,原方程的解是x =43.活动2 跟踪训练 1.解方程:(1)5(x +2)=2(5x -1);解:x =125.(2)4x +3=2(x -1)+1;解:x =-2.(3)(x +1)-2(x -1)=1-3x ;解:x =-1.(4)2(x -1)-(x +2)=3(4-x). 解:x =4.2.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?解:小刚在冲刺以前跑了1分钟. 活动3 课堂小结1.通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获? 2.去括号解一元一次方程要注意什么?1.通过探究,掌握并运用等式性质2正确去分母解一元一次方程.(重难点) 2.了解一元一次方程解法的一般步骤.(重难点)阅读教材P 93~95,完成下列问题.(一)知识探究1.去分母的关键在于:方程两边同时乘以各分母的最小公倍数. 2.去分母的根据是等式的性质2,去分母时两边同乘各分母的最小公倍数,通常要将分子、分母看成一个整体,用括号括起来,去分母时不要漏乘每一项.3.含有分母的方程的解法的一般步骤为:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.(二)自学反馈1.解方程:3x +x -12=x +14-2x -13.解:两边都乘以12,去分母,得12×3x +6(x -1)=3(x +1)-4(2x -1).去括号,得36x +6x -6=3x +3-8x +4. 移项,得36x +6x -3x +8x =3+4+6. 合并同类项,得47x =13. 系数化为1,得x =1347.2.解方程:x -14+1=2-x +36.解:x =95.去分母时不要漏乘每一项,去分母后分子是多项式的要用括号括起来.活动1 小组讨论例 解方程:3x -12-2-x5=x.解:去分母,得5(3x -1)-2(2-x)=10x.去括号,得15x -5-4+2x =10x. 移项,合并同类项,得7x =9. 方程两边都除以7,得x =97.因此,原方程的解是x =97.活动2 跟踪训练 1.解方程:(1)5x -14=3x +12-2-x 3;解:x =-17.(2)2x +13-x +26=1;解:x =2.(3)3x -2x -12=2-x -25.解:x =1922.2.k 取何值时,代数式k +13的值比3k +12的值小1?解:k +13=3k +12-1,k =57.活动3 课堂小结1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?3.4 一元一次方程模型的应用 第1课时 和、差、倍、分问题1.掌握建立一元一次方程模型解应用题的方法步骤,能列方程解决简单的和、差、倍、分问题.(重难点) 2.通过列方程解应用题,培养分析问题,解决实际问题的能力.3.通过列方程解应用题,体会代数方法的优越性,理解列方程解决问题是数学联系实际的重要方面.阅读教材P 98~99,完成下列问题.(一)知识探究1.和、差、倍、分问题寻找相等关系时:抓住关键词列方程,常见的关键词有多、少、和、差、不足、剩余以及倍,增长率等.2.运用一元一次方程模型解决实际问题的步骤为:实际问题――→分析等量关系,设未知数建立方程模型―→解方程―→检验解的合理性.(二)自学反馈1.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数.解:12.2.在甲处劳动的有27人,在乙处劳动的有19人,现调20人去支援,使甲处人数为乙处人数的两倍,应调往甲、乙两处各多少人?解:17人,3人.活动1 小组讨论例 某房间里有四条腿的椅子和三条腿的凳子共16个, 如果椅子腿数与凳子腿数的和为60条,有几张椅子和几条凳子?分析 本问题中涉及的等量关系有: 椅子数+凳子数=16,椅子腿数+凳子腿数=60.解:设有x 张椅子,则有(16-x)条凳子. 根据题意,得4x + 3(16-x)=60 . 去括号,得 4x +48-3x =60 . 移项,合并同类项,得 x =12 . 凳子数为16-12=4(条). 答:有12张椅子,4条凳子.活动2 跟踪训练1.甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?解:分配到甲车队4辆车,分配到乙车队6辆车. 2.自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天早上七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包?解:该班分配到牛奶4件,面包3件.3.3月12日是植树节,初三年级170名学生去参加义务植树活动.如果男生平均一天能挖树坑3个,女生一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?解:该年级男生119人,女生51人.活动3 课堂小结谈谈这节课你有什么收获?第2课时 销售问题和本息问题1.学会列一元一次方程解决销售问题和储蓄问题.(重难点)2.培养运用代数方法解决实际问题的能力,掌握解题技巧和能力.(重难点)3.充分感受到用代数方法解应用题的优越性,从而提高学习数学的趣味性,培养正确思考,认真分析的良好习惯.阅读教材P 99~100,完成下列问题. (一)知识探究1.利润=售价-进价,售价=标价×折数10,利润率=利润÷成本×100%.2.利息=本金×利率×期数;本息和=本金+利息.(二)自学反馈1.某商店若将某商品按标价的八折出售,则此时该商品的利润率是10%,已知该商品的进价是1 000元,求该商品的标价.解:设该商品的标价是x 元,依题意,得 0.8x -1 000=1 000×10%.解得x =1 375.答:该商品的标价是1 375元.2.小明的爸爸为他存了一个三年期的教育储蓄,开始存入5 000元,三年后得到本息和5 405元,则这个三年期的教育储蓄的年利率为多少?