第八章离散控制系统2
最新离散控制系统课件PPT
s
1
a
G2 (s)
s
1
b
图(a)G(z)Z[G1(s)G2(s)]Z[s1as1b]
b1a[zzeaT zzebT](ba)z((zeaeTaTe)(bzT)ebT)
图(b)
1
1
G(z)
G1(z)G2(z)
Z[ ]•Z[ ] sa sb
z•z
z2
zeaT zebT (zeaT)(zebT)
当炉温出现误差时,误差信号只有在开关闭合时 才能使执行电动机旋转,进行炉温调节。当采样开关 断开,执行电动机立即停下来,阀门位置固定,炉温 自动变化,直到下次采样开关闭合,根据炉温误差大 小再进行调节。
由于电动机时转时停,超调现象受到控制,即使 采用较大的开环放大系数仍能保持系统稳定。
由图可见,相临两部分频谱彼此不能重叠的条 件是: 采样频率ωs 必须大于或等于采样开关输 入连续信号e(t)频谱中最高频率ωmax的2倍,即:
F(s) 1 1(1 1 ) s(sa) a s sa
其对应的时间函数为 由例7-1和7-2可得
f (t) 1[1eat ] a
F (z) 1 a [zz 1 z z e a T] a [z2 ( z 1 ( 1 e e a T a ) T z ) e a T ]
三、z反变换
由F(z)求 f*(t)的过程称为 z 反变换,表示为
j
2j
T
2
幅频特性
sin(T )
Gh ( j ) T
2
T
2
相频特性
Gh(
j)
T
2
幅频特性的幅值随频率ω的增大而衰减,具有明 显低通滤波特性。
第八章-Z变换与离散系统z域分析
第八章:Z 变换§8.1 定义、收敛域(《信号与系统》第二版(郑君里)8.1,8.2,8.3)定义(Z 变换): ♦序列()x n 的双边Z 变换:()(){}()nn X z x n x n z+∞-=-∞∑Z(8-1)♦序列()x n 的单边Z 变换:()(){}()0n n X z x n x n z +∞-=∑Z(8-2)注:1)双边:()()()()10nnn n n n X z x n zx n zx n z +∞-∞+∞---=-∞=-===+∑∑∑(8-3)为Laurent 级数,其中,()1nn x n z-∞-=-∑是Laurent 级数的正则部,()0nn x n z+∞-=∑是主部。
2)z 是复平面上的一点图8-13)对因果序列:单边Z 变换=双边Z 变换。
♦定义(逆Z 变换):对双边Z 变换()()nn X z x n z+∞-=-∞=∑()1C1d 2j m z X z z π-⎰(1C 12j m n z x π+∞-=-∞⎡=⎢⎣∑⎰ ()C 12j m n x n z π+∞=-∞⎡=⎢⎣∑⎰由Cauchy 定理,有1C d 0,2j m n z z m nπ--=⎨≠⎩⎰ (8-4)其中,C 为包围原点的闭曲线,()()1C1d 2j m x m z X z z π-∴=⎰上式= 定义:()()(){}11C1d 2j n x n z X z z X z π--==⎰Z(8-5)注:(8-4)的求解:j z re θ=,j d j d z r e θθ=,则有()()21110C 2011d 2j 2j 1102j m n m n m n j j m n m n z z r e rje d m n r e d m nπθθπθθππθπ--------==⎧==⎨≠⎩⎰⎰⎰,,图8-2 柯西定理证明示意图收敛域: ♦定义(收敛域):对有界()x n ,使()()nn X z x n z+∞-=-∞=<∞∑一致的z 的集合。
信号与系统_第八章 z变换、离散时间系统的z域分析
Re(z)
C是包围X(z)zn-1所有极点之逆时针闭合积分路线,通常选 择z平面收敛域内以原点为中心的圆。
➢ 求X(z)的反z变换的三种方法 ✓留数法 ✓幂级数展开和长除法 ✓部分分式展开法
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(1)
✓ 步骤 (1)将X(z)除以z,得到X(z)/z=X1(z); (2)将X1(z)按其极点展成部分分式(其方法与拉氏变换 的部分分式展开完全一致);
