数字信号处理实验二-时域采样和频域采样

合集下载

时域采样与频域采样 实验报告

时域采样与频域采样  实验报告

实验二 时域采样与频域采样学校:西南大学 班级:通信工程班一、实验目的时域采样理论与频域采样理论就是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理时域采样定理的要点就是采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

频域采样定理的要点就是:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k N X k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为 ()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就就是原序列x(n),即()N x n =x(n)。

如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N<M,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x(n)的长度M 短,因此。

()N x n 与x(n)不相同。

三、实验程序(1)时域采样理论的验证。

Tp=64/1000;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444、128;alph=pi*50*2^0、5;omega=pi*50*2^0、5;xnt=A*exp(-alph*n*T)、*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);tstem(xnt,yn);box on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1、2*max(abs(Xk))])(Fs=300Hz与Fs=200Hz的程序与上面Fs=1000Hz完全相同。

实验二时域抽样与频域抽样

实验二时域抽样与频域抽样

数字信号处理及实验实验报告实验题目时域抽样与频域抽样姓名MYT 组别班级学号【实验目的】加深理解连续时间信号离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。

掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。

加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。

【实验原理】离散系统在处理信号时,信号必须是离散的序列。

因此,在利用计算机等离散系统分析处理连续时间信号时必须对信号进行离散化处理。

时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件;对于基带信号,信号抽样频率f大于等于2倍的信号最高频率fm,即 f ≥ fm 。

信号的重建使信号抽样的逆过程。

非周期离散信号的频谱是连续的。

计算机在分析离散信号的频谱时,必须将其连续频谱离散化。

频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。

【实验结果与数据处理】1、为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50HZ的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。

(1)x1(t)=cos(2π*10t)(2)x2(t)=cos(2π*50t)(3)x3(t)=cos(2π*100t)程序代码如下:clc,clear,close allt0=0:0.001:0.1;Fs=50;t=0:1/Fs:0.1;figure(1)x1=cos(2*pi*10*t0);plot(t0,x1,'r')hold onx=cos(2*pi*10*t);stem(t,x);hold offfigure(2)x2=cos(2*pi*50*t0);plot(t0,x2,'r')hold onx=cos(2*pi*50*t);stem(t,x);hold offfigure(3)x3=cos(2*pi*100*t0);plot(t0,x3,'r')hold onx=cos(2*pi*100*t);stem(t,x);hold off图 1 x1(t)=cos(2π*10t)图 2 x2(t)=cos(2π*50t) 图 3 x3(t)=cos(2π*100t)2、产生幅度调制信号X(t)=cos(2πt)cos(200πt),推导其频率特性,确定抽样频率,并绘出波形。

实验2信号的时域采样与频域采样(预习报告)

实验2信号的时域采样与频域采样(预习报告)

实验2信号的时域采样与频域采样(预习报告)实验2 时域采样与频域采样1.实验程序及运⾏结果实验内容1:时域采样理论的验证给定模拟信号0()sin()()t a x t Ae t u t α-=Ω式中444.128A =,α=,0rad s Ω=。

⽤DFT (FFT )求该模拟信号的幅频特性,以验证时域采样理论。

选取三种采样频率,即1kHz,300Hz 200Hz s F =,。

观测时间选64p T ms =。

采样点数⽤公式p s N T F =?计算。

(1)采样频率1kHz s F =源程序:shzxhchlshiyan2_1% 时域采样理论验证程序(采样频率为1000Hz ) clear all,close all,clc,clf;Tp=64/1000; %观察时间Tp=64毫秒 Fs=1000;%采样频率 T=1/Fs;%时域采样间隔 %M=Tp*Fs;%求采样点数M=round(Tp*Fs);%求采样点数(四舍五⼊取整) %M=fix(Tp*Fs);%求采样点数(取⼩数的整数部分) n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);%产⽣采样点数为M 的采样序列x(n) Xk=T*fft(xnt,M); %对采样序列求M 点DFT (FFT )subplot(2,1,1);stem(n,xnt,'.');%绘制时域抽样信号波形(64点) xlabel('n');ylabel('x_{a}(nT)');%biaoti=['(a) F_{s}=200Hz,采样点数=',num2str(M)]; %title(biaoti);title(['(a) F_{s}=1000Hz,采样点数=',num2str(M)]); axis([0,M-1,1.2*min(xnt),1.2*max(xnt)]); set(gca,'Ytick',[0,50,100,150]);k=0:M-1;fk=k/Tp;%求每个频域采样点上的频率值subplot(2,2,3);stem(fk,abs(Xk),'.');title('(b) DFT[x_{a}(nT)],F_{s}=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);subplot(2,2,4);plot(fk,abs(Xk));title('(c) T*DFT[x_{a}(nT)],F_{s}=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]); %---------------------------%Fs=300Hz 和 Fs=200Hz 的程序与上⾯Fs=1000Hz 完全相同。