解:设这个三年期的教育储蓄的年利率为x ,依题意,得5 000+3×5 000x =5 405. 解得x =0.027.0.027×100%=2.7%.答:这个三年期的教育储蓄的年利率为2.7%.活动1 小组讨论例1 某商店若将某型号彩电按标价的八折出售,则此时每台彩电的利润率是5%. 已知该型号彩电的进价为每台4 000元,求该型号彩电的标价.分析:本问题中涉及的等量关系有:售价-进价=利润. 解:设每台彩电标价为x 元,根据等量关系,得0.8x -4 000=4 000×5%. 解得x =5 250.答:该型号彩电标价为每台5 250元.例2 2016年10月1日,杨明将一笔钱存入某银行,定期3年,年利率是5%. 若到期后取出,他可得本息和23 000元,求杨明存入的本金是多少元.分析:顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息.利息=本金×年利率×年数.本问题中涉及的等量关系有:本金 + 利息=本息和.解:设杨明存入的本金是 x 元,根据等量关系,得 x +3×5%x =23 000, 化简,得 1.15x =23 000.解得 x =20 000.答:杨明存入的本金是20 000元. 活动2 跟踪训练1.某人把2 000元作为教育储蓄存入银行,年利率为2.88%,到期时共得到利息345.6元(不扣税),他一共存了多少年?解:6年.2.某商品的进价是1 000元,售价为1 500元,由于情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店可降多少元出售此商品?解:最多可降价450元出售.3.某商场将某种DVD产品按进价提高35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD 仍获利208元,则每台DVD的进价是多少元?解:每台DVD进价1 200元.活动3课堂小结谈谈这节课你有什么收获?第3课时行程问题1.通过探究,学会列一元一次方程解决行程问题中的相遇问题和追及问题.(重难点)2.通过列方程解应用题培养学生运用代数方法解决实际问题的能力,掌握解题技巧.(重难点)阅读教材P101~102,完成下列问题.(一)知识探究1.速度×时间=路程.2.相遇问题(甲、乙相向而行)的相等关系是:甲走的路程+乙走的路程=全路程.3.追及问题(甲、乙同向而行,同地不同时)的相等关系是:甲的时间=乙的时间-时间差;甲的路程=乙的路程.4.追及问题(同向而行,同时不同地)的相等关系是:甲的时间=乙的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.(二)自学反馈1.两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?(B)A.3 B.4C.5 D.62.甲乙两人在相距12千米的A,B两地同时出发,同向而行.甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍.几小时后乙能追上甲?解:设x小时后乙追上甲,依题意,得3×4x-4x=12.解得x=1.5.答:1.5小时后乙追上甲.活动1小组讨论例小明与小红的家相距20 km,小明从家里出发骑自行车去小红家,两人商定小红到时候从家里出发骑自行车去接小明. 已知小明骑车的速度为13 km/h,小红骑车的速度是12 km/h.(1)如果两人同时出发,那么他们经过多少小时相遇?(2)如果小明先走30 min,那么小红骑车要走多少小时才能与小明相遇?分析:由于小明与小红都从家里出发,相向而行,所以相遇时,他们走的路程的和等于两家之间的距离.不管两人是同时出发,还是有一人先走,都有小明走的路程+小红走的路程=两家之间的距离(20 km).(1)如果两人同时出发,如图所示(2)如果小明先走30 m in,如图所示解:(1)设小明与小红骑车走了x h后相遇,则根据等量关系,得13x +12x=20 .解得x=0.8 .答:经过0.8 h他们两人相遇.(2)设小红骑车走了t h后与小明相遇,则根据等量关系,得13(0.5 +t)+12t=20 .解得t=0.54 .答:小红骑车走0.54 h后与小明相遇.活动2跟踪训练1.王丽要从自己家骑自行车到外婆家,如果她的速度为9 km/h,那么到预定时间离外婆家还有1 km,如果她的速度为12 km/h,那么比预定时间少用10 min就可到外婆家,求预定时间和王丽家到外婆家的路程.解:预定时间为60 min;到外婆家的路程为10 km.2.田径场周长为400米,小明跑步的速度是爷爷的53倍,他们从同一起点沿跑道的同一方向同时出发,5 min后小明第一次追上了爷爷,求小明和爷爷跑步的速度.解:小明跑步的速度为200米/分,爷爷跑步的速度为120米/分.活动3课堂小结谈谈这节课你有什么收获?第4课时分段计费问题和方案问题1.通过探究,学会列一元一次方程解决分段计费、间隔问题及方案决策问题.(重难点)2.培养运用代数方法解决实际问题的能力,掌握解题技巧.(重难点)3.增强节约用水、节约资源的意识.阅读教材P103~104,完成下列问题.自学反馈1.为了节约用电,某地规定用电不超过140度,按每度0.57元收费;如果超过140度,超过部分按每度0.68元收费.小李家7月份的电费平均每度为0.60元,求他家7月份用电多少度.解:192.5.2.某市乘公交车(非空调)每次需投币1.5元或者购买IC卡,每次刷卡扣款1.35元,但办理IC卡时需付工本费15元.问需乘坐公交车多少次时两种收费方式的收费一样?当超过这个次数后哪种收费方式较合算?解:100次,购买IC卡合算.活动1小组讨论例1为鼓励居民节约用水,某市出台了新的家庭用水收费标准,规定:所交水费分为标准内水费与超标部分水费两部分,其中标准内水费为1.96 元/t,超标部分水费为2.94元/t. 某家庭6月份用水12 t,需交水费27.44元.求该市规定的家庭月标准用水量.