3.x(n)为左边序列
x(n)是无始有终的序列,即当n n2 时, x(n)=0 。
X (z)
n2
x(n)
z
n
x(n)z n
jIm(z)
n
n n2
✓若n20,0z RX2
0
RX2 Re(z)
✓若n20,0z RX2
中国民航大学 CAUC
8.2 z变换的收敛域
4.x(n)为双边序列
x(n)是从n =延伸到n = 的序列 。
(3)X(z)=zX1(z),得到X(z)的部分分式展开式;
(4)对X(z)的每一个部分分式进行反z变换,就得到X(z) 对应的序列x(n)。
[例]求 X (z)
z2
( z 1) 的逆z变换。
(z 1)( z 0.5)
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(2)
[例]求收敛域分别为z1和 z1 两种情况下, X (z) 1 2z 1
➢X(z)收敛域的确定必须同时依赖于 ✓ 序列的性质(有限长,右边,左边,双边) ✓ 是对x(n)进行单边还是双边z变换 ✓ X(z)的极点
中国民航大学 CAUC
离散数学 第8章 习题解答
第8 章 习题解答8.1 图8.6 中,(1)所示的图为,3,1K (2) 所示的图为,3,2K (3)所示的图为,2,2K 它们分别各有不同的同构形式.8.2 若G 为零图,用一种颜色就够了,若G 是非零图的二部图,用两种颜色就够了.分析 根据二部图的定义可知,n 阶零图(无边的图)是三部图(含平凡图),对n 阶零图的每个顶点都用同一种颜色染色,因为无边,所以,不会出现相邻顶点染同色,因而一种颜色就够用了.8.3 完全二部图,,s r K 中的边数rs m -.分析 设完全二部图s r K ,的顶点集为V, 则∅==2121,V V V V V ,且,||,||21s V r V ==s r K ,是简单图,且1V 中每个顶点与2V 中所有顶点相邻,而且1V 中任何两个不同顶点关联的边互不相同,所以,边数rs m -.8.4 完全二部图s r K ,中匹配数},min{1s r =β,即1β等于s r ,中的小者. 分析 不妨设,s r ≤且二部图s r K ,中,,||,||21s V r V ==由Hall 定理可知,图中存在1V 到的完备匹配,设M 为一个完备匹配,则1V 中顶点全为M 饱和点,所以,.1r =β8.5 能安排多种方案,使每个工人去完成一项他们各自能胜任的任务.分析 设},,{1丙乙甲=V ,则1V 为工人集合, },,{2c b a V =,则2V 为任务集合.令}|),{(,21y x y x E V V V 能胜任== ,得无向图>=<E V G ,,则G 为二部图,见图8.7 所示.本题是求图中完美匹配问题. 给图中一个完美匹配就对应一个分配方案.图8.7 满足Hall 定理中的相异性条件,所以,存在完备匹配,又因为,3||||21==V V 所以,完备匹配也为完美匹配.其实,从图上,可以找到多个完美匹配. 取)},(),,(),,{(1c b a M 丙乙甲=此匹配对应的方案为甲完成a,乙完成b, 丙完成c,见图中粗边所示的匹配. )},(),,(),,{(c a b M 丙乙甲=2M 对应的分配方案为甲完成b,乙完成a,丙完成c.请读者再找出其余的分配方案.8.6 本题的答案太多,如果不限定画出的图为简单图,非常容易地给出4族图分别满足要求.(1) n (n 为偶数,且2≥n )阶圈都是偶数个顶点,偶数条边的欧拉图.(2) n (n 为奇数,且1≥n )阶圈都是奇数个顶点,奇数条边的欧拉图.(3) 在(1) 中的圈上任选一个顶点,在此顶点处加一个环,所务图为奇数个顶点,偶数条边的欧拉图.分析 上面给出的4族图都是连通的,并且所有顶点的度数都是偶数,所以,都是欧拉图.并且(1),(2) 中的图都是简单图.而(3),(4)中的图都带环,因而都是非简单图. 于是,如果要求所给出的图必须是简单图,则(3),(4)中的图不满足要求.其实,欧拉图是若干个边不重的图的并,由这种性质,同样可以得到满足(3),(4)中要求的简单欧拉图.