时域采样与频域采样

时域采样与频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

时域采样与频域采样

时域采样与频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

实验二-时域采样与频域采样及MATLAB程序

实验二-时域采样与频域采样及MATLAB程序

实验二时域采样与频域采样一实验目的1掌握时域连续信号经理想采样前后的频谱变化,加深对时域采样定理的理解2理解频率域采样定理,掌握频率域采样点数的选取原则二实验原理1时域采样定理对模拟信号“)以T进行时域等间隔采样,形成的釆样信号的频谱XJJQ)会以采样角频率2 (Q,=芋)为周期进行周期延拓,公式为:利用计算机计算上式并不容易,下面导出另外一个公式。

理想采样信号念⑴和模拟信号暫⑴之间的关系为:£(『)= %(0工郭-切n—x对上式进行傅里叶变换,得到:+30 -f-QQX a(jn)=匚[%(『)£ 刃-£ 匚心⑴d(t-nT)e-iai dtZI--«川―00在上式的积分号内只有当时,才有非零值,因此:X a(j^=^x a{nT)e-^T上式中,在数值上£(〃)= □),再将co=QT代入,得到:匕(山)=f兀何厂筲必丁= X(严)|亠勿上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量Q用代替即可。

2频域采样定理对信号x(n)的频谱函数X(e®在[0, 2刃上等间隔采样N点,得到X 伙)= X(严)“k = 0,l,2,..・,N — l则有:x N(n) = IDFT[X伙)h =[乞如iN)]恥)00即N点1DFT[X伙)]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值序列, 因此,频率域采样要使时域不发生混叠,则频域采样点数N必须大于等于时域离散信号的长度M (即N >M ),在满足频率域采样定理的条件下,心(")就是原序列.丫⑺)。

如果N>M,则g(”)比原序列x(〃)尾部多N —M个零点,反之,时域发生混叠,x N(n)与x(n)不等。

对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域釆样,时域信号周期延拓”。

在数字信号处理中,都必须服从这二个定理。

数字信号处理实验二时域采样和频域采样

数字信号处理实验二时域采样和频域采样

实验二-时域采样和频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理及方法1、时域采样定理的要点:a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列。

三、实验内容及步骤1、时域采样理论的验证程序:clear;clcA=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;Tp=50/1000;F1=1000;F2=300;F3=200;T1=1/F1;T2=1/F2;T3=1/F3;n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1;x1=A*exp(-a*n1*T1).*sin(w0*n1*T1);x2=A*exp(-a*n2*T2).*sin(w0*n2*T2);x3=A*exp(-a*n3*T3).*sin(w0*n3*T3);f1=fft(x1,length(n1));f2=fft(x2,length(n2)); %f3=fft(x3,length(n3)); %k1=0:length(f1)-1;fk1=k1/Tp; %k2=0:length(f2)-1;fk2=k2/Tp; % k3=0:length(f3)-1;fk3=k3/Tp; % subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)');subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)');subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs=200Hz');xlabel('n');ylabel('x3(n)');subplot(3,2,2)plot(fk1,abs(f1))title('(a) FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('·ù¶È')subplot(3,2,4)plot(fk2,abs(f2))title('(b) FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('·ù¶È')subplot(3,2,6)plot(fk3,abs(f3))title('(c) FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('·ù¶È')结果分析:由图2.2可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。

时域采样和频域采样

时域采样和频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()(), 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()I D F T [()][()]N N N Ni x n X k x n i N R n∞=-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