解:由于1.96×12=23.52(元),小于27.44元,因此所交水费中含有超标部分的水费,即月标准内水费+超标部分的水费=该月所交水费.设家庭月标准用水量为x t,根据等量关系,得1.96x +(12-x)×2.94=27.44.解得x=8 .因此,该市家庭月标准用水量为8 t.例2现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等. 方案一:如果每隔5 m栽1棵,那么树苗缺21棵;方案二:如果每隔5.5 m栽1棵,则树苗正好栽完. 根据以上方案,请算出原有树苗的棵数和这段路的长度.分析:观察下面植树示意图,想一想:(1)相邻两树的间隔长与应植树的棵数有什么关系?(2)相邻两树的间隔长、应植树棵数与路长有怎样的数量关系?设原有树苗x 棵,由题意可得下表:方案间隔长应植树数路长一 5 x+21 5(x+21-1)二 5.5 x 5.5(x-1)本题中涉及的等量关系有:方案一的路长=方案二的路长解:设原有树苗x棵,根据等量关系,得5(x+21-1)=5.5(x-1) ,即5(x+20)=5.5(x-1).化简,得-0.5x=-105.5.解得x=211.因此,这段路长为5×(211+20)=1 155(m).答:原有树苗211棵,这段路的长度为1 155 m.活动2跟踪训练1.你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价(3千米以内)10元,超过3千米的部分每千米1.20元,小明乘坐了x(x>3)千米的路程.(1)请写出他应付费用的表达式;解:10+1.2(x-3).(2)若他支付的费用是23.2元,你能算出他乘坐的路程吗?解:14.2.某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?解:60吨,用第二种结算方法可多拿工资.活动3课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?。
七年级数学上册 第3章 一元一次方程 3.4 一元一次方程模型的应用教案 (新版)湘教版-(新版)湘
3.4一元一次方程模型的应用(第1课时)【教学目标】知识与技能掌握一元一次方程解简单应用题的方法和步骤,并能解答一元一次方程的和、差、倍分问题的简单应用题.过程与方法通过列方程解应用题,提高分析问题、解决问题的能力.情感态度理解和体会数学建模思想在实际问题中的应用,形成用数学知识解决问题的意识.教学重点找出等量关系,列出方程.教学难点找出等量关系,列出方程.【教学过程】一、情景导入,初步认知,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决,若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较有什么优越性?某数的3倍减2等于它与4的和,求某数.(用算术方法解由学生回答)解:(4+2)÷(3-1)=3答:某数为3.如果设某数为x,根据题意,其数学表达式为3x-2=x+4此式恰是关于x的一元一次方程.解得x=3.上述两种解法,很明显算术方法不易思考,而应用设未知数,列出方程并通过解一元一次方程求得应用题的解有化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.2.我们知道方程是一个含有未知数的等式,而等式表示了一个相等的关系.对于任何一个应用题中所提供的条件应首先找出一个相等的关系,然后将这个相等的关系表示成方程.下面我们通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.【教学说明】采用提问的形式,方法与方程解决实际问题的方法对比,让学生明白方程的优越性.二、思考探究,获取新知1.探究:某湿地公园举行观鸟活动,其门票价格如下,全价票为20元/人,半价票为10元/人.该公园共售出1 200X门票,得总票款为20 000元,问:全价票和半价票分别售出多少X?(1)在此问题中,有何等量关系?全价票款+半价票款=总票款.(2)怎样设未知数?设售出全价票xX,则售出半价票(1 200-x)X.(3)根据等量关系列出方程,并求解.x·20+(1 200-x)·10=20 000解得:x=800所以半价票为1 200-800=400(X)即全价票售出800X,半价票售出400X.【教学说明】让学生体会找相等关系是列方程的关键所在.,你能总结出一元一次方程解实际问题的一般步骤吗?【归纳结论】一元一次方程解实际问题的一般步骤为:【教学说明】培养学生观察、概括及语言表达能力.三、运用新知,深化理解1.教材P98例1.,,今年的是去年的2倍,这三年的总产值为550万元,前年的产值是多少?解:设前年的产值为x,,,则x+1.5x+2×1.5x=550,解得x=100.答:前年的产值为100万元.3.某面粉仓库存放的面粉运出15%后,还剩余42 500 kg,这个仓库原来有多少面粉?分析:题中给出的已知量为仓库中存放的面粉运出15%;仓库中还剩余42 500 kg.未知量为仓库中原来有多少面粉.已知量与未知量之间的一个相等关系:原来质量-运出质量=剩余质量设原来有x千克面粉,运出15%x千克,还剩余42 500千克.解:设原来有x千克面粉,那么运出了15%x千克,根据题意,得x-15%·x=42 500即x-x=42 500x=42 500解得x=50 000.经检验,符合题意.答:原来有50 000千克面粉.,生产特种螺栓和螺母,一个螺栓的两头均套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个,问:多少工人生产螺栓,多少工人生产螺母,才能使一天所生产的螺栓和螺母正好配套?解:设x名工人生产螺栓,(28-x)名工人生产螺母,列方程得2×12x=18(28-x).解得x=12.生产螺母的人数为28-x=16.