常用信号地频谱分析报告及时域采样定理

合集下载

实验2 信号的时域采样与频域采样(讲稿)

实验2 信号的时域采样与频域采样(讲稿)

实验2 时域采样与频域采样知识要点:(1)时域采样定理和频域采样定理(2)信号的采样方法连续时间信号的采样方法为T ()()s t n f t f t ==,理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,即ˆ()()j aTX j X e ωω=ΩΩ=,用DFT 近似计算连续信号频谱的方法为()T DFT[()]a X k x n =⋅。

连续谱的离散化方法为在一个周期内对连续频谱进行N 点等间隔采样,即2k k Nπω=,用DFT 计算离散信号频谱的方法为()DFT[()]X k x n =。

(3)用FFT 计算有限长采样序列的傅立叶变换(DFT )(4)连续时间信号的采样点数用公式p s N T F =⨯计算(5)频域采样时,频率分辨率为p F=1,各采样点上的频率为(1)k p f T k =。

(6)FFT 函数的基本用法FFT 函数格式为Xk= fft(xnt,M),其中M 表示FFT 的点数。

实验内容1:时域采样理论的验证(非周期连续信号)给定模拟信号0()sin()()t a x t Ae t u t α-=Ω式中444.128A =,α=,0rad s Ω=。

用DFT (FFT )求该模拟信号的幅频特性,以验证时域采样理论。

选取三种采样频率,即1kHz,300Hz 200Hz s F =,。

观测时间选64p T ms =。

采样点数用公式p s N T F =⨯计算。

设计方法:(1)初始化设置(如观测时间、采样频率、采样间隔等)。

(2)计算时域采样点数。

(3)生成时域抽样信号。

(4)用fft 函数计算频谱。

(5)计算频域采样点上的频率,绘制频谱图。

程序运行结果:(1)采样频率1000Hz s F =nx a (n T )(a) F s =1000Hz,采样点数=645001000(b) DFT[x a (nT)],F s =1000Hz f(Hz)幅度5001000(c) T*DFT[x a (nT)],F s =1000Hz f(Hz)幅度图2-1 采样频率1kHz s F =(2)采样频率300Hz s F =nx a (n T )(a) F s =300Hz,采样点数=19100200300(b) DFT[x a (nT)],F s =300Hz f(Hz)幅度100200300(c) T*DFT[x a (nT)],F s =300Hzf(Hz)幅度图2-2 采样频率300Hz s F =(3)采样频率200Hz s F =nx a (n T )(a) F s =200Hz,采样点数=1350100150200(b) DFT[x a (nT)],F s =200Hzf(Hz)幅度5010015020000.20.40.60.8(c) T*DFT[x a (nT)],F s =200Hz f(Hz)幅度图2-3 采样频率200Hz s F =实验结果分析:时域采样理论的验证程序运行结果如图2-1至2-3所示。

时域采样定理(范文4篇)

时域采样定理(范文4篇)
120hz时采样信号离散波形及频谱120hz恢复后信号波及频谱频率fs2fc时为原信号的过采样信号和恢复由图6采样信号离散波形和频谱可以看出采样信号的频谱是原信号频谱进行周期延拓形成的从图7采样恢复后的波形和频谱可看出与原信号误差很小了说明恢复信号的精度已经很高
时域采样定理(范文
以下是网友分享的关于时域采样定理的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。时域采样定理(1)电子信息工程学系实验报告课程名称:数字信号处理实验项目名称;时域采样定理实验时间:2013.05.08班级:通信102姓名:学号:0107052一、实验目的:熟悉并加深采样定理的理解,了解采样信号的频谱和模拟信号频谱之间的关系。二、实验环境:计算机、MATLAB软件。三、实验内容和步骤1.给定模拟信号如下:at(t)Aesin(0t)u(t) xa假设式中A444.128,2,02rad/s,将这些参数代入式中,对xa(t)进行傅立叶变换,得到Xa(j),并可画出它的幅频特性Xa(jf)~f;根据该曲线可以选择采样频率。2.按照选定的采样频率对模拟信号进行采样,得到时域离散信号x(n):x(n)xa(nT)AeanTsin(0nT)u(nT)这里给定采样频率如下:fs=1 kHz、300 Hz、200 Hz。分别用这些采样频率形成时域离散信号,按顺序分别用x1(n)、x2(n)、x3(n)表示。选择观测时间Tp50ms。3.计算x(n)的傅立叶变换X(e):jX(e)FT[x(n)]AeanTisin(0nTi)ejn(5)jn0ni1式中,i1,2,3,分别对应三种采样频率的情况111s,T2s,T3s。采样点数以下式计算:T11000300200ni式中,TpTi(6)是连续变量。为用计算机进行数值计算,改用下式计算:第1页共3页ni1n0X(e式中,kjk)DFT[x(n)]MAeanTsin(0