时域采样与频域采样

时域采样与频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

时域采样和频域采样

时域采样和频域采样

一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论.要求掌握模拟信号采样前后频谱的变化,以与如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以与频率域采样定理与其对频域采样点数选择的指导作用.二、实验原理与方法时域采样定理的要点是:a.对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω〔T s /2π=Ω〕为周期进行周期延拓.公式为: )](ˆ[)(ˆt x FT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b.采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠.利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验.理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: 对上式进行傅立叶变换,得到:在上式的积分号内只有当nT t =时,才有非零值,因此:上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可.频域采样定理的要点是:a) 对信号x<n>的频谱函数X<e j ω>在[0,2π]上等间隔采样N 点,得到则N 点IDFT[()N X k ]得到的序列就是原序列x<n>以N 为周期进行周期延拓后的主值区序列,公式为:b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M<即N ≥M>,才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x<n>,即()N x n =x<n>.如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N<M,z 则()N x n =IDFT[()N X k ]发生了时域混叠失真,而且()N x n 的长度N 也比x<n>的长度M 短,因此.()N x n 与x<n>不相同.在数字信号处理的应用中,只要涉与时域或者频域采样,都必须服从这两个采样理论的要点. 对比上面叙述的时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:"时域采样频谱周期延拓,频域采样时域信号周期延拓〞.因此放在一起进行实验.三、 实验内容与步骤〔1〕时域采样理论的验证给定模拟信号,)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s,它的幅频特性曲线如图图)(t x a 的幅频特性曲线现用DFT<FFT>求该模拟信号的幅频特性,以验证时域采样理论.安照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz .观测时间选ms T p 50=.为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示.因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度〔点数〕用公式s p F T N ⨯=计算.选FFT 的变换点数为M=64,序列长度不够64的尾部加零.X <k >=FFT[x <n >] , k =0,1,2,3,-----,M -1式中k 代表的频率为 k Mk πω2=. 要求: 编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示.观察分析频谱混叠失真.〔2〕频域采样理论的验证给定信号如下:编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32和16点,得到)()(1632k X k X 和:再分别对)()(1632k X k X 和进行32点和16点IFFT,得到)()(1632n x n x 和:分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x <n>、)()(1632n x n x 和的波形,进行对比和分析,验证总结频域采样理论.提示:频域采样用以下方法容易变程序实现.1〕直接调用MATLAB函数fft计算就得到在的32点频率域采样2〕抽取的偶数点即可得到在的16点频率域采样,即.3〕当然也可以按照频域采样理论,先将信号x<n>以16为周期进行周期延拓,取其主值区〔16点〕,再对其进行16点DFT<FFT>,得到的就是在的16点频率域采样 .