答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母正好配套. ,蜻蜓有6条腿,现在有蜻蜓、蜘蛛若干只,它们共有270条腿,且蜻蜓的只数比蜘蛛的2倍少5,问:蜘蛛、蜻蜓分别有多少只?解:设有蜘蛛x只,蜻蜓有(2x-5)只,则8x+6(2x-5)=270,解方程得x=15,2x-5=25.答:蜘蛛有15只,蜻蜓有25只.,,使在甲处的人数为在乙处的人数的2倍,应分别调往甲、乙两处多少人?分析:(1)审题:从外处共调20人去支援.若设调往甲处的是x人,则调往乙处的是多少人?一处增加x人,另一处便增加(20-x)人.看下表:调动前调动后甲处27人(27+x)人乙处19人[19+(20-x)]调人后甲处人数=调人后乙处人数的2倍.解:设应该调往甲处x人,则,得27+x=2[19+(20-x)].解方程得x=17.20-x=20-17=3.经检验,符合题意.答:应调往甲处17人,调往乙处3人.,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,,那么先安排整理的人员有多少?解:设先安排整理的人员有x人,依题意,得+=1解得x=6.经检验,符合题意.答:先安排整理的人员有6人.【教学说明】通过练习,巩固本节课所学的内容.四、师生互动、课堂小结先小组内交流收获和感想,再以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.4”中第4、7、8题.3.4一元一次方程模型的应用(第2课时)【教学目标】知识与技能学会用方程表示实际问题中的数量关系和变化规律.过程与方法通过探索实际问题,培养学生应用数学的意识,体会数学的价值.情感态度培养学生观察、分析、推理能力,渗透建模思想、方程思想、分类讨论思想.教学重点正确地分析出应用题中的已知数、未知数.教学难点能够准确地找出应用题的等量关系.【教学过程】一、情景导入,初步认知某超市把一种羊毛衫按进价提高50%标价,再按8折(标价的80%)出售,这样该超市每卖出一件羊毛衫就可盈利80元.这种羊毛衫的进价是多少元?如果按6折出售,该超市还盈利吗?为什么?【教学说明】通过学生进行实际调查,激发学生的学习兴趣,使每一名学生都成为知识的探索者、创新者,渗透方程思想、建模思想,培养学生运用数学知识解决实际问题的意识.二、思考探究,获取新知1.探究:某商店将某型号彩电按标价的八折出售,则此时每台彩电的利润率是5%,已知该型号彩电的进价为每台4 000元,求该型号彩电的标价.(1)在此问题中,有何等量关系?售价-进价=利润.(2)怎样设未知数?设彩电标价为每台x元,则售价为0.8x元.(3)根据等量关系列出方程,并求解.0.8x-4 000=4 000×5%解得:x=5 250即:彩电的标价为每台5 250元.2.交流讨论:在销售问题中进价、售价、利润、利润率的关系式有哪些?【归纳结论】销售问题中的等量关系式有:①商品利润=商品售价-商品进价②商品售价=商品标价×折扣数③×100%=商品利润率④商品售价=商品进价×(1+利润率),杨明将一笔钱存入某银行,定期3年,年利率是5%,若到期后取出,他可得到本息和23 000元,求杨明存入的本金是多少元.(1)引导学生分析、解决问题.(2)在存款问题中有哪些等量关系式?【归纳结论】存款问题中的等量关系式有:①利息=本金×年利率×年数②本息和=本金+利息【教学说明】明确解决销售问题的关键是利用销售问题的公式,,要好好把握各种问题的数量关系,可以作为一种知识的储备!三、运用新知,深化理解,这件衣服是按标价的3折出售的,这件衣服的标价是多少元?解:设这件羊毛衫的标价是x元,根据题意,得x=69.解得x=230答:这件衣服的标价是230元.,每件可盈利2元,为了支援山区,现在按原售价的7折出售给一个山区学校,:该文具每件的进价是多少元?基本关系式:进价=标价×折数-利润解:设该文具每件的进价是x元.根据题意得x= (x+2)-0.2.解得x=4.答:该文具每件的进价是4元.,标价为400元,商店要求利润率不低于25%的价格出售,求:售货员最低可以打几折出售此商品?解:设打x折出售此商品.400x-200=200×25%则x=0.625.答:售货员最低可以打6.25折出售此商品.4.某企业存入银行甲、乙两种不同性质的存款20万元.甲种存款的年利率为5.5%,乙种存款的年利率为4.5%,该企业一年可获利9500元,求甲、乙两种存款分别是多少元?解:设甲种存款为x元,依题意,得5.5%x+(200 000-x)×4.5%=9 500,解得:x=50 000,乙存款:200 000-50 000=150 000(元).答:甲存款50 000元,乙存款150 000元.,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折,,那么书包和文具盒的标价分别是多少元?解:设一个文具盒标价为x元,则一个书包标价为(3x-6)元,依题意,得解此方程,得x=18,经检验,符合题意.3x-6=48(元)答:书包和文具盒的标价分别是48元/个,18元/个.,其中一个亏本20%,另一个盈利60%.请你计算一下,在这次买卖中,这家商店是赚还是赔?若赚,共赚了多少元?若赔,赔了多少元?解:设一个价钱为x元,另一个价钱为y元,依题意得:x(1+60%)=64,y(1-20%)=64,所以x=40,y=80,则64×2-(x+y)=128-120=8.故盈利8元.答:在这次买卖中,这家商店是赚了,共赚了8元.,电脑价格不断下降,某一品牌电脑,每台先降价m元,后连续两次降价,每次降价25%,现售价为n元,那么该电脑原来每台售价是多少元?解:设原来的售价是x元.根据等式列方程得:(1-25%)2(x-m)=n,解得x=n+m,答:原来每台的售价是(n+m)元.【教学说明】通过练习提高学生思维的广度;培养学生的发散思维和创新精神.四、师生互动、课堂小结先小组内交流收获和感想,再以小组为单位派代表进行总结,教师作以补充.