信号的频域分析及采样定理

信号的频域分析及采样定理
确定性信号分析与处理
专题一 信号的频域分析及采样定理
网盘共享地址:/file/befog1yl
信号的频域分析及采样定理

信号的分类 确定性信号的特性


连续信号的时域分析
连续信号的频域分析 离散信号的频域分析 信号的时频对应关系 采样定理
信号的频域分析及采样定理——信号的分类

x(t )
x(t ) h(t )
y(t )
信号的频域分析及采样定理 ——连续信号的时域分析 x(t) LTI y(t)
h(t)
y(t ) x(t ) h(t )
卷积的物理意义:线性时不变系统的零 状态响应等于系统的输入同系统的单位 冲激响应之卷积。
信号的频域分析及采样定理 ——连续信号的时域分析
卷积的性质
x1 (t ) x2 (t ) x2 (t ) x1 (t )
x1 (t ) [ x2 (t ) x3 (t )] x1 (t ) x2 (t ) x1 (t ) x3 (t )
[ x1 (t ) x2 (t )] x3 (t ) x1 (t ) [ x2 (t ) x3 (t )]
若分解成三角函数或指数函数集,则为“傅 里叶级数”
信号的频域分析及采样定理 ——连续信号的频域分析 三角形式的傅里叶级数
f (t ) a0 (an cos n1t bn sin n1t )
n 1
经三角变换:
f (t ) a0 cn cos n1t n) (
信号的频域分析及采样定理 ——确定性信号的特性 时域和频域
不同频率信号的时域图和频域图
信号分析的基本思想:将一复杂信号分解为若

时域采样定理频带为F的连续信号 f

时域采样定理频带为F的连续信号 f
时域采样定理 频带为 F 的连续信号 f(t)可用一系列离散的采样值 f(t1),f(t1±Δt),f(t1± 2Δt),...来表示,只要这些采样点的时间间隔 Δt≤1/2F, 便可根据各采样值完全恢复原来的信号 f(t)。 这是时域采样定理的一种表述方式。 时域采样定理的另一种表述方式是: 当时间信号函数 f(t)的最高频率分量为 fM 时,f(t)的值可由一系列采样间隔小于或等于 1/2fM 的采样值来确定,即采样点的重复频率 f≥2fM。图为模拟信号和采样样本的示意图。 时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。 频域采样定理 对于时间上受限制的连续信号 f(t)(即当│t│>T 时,f(t)=0,这里 T=T2-T1 是信号的持续时间) ,若其频谱为 F(ω), 则可在频域上用一系列离散的采样值 来表示,只要这些采样点的频率间隔 ω≦π / tm 。 连续信号在时间(或空间)上以某种方式变化着,而采样过程则是在时间(或空间)上,以 T 为单位间隔来测量连续信号的值。T 称为采样间隔。在实际中,如果信号是时间的函数,通常他们的采样间隔都很小,一般在毫秒、微秒的量级。采样过程产生一系列 的数字,称为样本。样本代表了原来地信号。每一个样本都对应着测量这一样本的特定时间点,而采样间隔的倒数,1/T 即为采样频 率,fs,其单位为样本/秒,即赫兹(hertz)。 如果不能满足上述采样条件,采样后信号的频率就会重叠,即高于采样频率一半的频率 成分将被重建成低于采样频率一半的信号。这种频谱的重叠导致的失真称为混叠,而重建出来的信号称为原信号的混叠替身,因为 这两个信号有同样的样本值。 一个频率正好是采样频率一半的弦波信号,通常会混叠成另一相同频率的波弦信号,但它的相位和幅度改变了 以下两种措施可避免混叠的发生: 提高采样频率,使之达到最高信号频率的两倍以上; 引入低通滤波器或提高低通滤波器的参数;该低通滤波器通常称为抗混叠滤波器 抗混叠滤波器可限制信号的带宽,使之满足采样定理的条件。从理论上来说,这是可行的,但是在实际情况中是不可能做到的。因 为滤波器不可能完全滤除奈奎斯特频率之上的信号,所以,采样定理要求的带宽之外总有一些“小的”能量。不过抗混叠滤波器可使 这些能量足够小,以至可忽略不计。 15 圆柱形弹性元件,在拉、弯联合作用下,如题图 4-1a,应变片应如何布片和正确接电桥才能测定拉力 p 和弯矩 M,并能消除拉 力和弯矩间的相互干扰?