设k G G G ,,,21 是长度大于等于3的k 个奇圈(长度为奇数的圈称为奇圈),其中k 为偶数,将1G 中某个顶点与2G 中的某顶点重合,但边不重合, 2G 中某顶点与3G 中某顶点重合,但边不重合,继续地,最后将1-k G 中某顶点与k G 中某顶点重合,边不重合,设最后得连通图为G,则G 中有奇数个顶点,偶数条边,且所有顶点度数均为偶数,所以,这样的一族图满足(4)的要求,其中一个特例为图8.8中(1)所示.在以上各图中,若k G G G ,,,21 中有一个偶圈,其他条件不变,构造方法同上,则所得图G 为偶数个顶点,奇数条边的简单欧拉图,满足(3)的要求,图8.8中(2)所示为一个特殊的情况.8.7 本题的讨论类似于8.6题,只是将所有无向圈全变成有向圈即可,请读者自己画出满足要求的一些特殊有向欧拉图.8.8 本题的答案也是很多的,这里给出满足要求的最简单一些图案,而且全为简单图.(1) n (3≥n )阶圈,它们都是欧拉图,又都是哈密尔顿图.(2) 给定k (2≥k )个长度大于等于3的初级回路,即圈k G G G ,,,21 ,用8.6题方法构造的图G 均为欧拉图,但都不是哈密尔顿图,图8.8给出的两个图是这里的特例.(3)n (4≥n )阶圈中,找两个不相邻的顶点,在它们之间加一条边,所得图均为哈密尔顿图,但都不是欧拉图.(4) 在(2)中的图中,设存在长度大于等于4的圈,比如说1G ,在1G 中找两个不相邻的相邻顶点,在它们之间加一条新边,然后用8.6题方法构造图G,则G 既不是欧拉图,也不是哈密尔顿图,见图8.9所示的图.分析 (1) 中图满足要求是显然的.(2)中构造的图G 是连通的,并且各顶点度数均为偶数,所以,都是欧拉图,但因为G 中存在割点,将割点从G 中删除,所得图至少有两个连通分支,这破坏了哈密尔顿图的必要条件,所以,G 不是哈密尔顿图.(3) 中构造的图中,所有顶点都排在一个圈上,所以,图中存在哈密尔顿回路,因而为哈密尔顿图,但因图中有奇度顶点(度数为奇数的顶点),所以,不是欧拉图. 由以上讨论可知,(4) 中图既不是欧拉其实,读者可以找许多族图,分别满足题中的要求.8.9 请读者自己讨论.8.10 其逆命题不真.分析 若D 是强连通的有向图,则D 中任何两个顶点都是相互可达的,但并没有要求D 中每个顶点的入度都等于出度. 在图8.2 所示的3个强连通的有向衅都不是欧拉图.8.11 除2K 不是哈密尔顿图之外, n K (3≥n )全是哈密尔顿图. n K (n 为奇数)为欧拉图. 规定1K (平凡图)既是欧拉图,又是哈密尔顿图.分析 从哈密尔顿图的定义不难看出,n 阶图G 是否为哈密尔顿图,就看是否能将G 中的所有顶点排在G 中的一个长为n 的初级回路,即圈上. n K (3≥n )中存在多个这样的生成圈(含所有顶点的图), 所以n K (3≥n )都是哈密尔顿图.在完全图n K 中,各顶点的度数均为n-1,若n K 为欧拉图,则必有1-n 为偶数,即n 为奇数,于是,当n 为奇数时, n K 连通且无度顶点,所以, n K (n 为奇数) 都是欧拉图.当n 为偶数时,各顶点的度数均为奇数,当然不是欧拉图.8.12 有割点的图也可以为欧拉图.分析 无向图G 为欧拉图当且仅当G 连通且没有奇度顶点.只要G 连通且无奇度顶点(割点的度数也为偶数),G 就是欧拉图.图8.8所示的两个图都有割点,但它们都是欧拉图.8.13 将7个人排座在圆桌周围,其排法为.abdfgeca分析 做无向图>=<E V G ,,其中,},,,,,,{g f e d c b a V =},|),{(有共同语言与且v u V v u v u E ∈=图G 为图8.10所示.图G 是连通图,于是,能否将这7个人排座在圆桌周围,使得每个人能与两边的人交谈,就转化成了图G 中是否存在哈密尔顿回路(也就是G 是否为哈密尔顿图).