【课后作业】布置作业:教材“习题3.4”中第1、2题.3.4一元一次方程模型的应用(第3课时)【教学目标】知识与技能进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力. 过程与方法通过自主探究与小组合作交流,能合理清晰地表达自己的思维过程,掌握根据具体问题中的数量关系,列出方程,感悟方程是刻画现实世界的一个有效模型,训练学生运用新知识解决实际问题的能力.情感态度进一步体会数学中的化归思想,引导学生关注生活实际,建立数学应用意识,热爱数学. 教学重点利用线形示意图分析行程问题中的数量关系.教学难点找出问题中的等量关系.【教学过程】一、情景导入,初步认知在行程问题中,最基本的等量关系式是什么?【教学说明】为本节课的教学做准备.二、思考探究,获取新知1.探究:星期天早晨,小斌和小强分别骑自行车从家里出发去参观雷锋纪念馆,已知他俩的家到纪念馆的路程相等,小斌每小时骑10km,他在上午10时到达;小强每小时骑15km,他在上午9时30分到达,求他们的家到雷锋纪念馆的路程.【教学说明】引导学生分析题意,找出题目中的等量关系式,并列出方程解答.2.讨论:在行程问题中还存在什么样的等量关系式?【归纳结论】相遇问题的基本关系:各路程之和=总路程.追及问题的基本关系:追及者的路程-被追者的路程=相距的路程.3.探究:为鼓励居民节约用水,某市出台了新的家庭用水收费标准,规定:所交水费分标准内水费与超标部分水费两部分,,,某家庭6月份用水12t,需缴水费27.44元.求该市规定的家庭月标准用水量.本问题首先要分析所缴的,因为1.96×12=23.52(元),,所以含有超标部分的水费,则等量关系式为:月标准内水费+超标部分水费=该月所缴的水费设月标准用水量为x t,根据等量关系,得解得:x=8所以,该市家庭月标准用水量是8吨.,我们先要确定所给的数据所处的分段,再根据它的分段合理地解决.,由小敏、小聪两人负责选购圆珠笔、钢笔共22支,,看到圆珠笔每支5元,钢笔每支6元.(1)若他们购买圆珠笔、钢笔刚好用去120元,则圆珠笔、钢笔分别买了多少支?(2)若购圆珠笔可按9折付款,钢笔可按8折付款,在所需费用不超过100元的前提下,请你写出一种选购方案.解:(1)设圆珠笔买了x 支,则钢笔买了(22-x)支,根据题意得:5x+6(22-x)=120,解得:x=12.所以22-x=22-12=10.答:圆珠笔、钢笔分别买了12支、10支.(2)是一道方案设计题,也是一道开放型题,答案不唯一,根据题意,圆珠笔的单价为109×5=4.5(元);钢笔的单价为108×6=4.8(元),由于圆珠笔的单价小而钢笔的单价大,因此尽量圆珠笔多买些.①当买圆珠笔19支,钢笔3支时,19×4.5+3×4.8=99.9(元)<100(元)满足条件;②当买圆珠笔20支,钢笔2支时,20×4.5+2×4.8=99.6(元)<100(元)满足条件;③当买圆珠笔21支,钢笔1支时,21×4.5+1×4.8=99.3(元)<100(元)满足条件.故有三种方案,圆珠笔19支,钢笔3支或圆珠笔20支,钢笔2支或圆珠笔21支,钢笔1支.【教学说明】 这一层次及时鼓励学生通过观察、分析、小组讨论,找出其中的等量关系,并尝试用文字语言表述出来,有利于提高学生的分析问题能力和语言表达能力.三、运用新知,深化理解1.教材P101例3、P103例4.2.某城市出租车起步价为8元(3km 以内),以后每千米2元(不足1km 按1km 算),某人乘出租车花费20元,那么他大概行驶了多远?解:设这个人大概行驶了xkm ,根据题意得:8+2(x-3)=20解得:x=9答:这个人大概行驶9km.3.甲、乙两列火车的长为144m 和180m ,,从相遇到全部错开需9s ,问:两车的速度分别是多少?解:设乙车每秒行驶x m ,则甲车每秒行驶(x+4) m ,根据题意得:9(x+x+4)=144+180,整理得:2x=32,解得:x=16,x+4=20.答:甲车每秒行驶20m ,乙车每秒行驶16m.4.甲、乙两地的路程为360千米,一列快车从乙站开出,每小时行72千米;一列慢车从甲站开出,每小时行48千米.(1)若两列火车同时开出,相向而行,经过多长时间两车相遇?(2)若快车先开25分钟,两车相向而行,慢车行驶了多长时间两车相遇?解:(1)设两车同时开出相向而行,经过x 小时两车相遇,即72x+48x=360,解得:x=3,答:经过3小时两车相遇.(2)设慢车行驶y 小时两车相遇.根据题意有:48y+72(y+6025)=360, 解得y=411. 答:慢车行驶了411小时两车相遇. ,用气量如果不超过60m 3,;如果超过60m 3,为,求该用户10月份应缴的煤气费是多少元.解:由10月份的煤气费平均每立方米为,可得10月份用气量一定超过60 m 3,设10月份用了煤气x 立方米,由题意得:60×0.8+(x -60)×1.2=0.88×x,解得:x=75,则所缴的电费为75×0.88=66(元).答:10月份应缴的煤气费是66元.6.某水果批发市场香蕉的价格如下表:二次分别购买香蕉多少千克?分析:由于X强两次共购买香蕉50千克(第二次多于第一次),因此第二次购买香蕉多于25千克,第一次少于25千克.因为50千克香蕉共付264元,,所以第一次购买香蕉的价格必然为6元/千克,即少于20千克,第二次购买的香蕉价格可能是5元,也可能是4元.我们分两种情况讨论即可.解:(1)当第一次购买香蕉少于20千克,第二次购买香蕉20千克以上但不超过40千克时,设第一次购买x千克香蕉,则第二次购买(50-x)千克香蕉,根据题意,得:6x+5(50-x)=264解得:x=1450-14=36(千克)(2)当第一次购买香蕉少于20千克,第二次购买香蕉超过40千克时,设第一次购买x千克香蕉,则第二次购买(50-x)千克香蕉,根据题意,得:6x+4(50-x)=264解得:x=32(不符合题意)答:第一次购买14千克香蕉,第二次购买36千克香蕉.信公司开设了两种业务:一是“全球通”,使用者先缴纳50元月租费,;二是“快捷通”,使用者不缴纳月租费,每通话1分钟付通话费0.60元.