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理开课学期 2016-2017 学年第 2 学期实验课程信号与系统仿真实验实验项目常用信号的频谱分析及时域采样定理班级学号学生姓名实验时间实验台号A11 操作成绩报告成绩一、实验目的1.掌握常用信号的频域分析方法;2.掌握时域采样定理;3.掌握时域采样信号恢复为原来连续信号的方法及过程。

二、实验性质验证性三、预习内容1.时域采样定理的内容及信号时域采样过程;2.连续信号经时域采样后,信号的频谱发生的变化;3.时域采样信号恢复为原来连续信号的方法及过程。

四、实验内容(编写程序,绘制实验结果)1.实现周期信号的频谱f(t)=sin( 2*80t)程序:fa='sin(2.*pi.*80.*t)';%原信号fs0=10000; %采样频率tp=0.1;%时间范围t=[-tp:1/fs0:tp];%信号持续时间范围k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fa);%把文本fa赋值给信号fx1FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换figuresubplot(2,1,1),plot(t,fx1,'r');title('原信号');xlabel('时间t(s)');%原信号的时域波形图axis([min(t),max(t),min(fx1),max(fx1)]);subplot(212),plot(f,abs(FX1),'r');title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图axis([-100,100,0,max(abs(FX1))+5]);2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms tx=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);ezplot(x,[-2,2]); subplot(212);ezplot(F,[-10,10]);程序:令tao=1,a=4syms tx=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);subplot(211);ezplot(x,[-2,2]);axis([-2,2,-1,2])subplot(212);ezplot(F);axis([-5,5,-0.5,0.5]);分析:经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了3.时域采样及其恢复运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。

连续时间系统的频谱分析抽样定理

连续时间系统的频谱分析抽样定理
失真。
抽样定理的证明基于傅里叶分析的基本原理,即任何连续时间信号都可 以表示为无穷多个正弦波和余弦波的叠加。
研究不足与展望
虽然抽样定理在理论上是完美的,但在实际应用中,由于受到硬件设备、信号噪声和量化误差等因素 的影响,抽样定理的实现存在一定的难度。
目前对于非线性抽样和非均匀抽样的研究还不够深入,这些情况下抽样定理的应用需要进一步探讨。
频谱分析的重要性
01
02
03
信号识别
通过频谱分析可以识别信 号中的主要频率成分,从 而了解信号的性质和特征 。
噪声抑制
在通信和语音处理等领域 ,频谱分析有助于识别和 抑制噪声,提高信号的清 晰度和可懂度。
系统优化
在电子和控制系统等领域 ,频谱分析有助于优化系 统性能,提高系统的稳定 性和可靠性。
频谱分析的基本原理
连续时间系统的频谱分析抽 样定理
目录
• 连续时间系统的频谱分析 • 抽样定理 • 连续时间系统的频谱分析抽样定
理 • 抽样定理的验证与实验 • 结论与展望
01
连续时间系统的频谱分析
频谱分析的定义
频谱分析
将信号分解成不同频率分量的过 程,通常通过将信号与正弦波进 行比较来获得。
频谱图
表示信号中各个频率分量强度的 图形,通常以频率为横轴,幅度 为纵轴。
原始信号。
02
定理的数学表述
假设信号$f(t)$的频谱为$F(omega)$,如果采样频率$f_s$满足$f_s
geq 2B$,其中$B$为信号的带宽,则可以由采样信号恢复出原始信号

03
定理的物理意义
频谱分析抽样定理揭示了时间和频率之间的关系,即时间和频率是信号
的两个基本属性,它们之间可以通过傅里叶变换相互转换。

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理开课学期 2016-2017 学年第 2 学期实验课程信号与系统仿真实验实验项目常用信号的频谱分析及时域采样定理班级学号学生姓名实验时间实验台号A11 操作成绩报告成绩一、实验目的1.掌握常用信号的频域分析方法;2.掌握时域采样定理;3.掌握时域采样信号恢复为原来连续信号的方法及过程。

二、实验性质验证性三、预习内容1.时域采样定理的内容及信号时域采样过程;2.连续信号经时域采样后,信号的频谱发生的变化;3.时域采样信号恢复为原来连续信号的方法及过程。