四、实验程序1 时域采样理论的验证程序清单% 时域采样理论验证程序exp2a.mTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x<n>% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp<-alph*n*T>.*sin<omega*n*T>;Xk=T*fft<xnt,M>; %M点FFT[xnt>]yn='xa<nT>';subplot<3,2,1>;tstem<xnt,yn>; %调用自编绘图函数tstem绘制序列图box on;title<'<a> Fs=1000Hz'>;k=0:M-1;fk=k/Tp;subplot<3,2,2>;plot<fk,abs<Xk>>;title<'<a> T*FT[xa<nT>],Fs=1000Hz'>;xlabel<'f<Hz>'>;ylabel<'幅度'>;axis<[0,Fs,0,1.2*max<abs<Xk>>]>%=================================================% Fs=300Hz和Fs=200Hz的程序与上面Fs=1000Hz完全相同.2 频域采样理论的验证程序清单%频域采样理论验证程序exp2b.mM=27;N=32;n=0:M;%产生M长三角波序列x<n>xa=0:floor<M/2>; xb= ceil<M/2>-1:-1:0; xn=[xa,xb];Xk=fft<xn,1024>; %1024点FFT[x<n>], 用于近似序列x<n>的TFX32k=fft<xn,32> ;%32点FFT[x<n>]x32n=ifft<X32k>; %32点IFFT[X32<k>]得到x32<n>X16k=X32k<1:2:N>; %隔点抽取X32k得到X16<K>x16n=ifft<X16k,N/2>; %16点IFFT[X16<k>]得到x16<n>subplot<3,2,2>;stem<n,xn,'.'>;box ontitle<'<b> 三角波序列x<n>'>;xlabel<'n'>;ylabel<'x<n>'>;axis<[0,32,0,20]>k=0:1023;wk=2*k/1024; %subplot<3,2,1>;plot<wk,abs<Xk>>;title<'<a>FT[x<n>]'>;xlabel<'\omega/\pi'>;ylabel<'|X<e^j^\omega>|'>;axis<[0,1,0,200]>k=0:N/2-1;subplot<3,2,3>;stem<k,abs<X16k>,'.'>;box ontitle<'<c> 16点频域采样'>;xlabel<'k'>;ylabel<'|X_1_6<k>|'>;axis<[0,8,0,200]>n1=0:N/2-1;subplot<3,2,4>;stem<n1,x16n,'.'>;box ontitle<'<d> 16点IDFT[X_1_6<k>]'>;xlabel<'n'>;ylabel<'x_1_6<n>'>;axis<[0,32,0,20]>k=0:N-1;subplot<3,2,5>;stem<k,abs<X32k>,'.'>;box ontitle<'<e> 32点频域采样'>;xlabel<'k'>;ylabel<'|X_3_2<k>|'>;axis<[0,16,0,200]>n1=0:N-1;subplot<3,2,6>;stem<n1,x32n,'.'>;box ontitle<'<f> 32点IDFT[X_3_2<k>]'>;xlabel<'n'>;ylabel<'x_3_2<n>'>;axis<[0,32,0,20]>五、实验程序运行结果与分析1、时域采样理论的验证程序运行结果exp2a.m如图所示.由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓.当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz附近频谱混叠更很严重.图2 时域采样理论的验证程序exp2b.m运行结果如图所示.图该图验证了频域采样理论和频域采样定理.对信号x<n>的频谱函数X<e jω>在[0,2π]上等间X k]得到的序列正是原序列x<n>以16为周期进行周期延拓隔采样N=16时,N点IDFT[()N后的主值区序列:x n与x<n>不相同,如图图<c>和<d>所示.当由于N<M,所以发生了时域混叠失真,因此.()NN=32时,如图图<c>和<d>所示,由于N>M,频域采样定理,所以不存在时域混叠失真,因x n与x<n>相同.此.()N。