(1)小明的爸爸一个月的通话时间约为200分钟,你认为他应选择哪种通讯业务,可使费用较少?请说明理由.(2)当每月通话时间为多少分钟时,两种通讯业务缴纳的费用一样?解:(1)他应选择快捷通业务;使用全球通业务需要50+0.4×200=130(元),使用快捷通业务需要0.6×200=120(元),120元<130元,所以他应选择快捷通业务.(2)设当每月通话时间为x分钟时,两种通讯业务缴纳的费用一样.,解得x=250.所以当每月通话时间为250分钟时,两种通讯业务缴纳的费用一样.,在市场上若直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润4 000元,经精加工后销售,,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,,,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.解:方案一:4 000×140=560 000(元);方案二:15×6×7 000+(140-15×6)×1 000=680 000(元);方案三:设精加工x吨,则+=15;解得:x=60,7 000×60+4 000×(140-60)=740 000(元);答:选择第三种方案.【教学说明】通过练习,检测学生的掌握情况;教师做适当地提示.四、师生互动、课堂小结先小组内交流收获和感想,再以小组为单位派代表进行总结.教师作以补充.【课后作业】布置作业:教材“习题3.4”中第5、6、7题.。
3.4一元一次方程模型的应用-和、差、倍、分问题教案
在今天的教学中,我发现学生们对一元一次方程解决和、差、倍、分问题的应用表现出很大的兴趣。他们能够在小组讨论和实验操作中积极参与,尝试将实际问题转化为方程模型。这一点让我感到很欣慰,因为这说明学生们开始理解数学与生活之间的联系。
不过,我也注意到在授课过程中,部分学生对从问题中抽象出方程模型这一步骤感到困惑。他们知道需要用方程来解决问题,但在确定未知数和关系式时却犹豫不决。针对这一点,我在接下来的教学中需要更加注重引导学生如何从问题中提取关键信息,帮助他们建立方程。
2.培养学生通过抽象、建模等数学思维方法,将现实问题转化为数学方程,提升数学建模素养。
3.培养学生在一元一次方程求解过程中,运用逻辑推理和数学运算能力,增强数学逻辑思维和精确计算能力。
4.培养学生合作交流、自主探究的学习习惯,提高学生的团队协作和问题解决能力。
三、教学难点与重点
1.教学重点
-核心内容:一元一次方程在实际问题中的应用,特别是和、差、倍、分问题的求解方法。
b.差问题:甲比乙多几个苹果?
c.倍问题:甲的苹果是乙的几倍?
d.分问题:若将一些苹果平均分给若干人,每人能分到多少个?
本节课将结合具体实例,引导学生运用一元一次方程解决以上问题,培养学生的数学思维和解决问题的能力。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生运用数学知识解决实际问题的பைடு நூலகம்力,提高数学应用意识。
2.教学难点
-难点内容:从实际问题中抽象出一元一次方程模型,以及对方程的正确理解和求解。
-难点举例与解释:
a.抽象能力:学生需要学会从描述性的问题中提取关键信息,这是难点之一。例如,从“甲有5个苹果,比乙多3个”中抽象出方程式x - 3 = 5。
解一元一次方程 教学设计【优秀3篇】
解一元一次方程教学设计【优秀3篇】篇一:解一元一次方程教学设计1白话文的我细心为您带来了解一元一次方程教学设计【优秀3篇】,希望能够帮助到大家。
篇一:解一元一次方程教案设计篇一一。
教学目标:1。
学问目标:了解一元一次方程的概念,驾驭含括号的一元一次方程的解法。
2。
实力目标:培育学生的运算实力与解题思路。
3。
情感目标:通过主动探究,合作学习,相互沟通,体会数学的严谨,感受数学的魅力,增加学习数学的爱好。
二。
教学的重点与难点:1。
重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2。
难点:括号前面是负号时,去括号时遗忘变号。
移项法则的敏捷运用。
三。
教学方法:1。
教法:讲课结合法2。
学法:看中学,讲中学,做中学3。
教学活动:讲授四。
课型:新授课五。
课时:第一课时六。
教学用具:彩色粉笔,小黑板,多媒体七。
教学过程1。
创设情景:今日让我们一起做个小小的嬉戏,这个嬉戏的名字叫:猜猜你心中的她心里想一个数将这个数+2将所得结果最终+7将所得的结果告知老师(抽一个同学,让他把他计算的`结果告知老师,由老师通过计算得到他最起先所想的数字。
)老师:同学们知道老师是怎样猜到的吗?同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今日所要学习的内容解一元一次方程。
2。
探究新知:一元一次方程的概念:前面我们遇到的一些方程,例如 3老师:大家视察这些方程,它们有什么共同特征?(提示:视察未知数的个数和未知数的次数。
)(抽同学起来回答,然后再由老师概括。
)只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来推断一个式子是否是一元一次方程吗?再次强调特征:(1)只含一个未知数;(2)未知数的次数为1;(3)是一个整式。
(留意:这几个特征必需同时满意,缺一不行。
)3。
例题讲解:例1推断如下的式子是一元一次方程吗?(写在小黑板上,让学生推断,并分别抽同学起来回答,假如不是,要说出理由。
七年级数学《一元一次方程》教案4篇
七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案4篇七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。
)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。