四、实验内容(编写程序,绘制实验结果)1.实现周期信号的频谱f(t)=sin( 2*80t)程序:fa='sin(2.*pi.*80.*t)';%原信号fs0=10000; %采样频率tp=0.1;%时间范围t=[-tp:1/fs0:tp];%信号持续时间范围k1=0:999;k2=-999:-1;m1=length(k1);m2=length(k2);f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围w=[-2*pi*k2/m2,2*pi*k1/m1];fx1=eval(fa);%把文本fa赋值给信号fx1FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换figuresubplot(2,1,1),plot(t,fx1,'r');title('原信号');xlabel('时间t(s)');%原信号的时域波形图axis([min(t),max(t),min(fx1),max(fx1)]);subplot(212),plot(f,abs(FX1),'r');title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图axis([-100,100,0,max(abs(FX1))+5]);2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms tx=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);ezplot(x,[-2,2]); subplot(212);ezplot(F,[-10,10]);程序:令tao=1,a=4syms tx=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);subplot(211);ezplot(x,[-2,2]);axis([-2,2,-1,2])subplot(212);ezplot(F);axis([-5,5,-0.5,0.5]);分析:经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了3.时域采样及其恢复运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。

(一)时域采样及其频谱

(一)时域采样及其频谱

(一)时域采样及其频谱一.实验目的:1.熟悉Matable的实验环境,并学会如何利用其进行对信号处理进行图形分析.2.编程计算于模拟信号的连续频谱和离散采样信号的连续频谱,实现时域采样及其频谱分析,充分理解时域采样的特点及定理,并在实验过程中体会奈奎斯定理. 二.实验环境: MA TABE软件平台三.实验步骤:(一)进入MA TABE编程1.启动MATABLE,进入命令窗口,点击File-New-M-File,进入M文件的编辑窗口,进行M文件的编程和调试.2.利用系统提供的各种函数或自编函数进行编程.3.学会使用Help在线查询.(二)Sa2的编程及上机运行观察并分析结果.编程思路:(1)原模拟信号为Xa(t)=A*exps(-at)*sin(*O. t)*u (t).当fs足够大时可以逼近模拟信号.同样对于模拟信号的连续频谱和离散采样信号的连续频谱也要自编计算离散傅立叶级数的子程序dtft()函数来计算连续频谱.(2)采样间隔直接用赋值语句设定.(3)绘图时先用supplot()函数进行多个子图的布局规划,再分别用stem()函数画离散信号的杆状图和用plot()函数画连续频谱波形的曲线图.(三)实验内容及程序分析:sa2%时域采样及其频谱clear;close all; %内部命题语句:清除内存,关闭所有窗口fs=10000;fs1=1000;fs2=300;fs3=200; %fs20倍高速逼近,fs1不混逆正常逼近,fs2,3混逆逼近t=0:1/fs:0.1; %采样时间为0到0.1s,长度为0.1s,间隔1/fs即1/10000n1=0:1/fs1:0.1;n2=0:1/fs2:0.1;n3=0:1/fs3:0.1;%长度0.1,间隔分别为1/1000,1/300,1/200。

A=444.128;a=50*sqrt(2)*pi; b=a; %A为模拟信号弧度,a角频率xa=exp(-a*t).*sin(b*t); %正弦振荡模拟信号高速数字逼近采样,xa为运算对象.k=0:511;f=fs*k/512; %频谱分点长度为512.Xa=dtft(xa,2*pi*k/512); % dtft为高速采样,计算连续采样序列的连续频率. 512 个划度划分,数字角频率为2*pi*k/512.T1=1/fs1;t1=0:T1:0.1; %T1第一个采样信号的间隔,是频率fs1的倒数;t1为采样时间从0到0.1s间隔为T1.x1=A*exp(-a*t1).*sin(b*t1); % 离散采样X1=dtft(x1,2*pi*k/512); %计算x1的离散采样序列的连续频谱T2=1/fs2;t2=0:T2:0.1;x2=A*exp(-a*t2).*sin(b*t2);X2=dtft(x2,2*pi*k/512);T3=1/fs3;t3=0:T3:0.1;x3=A*exp(-a*t3).*sin(b*t3);X3=dtft(x3,2*pi*k/512);figure(1); %另开窗口subplot(4,2,1);第一个图象,,4行2列.plot(t,xa); %画出原始波形axis([0,max(t),min(xa),max(xa)]); %时间坐标设定语句,X轴起点为0终点为max(t);Y轴的起点为min(xa),终点为max(xa).title('模拟信号');xlabel('t');ylabel('Xa(t)'); %横坐标标t,纵坐标标Xa(t).line([0,max(t)],[0,0]); %行排列最小为0最大为max(t),纵坐标不变.subplot(4,2,2);plot(f,abs(Xa)/max(abs(Xa)));%第二个图.画规划频谱图axis([0,500,0,1]);title('模拟信号的幅度谱');xlabel('f(Hz)');ylabel('|Xa(jf)|');subplot(4,2,3);stem(n1,x1,'.');%第三个图,stem画棒状图,顶端是".",如果不注明则是"。