数字信号处理实验二时域采样和频域采样

数字信号处理实验二时域采样和频域采样

数字信号处理实验二时域采样和频域采样数字信号处理是一门研究信号的数字化表示、处理和传输的学科。

在数字信号处理中,时域采样和频域采样是两种常用的信号分析方法。

下面我们将对这两种采样方法进行详细介绍和比较。

一、时域采样时域采样是数字信号处理中最基本的采样方法之一。

它通过对连续时间信号进行离散时间采样,将连续时间信号转换为离散时间信号。

时域采样的基本原理是,如果一个连续时间信号f(t)在采样时刻t=kT(k=0,1,2,)上的值f(kT)能够被准确地测量,则可以通过这些采样值重建出原始信号。

时域采样的优点是简单易行,适用于大多数信号的采样。

但是,时域采样也存在一些缺点。

首先,如果信号中含有高于采样率的频率成分,这些高频成分将会被混叠到低频部分,导致信号失真。

这种现象被称为混叠效应。

其次,时域采样需要大量的采样数据才能准确地重建出原始信号,这会占用大量的存储空间和计算资源。

二、频域采样频域采样是一种在频域上对信号进行采样的方法。

它通过对信号进行傅里叶变换,将信号转换到频域,然后对频域中的信号进行采样。

频域采样的基本原理是,如果一个离散时间信号f(n)的傅里叶变换在频域上有有限的带宽,那么频域上的信号可以被认为是无穷多个离散的冲激函数的线性组合。

通过对这些冲激函数的幅度和相位进行采样,可以得到频域采样值。

相比时域采样,频域采样具有一些优点。

首先,频域采样可以避免混叠效应,因为高频成分在频域中可以被准确地表示和处理。

其次,频域采样只需要采样信号的幅度和相位信息,而不必存储大量的采样数据,可以节省存储空间和计算资源。

此外,频域采样还可以用于对信号进行压缩和编码,以便于信号的传输和存储。

然而,频域采样也存在一些缺点。

首先,傅里叶变换需要将信号从时域转换到频域,这需要使用复杂的数学运算和计算。

其次,频域采样的结果通常需要经过逆傅里叶变换才能得到原始信号的离散时间表示,这同样需要复杂的数学运算和计算。

此外,频域采样的结果可能存在频率混叠和泄漏现象,这会影响到重建出的原始信号的质量。

时域采样和频域采样实验报告

时域采样和频域采样实验报告

时域采样和频域采样实验报告实验报告:时域采样和频域采样引言时域采样和频域采样是数字信号处理领域中常见的两种采样方法。

本次实验旨在通过实际操作,探究时域采样和频域采样的原理和特点,验证理论知识,并加深对数字信号处理的理解。

实验步骤1. 时域采样首先,我们需要准备一段模拟信号作为被采样的原始信号。

可以使用示波器产生一个模拟信号,并通过示波器的输出口连接到一个采样仪器上,如适配器或者数据采集卡。

然后,设置采样频率,即每秒采样的次数。

在采样仪器上设置好相关参数后,开始进行采样。

采样完毕后,可以通过计算机、示波器或其他终端设备将采样得到的信号进行显示和处理。

2. 频域采样频域采样是通过傅里叶变换将时域信号转换为频域信号进行采样。

首先,我们需要将模拟信号输入到示波器上,利用示波器的傅里叶变换功能将信号从时域转换到频域。

然后,设置傅里叶变换的相关参数,如窗函数类型、分辨率等。

在进行傅里叶变换之后,通过示波器或者计算机对频域信号进行显示和处理。

实验结果和讨论通过时域采样和频域采样两种方法,我们可以得到原始信号在不同域中的表示。

时域采样得到的是离散的时间序列数据,在计算机中通常以数组的形式存储;频域采样得到的是离散的频率序列数据,通常也以数组的形式存储。

通过对原始模拟信号和采样得到的信号进行比较,我们可以看到采样过程中可能引入的失真、过采样和欠采样等问题。

时域采样和频域采样的选择取决于具体的应用场景。

时域采样更适合对信号的时域特征进行分析,如波形、振幅、相位等。

频域采样更适合对信号的频域特征进行分析,如频谱、频率成分等。

在实际应用中,可以根据需要对信号进行不同域的采样和处理,以得到更全面和准确的信号信息。

结论通过本次实验,我们深入了解了时域采样和频域采样的原理和特点,并通过实际操作验证了理论知识。

时域采样和频域采样是数字信号处理领域中常见的采样方法,应用广泛。

在实际应用中,我们可以根据需要选择合适的采样方法,并结合相关的信号处理算法,对信号进行分析、处理和应用。

时域采样及频域采样

时域采样及频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

DSP实验二时域采样和频域采样实验报告

DSP实验二时域采样和频域采样实验报告

数字信号处理实验报告实验二时域采样和频域采样班级: 电子信息工程16 姓名:吴翰学号: 1600506160 2018年 10 月 17 日一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法1、时域采样定理的要点a) 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X aa =Ω )(1∑∞-∞=Ω-Ω=n s ajn j XTb) 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt x a 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj eX ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

DSP实验时域采样与频域采样

DSP实验时域采样与频域采样

实验二时域采样与频域采样一. 实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二. 实验原理与方法时域采样定理的要点是:1) 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s/2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt xFT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2) 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj eX ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

频域采样定理的要点是:1.) 对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点,得到2()(), 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑2.) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二-时域采样和频域采样一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理及方法1、时域采样定理的要点:a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列。