学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。
这时,教士不要急于求成,而要引导学生反思自己的解题过程。
必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。
师强调:移项法则。
七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
七年级数学上册《一元一次方程模型的应用》教案、教学设计
4.小组合作题:布置一道需要小组合作完成的题目,要求学生在小组内部分工合作,共同分析问题、构建方程并求解。这样的题目有助于培养学生的团队合作意识和交流能力。
5.思考反思题:请学生回顾本节课的学习内容,写一篇学习心得,内容包括对一元一次方程的理解、解题过程中的困惑和收获,以及对接下来的学习的期望。
作业要求:
1.请学生按时完成作业,保持书写工整、清晰。
2.对于应用提高题和创新思维题,鼓励学生展示解题思路,提倡多种解法。
3.小组合作题需注明小组成员姓名,每个成员都要参与讨论和解答。
七年级数学上册《一元一次方程模型的应用》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解一元一次方程的概念,掌握一元一次方程的解法,并能熟练运用到实际问题中。
2.培养学生运用方程模型解决实际问题的能力,使学生能够将现实生活中的问题转化为数学方程,进而求解。
3.通过一元一次方程的学习,让学生掌握基本的数学运算规律,提高学生的运算速度和准确性。
1.培养学生对数学学科的兴趣,激发学生的学习热情,使学生树立自信心,勇于面对数学难题。
2.通过解决实际问题,让学生认识到数学在现实生活中的重要性,增强学生的应用意识。
3.在教学过程中,注重培养学生的诚信品质和责任感,使学生养成严谨、踏实的学术态度。
教学设计:
1.导入:以生活中的实际问题为例,引导学生思考如何运用数学知识解决问题,从而引出一元一次方程的概念。
4.思考反思题要求真实反映学习情况,不少于200字。
《一元一次方程》教学设计精选11篇
《一元一次方程》教学设计精选11篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《一元一次方程》教学设计精选11篇作为一位优秀的人·民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。
一元一次方程教案完整版
一元一次方程教案完整版一、教学内容1. 教材章节:第五章第一节《一元一次方程》。
2. 详细内容:一元一次方程的定义、解法(移项、合并同类项、化简等),以及在实际问题中的应用。
二、教学目标1. 知识与技能:掌握一元一次方程的定义,能熟练运用解方程的方法求解一元一次方程。
2. 过程与方法:培养学生分析问题、解决问题的能力,以及逻辑思维能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识。
三、教学难点与重点1. 教学难点:理解一元一次方程的概念,掌握解一元一次方程的方法。
2. 教学重点:运用一元一次方程解决实际问题。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:练习本、铅笔、直尺。
五、教学过程1. 导入:通过一个实践情景引入(如:小明和小华的年龄问题),让学生感受一元一次方程在实际生活中的应用。
2. 新课导入:讲解一元一次方程的定义,引导学生了解方程的解法。
3. 例题讲解:讲解一元一次方程的解法,如移项、合并同类项等。
4. 随堂练习:让学生独立完成练习题,巩固所学知识。
5. 小组讨论:分组讨论实际问题,培养学生的合作意识和解决问题的能力。
六、板书设计1. 一元一次方程2. 定义:含有一个未知数,且未知数的次数为1的方程。
3. 解法:移项、合并同类项、化简等。
4. 例题:展示解一元一次方程的步骤。
5. 课堂练习:布置随堂练习题。
七、作业设计1. 作业题目:(1)求解方程:2x + 3 = 7(2)求解方程:5 3x = 2(3)实际问题:小华比小明大3岁,小明的年龄是x岁,求小华的年龄。
答案:(1)x = 2(2)x = 1(3)小华的年龄为x + 3岁。
八、课后反思及拓展延伸1. 反思:本节课的教学效果,学生的学习情况,以及需要改进的地方。
2. 拓展延伸:引导学生研究一元一次方程的其他解法,如代入法、消元法等,并尝试解决更复杂的问题。
重点和难点解析:1. 教学内容的详细说明;2. 教学目标的制定;3. 教学难点与重点的明确;4. 教学过程中的实践情景引入、例题讲解、随堂练习;5. 板书设计;6. 作业设计;7. 课后反思及拓展延伸。
3.1.1一元一次方程(教案)
本节课将紧紧围绕这些核心素养目标,注重培养学生的综合能力和学科素养。
三、教学难点与重点
1.教学重点
(1)一元一次方程的定义及一般形式
-学生需要理解并掌握含有一个未知数,且未知数的最高次数为1的方程为一元一次方程。
3.解一元一次方程的方法:包括移项、合并同类项、系数化为1等步骤,培养学生解决一元一次方程的能力。
4.应用一元一次方程解决实际问题:通过列举生活中的实例,让学生学会将实际问题转化为方程,并运用所学知识求解。
5.一元一次方程的解的性质:让学生了解一元一次方程有唯一解的性质,并掌握如何判断方程是否有解。
针对学生在学习难点方面的掌握情况,我打算在下一节课中增加一些针对性的练习,尤其是移项和合并同类项方面的训练。同时,加强对学生的个别辅导,确保他们在这些难点上能够有所突破。
最后,我认为在今后的教学中,要注重以下几点:
1.加强基础知识讲解,让学生熟练掌握一元一次方程的定义、一般形式和解法。
2.注重培养学生的实际应用能力,将理论知识与生活实际相结合。
3.引导学生独立思考,提高他们在小组讨论中的参与度。
4.加强对学生的个别辅导,关注他们在学习中的困难,并及时给予帮助。