数字信号处理实验报告

数字信号处理实验报告

四川大学电气信息学院数字信号处理实验报告实验二 时域采样与频域采样1. 实验结果和分析 (1)时域采样204060(a)Fs=1000Hznx 1(n )51015(b)Fs=300Hznx 2(n)510(c)Fs=200Hznx 3(n)500100005001000(a) FT[xa(nT)],Fs=1000Hzf(Hz)幅度1002003000200400(b) FT[xa(nT)],Fs=300Hzf(Hz)幅度501001502000100200(c) FT[xa(nT)],Fs=200Hzf(Hz)幅度分析:时域采样定理:1、对模拟信号以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱是原模拟信号频谱以采样角频率为周期进行周期延拓。

2、采样频率必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

由图可见,左边在时域上的采样频率逐渐降低,右边所对应的频域图样的混叠情况由微弱变得越来越大。

(2)频域采样102030(b) 三角波序列x(n)nx (n )0.510100200(a)FT[x(n)]ω/π|X (e j ω)|(c) 16点频域采样k|X 16(k )|102030(d) 16点IDFT[X 16(k)]nx 16(n )(e) 32点频域采样k|X 32(k )|(f) 32点IDFT[X 32(k)]nx 32(n )分析:频域采样定理:如果序列x(n)的长度为M ,则只有当频域采样的点数N>=M 时,才可由频域采样X (k )回复原序列x(n),否则产生时域混叠现象。

由图可见N=16点和N=32点采样所得图样不一样,N=16点时混叠严重,而N=32点时没有发生混叠。

2. 思考题如果序列x(n)的长度为M ,希望得到其频谱X(e j ω)在]2,0[π上的N 点等间隔采样, 当N<M 时,如何用一次最少点数的DFT 得到该频谱采样?先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,x N (n)=[∑x(n+iN)]R N (n)再计算N 点DFT 则得到N 点频域采样实验三用FFT对信号作频谱分析1.实验结果和分析(1)(2)(3)2.思考题(1)对于周期序列。

数字信号处理实验三时域及频域采样定理

数字信号处理实验三时域及频域采样定理
这里有一个问题要解释,采样信号的频谱 是将模拟信号的频谱按照采样角频频率为周期,进行周期性延拓形成的,而序列的傅立叶变换是以 为周期,这里是否一致?答案是肯定的。因为按照公式 ,当 时, ,因此序列的傅立叶变换以 为周期,转换到模拟域就是以采样频率 为周期。另外, 是 的折叠频率,如果产生频率混叠,就是在该处附近发生,在数字域中,就是在 附近易产生频谱混叠。有了以上的公式和概念,就可以用计算机研究对模拟信号的采样定理。
Xk1=fft(x1,length(n1)); %采样序列x1(n)的FFT变换
Xk2=fft(x2,length(n2)); %采样序列x2(n)的FFT变换
Xk3=fft(x3,length(n3)); %采样序列x3(n)的FFT变换
k1=0:length(Xk1)-1;
fk1=k1/Tp; %x1(n)的频谱的横坐标的取值
这里给定采样频率如下: ,300Hz,200Hz。分别用这些采样频率形成时域离散信号,按顺序分别用 、 、 表示。选择观测时间 。
3.计算 的傅立叶变换 :
(3.6)
式中, ,分别对应三种采样频率的情况 。采样点数用下式计算:
(3.7)
(3.6)式中, 是连续变量。为用计算机进行数值计算,改用下式计算:
下面分析频域采样定理。对信号x(n)的频谱函数 ,在[0,2π]上等间隔采样N点,得到
(3.4)
则N点IDFT[ ]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:
(3.5)
由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[ ]得到的序列 就是原序列x(n),即 =x(n)。如果N>M, 比原序列尾部多N-M个零点;如果N<M,z则 =IDFT[ ]发生了时域混叠失真,而且 的长度N也比x(n)的长度M短,因此。 与x(n)不相同。

采样定理实验报告

采样定理实验报告

采样定理实验报告实验报告⼀、实验⽬的熟悉信号采样过程,并通过本实验观察⽋采样时信号频谱的混叠现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定⽅法。