三、实验内容及步骤1、时域采样理论的验证程序:clear;clcA=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi;Tp=50/1000;F1=1000;F2=300;F3=200;T1=1/F1;T2=1/F2;T3=1/F3;n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1;x1=A*exp(-a*n1*T1).*sin(w0*n1*T1);x2=A*exp(-a*n2*T2).*sin(w0*n2*T2);x3=A*exp(-a*n3*T3).*sin(w0*n3*T3);f1=fft(x1,length(n1));f2=fft(x2,length(n2)); %f3=fft(x3,length(n3)); %k1=0:length(f1)-1;fk1=k1/Tp; %k2=0:length(f2)-1;fk2=k2/Tp; % k3=0:length(f3)-1;fk3=k3/Tp; % subplot(3,2,1)stem(n1,x1,'.')title('(a)Fs=1000Hz');xlabel('n');ylabel('x1(n)');subplot(3,2,3)stem(n2,x2,'.')title('(b)Fs=300Hz');xlabel('n');ylabel('x2(n)');subplot(3,2,5)stem(n3,x3,'.')title('(c)Fs=200Hz');xlabel('n');ylabel('x3(n)');subplot(3,2,2)plot(fk1,abs(f1))title('(a) FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('·ù¶È')subplot(3,2,4)plot(fk2,abs(f2))title('(b) FT[xa(nT)],Fs=300Hz'); xlabel('f(Hz)');ylabel('·ù¶È')subplot(3,2,6)plot(fk3,abs(f3))title('(c) FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('·ù¶È')结果分析:由图2.2可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。

当采样频率为1000Hz时频谱混叠很小;当采样频率为300Hz时,在折叠频率150Hz附近频谱混叠很严重;当采样频率为200Hz时,在折叠频率110Hz 附近频谱混叠更很严重。

由实验图像可以看出,时域非周期对应着频域连续。

对连续时间函数对采样使其离散化处理时,必须满足时域采样定理的要求,否则,必将引起频域的混叠。

要满足要求信号的最高频率Fc不能采样频率的一半(Fs/2),不满足时域采样定理,频率将会在ω=π附近,或者f=Fs/2混叠而且混叠得最严重。

2、频域采样理论的验证程序:clear;clcM=27;N=32;n=0:M;%xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %X32k=fft(xn,32) ;%x32n=ifft(X32k); %X16k=X32k(1:2:N); %x16n=ifft(X16k,N/2); %subplot(3,2,2);stem(n,xn,'.');box ontitle('(b)Èý½Ç²¨ÐòÁÐx(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024; %subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c)16µãƵÓò²ÉÑù');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d)16µãIDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e)32µãƵÓò²ÉÑù');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f)32µãIDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果分析:该图验证了频域采样理论和频域采样定理。

对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N=16时, N 点IDFT[()N X k ]得到的序列正是原序列x(n)以16为周期进行周期延拓后的主值区序列:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑由于N<M ,所以发生了时域混叠失真,因此,()N x n 与x(n)不相同,如图图3.3(c)和(d)所示。

当N=32时,如图图3.3(c)和(d)所示,由于N>M ,频域采样定理,所以不存在时域混叠失真,因此,()N x n 与x(n)相同。

由实验内容2的结果可知,对一个信号的频谱进行采样处理时,必须严格遵守频域采样定理,否则,用采样的离散频谱恢复原序列信号时,所得的时域离散序列是混叠失真,得不到原序列四、实验思考及解答如果序列x(n)的长度为M ,希望得到其频谱()j X e ω在]2,0[π上的N 点等间隔采样,当N<M 时,如何用一次最少点数的DFT 得到该频谱采样?答:由实验内容2的结果可得:对于求频域采样点数N 小于原时域序列长度M 的N 点离散频谱时,可先对原序列x(n)以N 为周期进行周期延拓后取主值区序列()[()]()N N i x n x n iN R n ∞=-∞=+∑再计算N 点DFT 则得到N 点频域采样:2()DFT[()] =(), 0,1,2,,1j N N N k N X k x n X e k N ωπω===-但是,所求的N 点离散频谱对应的时域离散序列是原序列x(n)以N 为周期进行周期延拓后取主值区序列,而不是原序列x(n) 五、实验小结通过此次实验,对时域采样和频域采样的理论、定理的理解更加深入。

采样是模/数中最重要的一步,采样方法的正确与否,关系到信号处理过程的成功与否。

所以,无论是在时域还是频域,对信号采样必须仔细考虑采样的参数:采样频谱、采样周期、采样点数。

对一个域进行采样,必将引起另一个域的周期延拓,所以,我们要做,就是选取好采样的参数,避免另一个域周期延拓时发生混叠,否则,我们采样所得的数据肯定丢失一部分原信号的信息,我们便无法对原信号对原信号进行恢复和正确分析。

相关文档
最新文档