5.定期进行教学反思,调整教学方法和策略,以提高教学效果。
3.重点难点解析:在讲授过程中,我会特别强调一元一次方程的定义和解方程的方法这两个重点。对于难点部分,比如移项和合并同类项,我会通过具体的例题和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如测量物体的速度或距离,通过收集数据来构建一元一次方程。
初中七年级上册数学解一元一次方程教案优质(优秀5篇)
初中七年级上册数学解一元一次方程教案优质(优秀5篇)元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。
2.使学生掌握含有字母系数的一元一次方程的解法。
3.使学生会进行简单的公式变形。
4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。
5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。
教学重点:(1)含有字母系数的一元一次方程的解法。
(2)公式变形。
教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。
(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。
教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。
(2)移项——未知项移到等号一边常数项移到等号另一边。
注意:移项要变号。
(3)合并同类项——提未知数。
(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。
(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。
引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。
)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。
(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1一元一次方程模型
教学目标
1.在具体情景中感受方程作为刻画现实世界有效模型的意义。
2.通过观察、归纳一元一次方程的概念。
3 会从简单的实际问题中建立一元一次方程模型。
教学重、难点
重点:体会方程模型的重要性,了解一元一次方程的概念。
难点:根据实际问题建立一元一次方程模型。
教学过程
一、激情引趣,导入新课。
看课本图,由这个图你会想到什么?
二合作交流,探究新知
1 方程的概念
想一想:
(1)如图是一个长方体形的电视机包装盒,它的底面宽为1米,长为1.2米,且包装盒的表面积为6.8平方米,你求出这个电视机包装盒的高吗?
(2)小英把10元钱递给营业员买钢笔和铅笔,下面是小英和
营业员的对话,你能根据他们的对话的内容算出铅笔是多少元
一支吗?
小英:买4支铅笔和一只钢笔;营业员:一支钢笔比一支铅笔
多4元,应找你2元。
说明:(1)等式2x+2.4x+2.4=6.8中2、2.4、6.8叫已知数,x 叫未知数。
考考你:①在小学我们学习了简单的方程,请你说一说:什么叫方程?
含有______的______叫________.
方程的两个基本特征是:
①是______式;②含有______。
(2) 下面各式哪些是方程?
4x+(x+4)=8, x+5=8, x-2y=6, 32x–y2=12, 2x+1, 3x+6>0
②想一想两个问题,我们把要求的量用字母(x或者y或其他字母)表示,根据问题中的数量关系列出方程,叫__________________
观察:(1)下面方程有什么共同点特点?(从未知数的个数,未知数的最高次数,分母是否含有未知数几个方面观察)
4x+(x+4)=8, x+5=8, 2x+2.4x+2.4=6.8,1
2
x+4=8
只含有____未知数,且未知数的次数(即指数)是____的整式方程,叫一元一次方程。
(2)方程x+5=8中,把x=3与x=2代入方程,你会发现什么?能使方程左右两边相等的___________叫方程的解,求方程的解的过程叫解方程。
2 练习:
检验下列各数是不是方程x-3=2x-8的解?(1)x=5, (2) x= -4 三应用迁移,巩固提高
1 理解方程的概念
例1 在5x=0, 4k+3, x 2+xy+y 2
=5, 2+3=5, 3x ≥6, 1x+1=x –1中,方程的个数有( )
A 1个,
B 2个,
C 3个 ,
D 4个
例2 对于y –1=1y ,x 2–1=3,x 2–3x+2=0,x –2y=1,x=3,2x+4,其中是一元
一次方程的个数是( )
A 1 个
B 2 个
C 3个
D 4 个 2 检验一个数是不是方程的解
例3请问:x=12,x=–1213是不是方程23x=74x+1的解。
3 建立方程模型
例4 某校买一批书包和铅笔盒,共计580元,已知书包每个16元,铅笔盒每个3元,书包比铅笔盒少35个,问书包和铅笔盒各买多少个?
例5一件标价为600元的上衣,按8折销售,仍可获利20元,设这件上衣的成本价为x 元,根据题意,下列所列方程正确的是( )
A 600×0.8―x=20
B 600×80―x=20
C 600×0.8=x―20
D 600×8=x―20
例6一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲单独做4小时,剩下的由甲、乙合作,还需要几小时?若设剩下的部分需要x小时完成,下列方程正确的是( )
A 4
20
–x20–x12=1, B. 420+x20–x12=1,
C. 4
20
+
x
20
+
x
12
=1, D.
4
20
–x20+x12=1,
四课堂练习,巩固提高课本练习1,2
五反思小结拓展提高这一节课你有什么收获?六作业A B。