⼆、实验原理模拟信号经过(A/D )变换转为熟悉信号的过程称之为采样,信号采样后其频谱产⽣了周期延拓,在⼀定条件下,⼀个连续时间信号完全可以⽤该信号在等时间间隔上的瞬时样本值表⽰,这些样本值包含了该连续时间信号的全部信息,利⽤这些样本值可以恢复原连续时间信号。

采样定理的完整描述如下:⼀个频谱在(-ωm ,ωm )以外为零的频带有限信号f(t),可唯⼀的由其在均匀时间间隔T s (T s <12f m )上的样点值f s (t)=f(n T s )确定。

要从采样信号f s (t)中顺利恢复原信号f(t),必须满⾜两个条件:(1)f(t)必须是频带有限信号;(2)取样频率不能过低,必须满⾜f s ?2f m ,称f s =2f m 为奈奎斯特速率。

f m 为f(t)最⾼截⽌频率。

如前所述f(t)为带限信号其最⾼截⽌频率为f m 其频谱F(j ω)如图(a )所⽰,采样时间间隔为Ts ,则f(t)经采样后的离散序列f(n)为:f (n )=f s (t )=f (nT s )=f(t)∑δ(t ?nT s )=∑f(t)δ(t ?nT s )∞n=?∞∞n=?∞其中,g(t)= ∑δ(t ?nT s )∞n=?∞—采样信号(周期单位脉冲时序列)G(t)的频谱如图(b )所⽰。

F s (jω)的频谱如图(c )所⽰,图中相当于原模拟信号的频谱称为基带频谱。

如果f s <2f m 则F s (jω)按照采样频率f s 进⾏周期延拓时,形成频谱混叠现象如图(d )所⽰。

f s (t )的频谱函数为:F s (jω)=12πF(jω)×ωs ∑δ(ω?nωs )=1T s ∑F[j (ω?nωs )∞n=?∞∞n=?∞];其中ωs =2πT s可以看出,抽样信号的频谱F s (jω)是原信号频谱F(jω)的⽆数次平移之后的叠加。

第6章采样频谱及采样定理

第6章采样频谱及采样定理

数,所以 F() 在重复过程中不会使形状发生变化。
1.周期矩形脉冲抽样
图 5.1-1 所示的抽样原理从理论上分析可表述为f(t)与抽 样脉冲序列PTs(t)的乘积,即
fs (t) f (t) PT s (t)
f (t)
fs(t)
f (t)
fs(t)
抽样器
o
t
图 5.1-1 信号的抽样
o Ts
t
1 2
F() P()
1 2
F
(
)
2
n
cn
(
ns
)
cn F( ns )
n
(5.1-4)
连续信号 f (t) 在时域被抽样后,其抽样信号 fs (t) 的频谱 Fs () 是由连续信号 f (t) 频谱 F() 以抽样频率 s 为间隔
周期重复而得到的,在此过程中幅度被抽样脉冲 p(t) 的傅里叶变换 P() 的系数 cn 加权。因为 cn 只是 n(而不是 )的函
6.1 抽样信号及其频谱
5.1.1 时域抽样
在时域,抽样过程是通过抽样脉冲序列 p(t) 与连续信号 f (t) 相乘来完成的,如图 5.1-3 所示。
f (t)
fs (t)
p(t ) 图 5.1-3 时域抽样过程
可以表示为 fs (t) f (t) p(t)
(5.1-1)
由于 p(t) 是周期序列,所以可以计算 p(t) 的傅里叶变换为

S …
0
S
FS ()
1
TS

S
0
S
(a) 冲激抽样
(b) 抽样信号频谱
图 5.1-5 冲激抽样信号的频谱
由以上讨论,有两点需要注意:(1) 原连续信号的频谱函数 F() 假设是有限带宽。根据前面的信号分

连续时间信号的抽样及频谱分析-时域抽样信号的频谱__信号与系统课设

连续时间信号的抽样及频谱分析-时域抽样信号的频谱__信号与系统课设

连续时间信号的抽样及频谱分析-时域抽样信号的频谱__信号与系统课设1 引言随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。

传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。

仪器设备很大部分陈旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。

虚拟仪器正是解决这一矛盾的最佳方案。

基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。

在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。

信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。

将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。

信号的特征值分为幅值特征值、时间特征值和相位特征值。

尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。

信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。

频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。

信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。

实验六、时域信号采样及频谱分析

实验六、时域信号采样及频谱分析

实验六、时域信号采样及频谱分析一、基本目的:①掌握数字信号处理的基本概念、基本理论和基本方法;②学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法;③学会用 MATLAB 对信号进行分析和处理;④信号的各参数需由键盘输入,输入不同参数即可得不同的x(t) 和x(n);⑤撰写课程设计论文,用数字信号处理基本理论分析结果。

二、实验原理1 、时域抽样定理令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为:故可以推得p(t)的傅里叶变换为:其中:根据卷积定理可知:得到抽样信号x(t)的傅里叶变换为:其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn 加权。

因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。

假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。

显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。

2、信号的重建从频域看,设信号最高频率不超过折叠频率:Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2Xa(jΩ)=0 |Ω|>Ωs/2则理想取样后的频谱就不会产生混叠,故有:让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器:H(jΩ)=T |Ω|<Ωs/2H(jΩ)=0 |Ω|>Ωs/2滤波器只允许通过基带频谱,即原信号频谱,故:Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ)因此在滤波器的输出得到了恢复的原模拟信号:y(t)=xa(t)从时域上看,上述理想的低通滤波器的脉冲响应为:根据卷积公式可求得理想低通滤波器的输出为:由上式显然可得:则:上式表明只要满足取样频率高于两倍信号最高频率,连续时间函数xa(t)就可用他的取样值xa(nT)来表达而不损失任何信息,这时只要把每一个取样瞬时值与内插函数式相乘求和即可得出xa(t),在每一取样点上,由于只有该取样值所对应的内插函数式不为零,所以各个取样点上的信号值不变。

时域采样与频域分析

时域采样与频域分析

实验二:时域采样与频域分析一、实验原理与方法1、时域采样定理:(a )对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(Ωj X 是原模拟信号频谱)(ωj X a 以采样角频率)2(s s π=ΩΩ为周期进行周期延拓。

公式为:[]∑∞-∞=Ω-Ω==Ωn s a a a jn j X T t x FT j X )(1)()( (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

2、频域采样定理:公式为:[])()()()(n R iN n x k X IDFT n x N i N N N ⎥⎦⎤⎢⎣⎡+==∑∞-∞=。

由公式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点[])(k X IDFT N 得到的序列()N x n 就是原序列)(n x ,即)()(n x n x N =。

二、实验内容1、时域采样理论的验证。

给定模拟信号)()sin()(0t u t Ae t x t a Ω=-α式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1图2.1 )(t x a 的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。

按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。

观测时间选ms T p 50=。

为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。

)()sin()()(0nT u nT Ae nT x n x nT a Ω==-α因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数) 用公式s p F T N ⨯=计算。

实验二_时域采样和频域采样.

实验二_时域采样和频域采样.

一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理及方法1、时域采样定理的要点:a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()aX j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

数字信号处理实验报告二时域采样与频域采样

数字信号处理实验报告二时域采样与频域采样

实验二: 时域采样与频域采样姓名: 班级: 学号: 一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法时域采样定理的要点:(1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s/2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt xFT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T (2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

数字信号处理实验报告二 时域采样与频域采样

数字信号处理实验报告二  时域采样与频域采样

实验二: 时域采样与频域采样XX : 班级: 学号: 一、实验目的时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法时域采样定理的要点:(1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s/2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt xFT j X a a =Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T (2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为: ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδ dt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此:∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

验证时域采样定理和频域采样定理__数字信号处理.doc

验证时域采样定理和频域采样定理__数字信号处理.doc
恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚 恍恍惚惚恍恍惚惚恍恍惚惚恍恍惚惚
恍恍惚惚课程设计报告Fra bibliotek课程名称
系 别:
专业班级:
学 号:
姓 名:
数字信号课程设计
工程技术系
电子信息工程
09XXXXXX7
课程题目: 验证时域采样定理和频域采样定理
完成日期:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并中3试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

时域采样与频域采样定理的验证实验

时域采样与频域采样定理的验证实验

实验一 时域采样与频域采样定理的验证实验1. 实验目的(1) 时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;(2) 要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

2. 实验原理与方法时域采样定理的要点是:① 对模拟信号()a x t 以T 进行时域等间隔理想采样,形成的采样信号的频谱 会以采样角频率Ωs (Ωs=2π/T )为周期进行周期延拓。

公式为② 采样频率Ωs 必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便在计算机上进行实验。

理想采样信号 和模拟信号()a x t 之间的关系为:对上式进行傅里叶变换,得到:上式中,在数值上x a (nT)=x(n),再将ω=ΩT 代入,得到:上式的右边就是序列的傅里叶变换,即上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量ω用ΩT 代替即可。

频域采样定理的要点是:① 对信号x(n)的频谱函数在[0,2π]上等间隔采样N 点,得到:ˆ(j )a X Ωa a a s 1ˆˆ(j )FT[()](j j ) k X xt X k T ΩΩΩ∞=-∞==-∑a ˆ()x t a a ˆ()()()n xt x t t nT δ∞=-∞=-∑j a aˆ(j )[()()]e d t n X x t t nT t ΩΩδ∞∞--∞=-∞=-∑⎰j a ()()e d t n x t t nT tΩδ∞∞--∞=-∞-∑⎰=j aaˆ(j )()enTn X x nT ΩΩ∞-=-∞=∑j aˆ(j )(e )TX X ωωΩΩ==j 2π()(e ), 0,1,2,,1N kNX k X k N ωω===-则N 点IDFT [X N (k)]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为② 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT [X N (k)]得到的序列x N (n)就是原序列x(n), 即x N (n)=x(n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.实现非周期信号的频谱,要求记录结果并对结果进行分析讨论.
(1)门函数信号)(t g τ的频谱分析,(2)尺度变换之后门函数)(at g τ的频谱分析. 程序:令tao=1 syms t
x=heaviside(t+0.5)-heaviside(t-0.5); F=fourier(x); subplot(211);
ezplot(x,[-2,2]); subplot(212);
ezplot(F,[-10,10]);
程序:令tao=1,a=4
syms t
x=heaviside(t+(1/8))-heaviside(t-(1/8)); F=fourier(x);
subplot(211);
ezplot(x,[-2,2]);
axis([-2,2,-1,2])
subplot(212);
ezplot(F);
axis([-5,5,-0.5,0.5]);
分析:
经过尺度变换,门函数的时间常数tao改变了,tao从1变成了1/4,门函数的幅度保持不变,但频谱变化幅度比尺度变换前缓慢,频谱的基波分量降低了
3.时域采样及其恢复
运行给定实验程序,绘制运行实验结果,总结实验结果,说明采样过程及恢复原信号的原理。

程序:
syms t w f; %定义符号变量
f=(1-2*abs(t))*exp(-j*w*t); %计算被积函数
F=int(f, t, -1/2, 1/2); %计算傅里叶系数F(w)
F=simple(F);F %化简
subplot(3, 1, 1), %绘制三角波的幅频特性曲线F(w)
low=-26*pi;high=-low; %设置w的上界和下界
ezplot(abs(F), [low:0.01:high]);
axis([low high -0.1 0.5]); xlabel('');
title('三角波的频谱');
subplot(3, 1, 2), %绘制经过截止频率为4*pi低通滤波器后的频谱Y1(w)
ezplot(abs(F), [-4*pi:0.01:4*pi]);
axis([low high -0.1 0.5]);
title('低通滤波后的频谱');
%采样信号的频谱是原信号频谱的周期延拓,延拓周期为(2*pi)/Ts
%利用频移特性F[f(t)*exp(-j*w0*t)]=F(w+w0)来实现
subplot(3, 1, 3); %绘制采样后的频谱Y(w)
Ts=0.2; %采样信号的周期
w0=(2*pi)/Ts; %延拓周期10*pi
for k=-2:2
ft=f*exp(-j*w0*k*t);
FT=int(ft, t, -1/2, 1/2);
ezplot((1/Ts)*abs(FT), [(-4*pi-k*w0):0.01:(4*pi-k*w0)]); hold on
end
axis([low high -0.1 2.5]); xlabel('');
title('采样后的频谱');
F =
(8*sin(w/4)^2)/w^2
clc;
close all;
%原信号
fa='sin(2.*pi.*60.*t)';%原信号
fs0=10000; %采样频率
tp=0.1;%时间范围
t=[-tp:1/fs0:tp];%信号持续时间范围
k1=0:999;k2=-999:-1;
m1=length(k1);m2=length(k2);
axis([-100,100,0,max(abs(FH))+5]);
总结:采样信号在一定条件下可以恢复为原来的信号,只需用截止频率等同于原信号频谱中最高频率fn的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号的频谱。

采样信号是指模拟信号由采样器按照一定时间间隔采样获得时间上离散的信号,要获取采样信号,最基本的方法是对其进行傅里叶变换。

具体方法为:如果信号xa(t)是实带限信号,且最高频谱不超过Ws/2,即基带频谱以及各次谐波调制频谱彼此不重叠,可以用带宽为Ws/2的理想低通滤波器将各次谐波调制频谱滤去,保留不失真的基带频谱,从而不失真地还原出原来的信号。

相关文档
最新文档