通过观察发现G 中存在哈密尔顿回路, abdfgeca 就是其8.14 用i v 表示颜色.6,,2,1, =i i 做无向图>=<E V G ,,其中},,,,,,{654321v v v v v v V =}.,,|),{(能搭配与并且且v u v u V v u v u E ≠∈=对于任意的)(,v d V v ∈表示顶点v 与别的能搭配的颜色个数,易知G 是简单图,且对于任意的V v u ∈,,均有633)()(=+≥+v d u d ,由定理8.9可知,G 为哈密尔顿图,因而G 中存在哈密尔顿回路,不妨设1654321i i i i i i i v v v v v v v 为其中的一条,在这种回路上,每个顶点工表的颜色都能与它相邻顶点代表的颜色相.于是,让1i v 与2i v ,3i v 与4i v ,5i v 与6i v 所代表的颜色相搭配就能织出3种双色布,包含了6种颜色.8.15∑=⨯======300321,10220)deg(.12)deg(,3)deg(,1)deg(,4)deg(i i R R R R R 而本图边数m=10.分析 平面图(平面嵌入)的面i R 的次数等于包围它的边界的回路的长度,这里所说回路,可能是初级的,可能是简单的,也可能是复杂的,还可能由若干个回路组成.图8.1所示图中,321,,R R R 的边界都是初级回路,而0R 的边界为复杂回路(有的边在回路中重复出现),即432110987654321e e e e e e e e e e e e e e ,长度为12,其中边65,e e 在其中各出现两次.8.16 图8.11中,实线边所示的图为图8.1中图G,虚线边,实心点图为它的对偶图的顶点数*n ,边数*m ,面数*r 分别为4,10和8,于是有分析 从图8.11还可以发现,G 的每个顶点位于的一个面中,且的每个面只含G 的一个顶点,所以,这是连通平面图G 是具有k 个连通分支的平面图2≥k ,则应有1*+-=k n r .读者自己给出一个非连通的平面图,求出它的对偶图来验证这个结论.另外,用图8.1还可以验证,对于任意的*v (*G 中的顶点),若它处于G 的面i R 中,则应有)deg()(*i R v d =.8.17 不能与G 同构.分析 任意平面图的对偶图都是连通的,因而与都是连通图,而G 是具有3个连通分支的非连通图,连通图与非连通图显然是不能同构的.图 8.12 中, 这线边图为图8.2中的图G,虚线边图为G 的对偶图,带小杠的边组成的图是*G 的对偶图,显然.~**G G ≠8.18 因为彼得森图中有长度为奇数的圈,根据定理8.1可知它不是二部图.图中每个顶点的度数均为3,由定8.5可知它不是欧拉图.又因为它可以收缩成5K ,由库拉图期基定理可知它也不是平面图.其实,彼得森图也不是哈密尔顿图图,这里就不给出证明了.8.19 将图8.4重画在图8.13中,并且将顶点标定.图中afbdcea 为图中哈密尔顿回路,见图中粗边所示,所以,该图为哈密尔顿图.将图中边),(),,(),,(d f f e e d 三条去掉,所得图为原来图的子图,它为3,3K ,可取},,{1c b a V =},,{2f e d V =,由库拉图期基定理可知,该图不是平面图.8.20 图8.14 所示图为图8.5所示图的平面嵌入.分析 该图为极大平面图.此图G 中,顶点数9=n ,边数.12=m 若G 是不是极大平面图,则应该存在不相邻的顶点,,v u 在它们之间再加一条边所得'G 还应该是简单平面图, 'G 的顶点数131,6''=+===n m n n ,于是会有.126313''=->=n m这与定理8.16矛盾,所以,G 为极大平面图.其实,n ( 3≥n )阶简单平面图G 为极大平面图当且仅当G 的每个面的次数均为3.由图8.14可知,G 的每个面的次数均为3,所以,G 为极大平面图.8.12 答案 A,B,C,D 全为②分析 (1) 只有n 为奇数时命题为真,见8.11的解答与分析.(2) 2≠n 时,命题为真,见8.11的解答与分析.(3) 只有m n ,都是偶数时,m n K ,中才无奇度数顶点,因而m n K ,为欧拉图,其他情况下,即m n ,中至少有一个是奇数,这时m n K ,中必有奇度顶点,因而不是欧拉图.(4) 只有m n =时, m n K ,中存在 哈密尔顿回路,因而为哈密尔顿图. 当m n ≠时,不妨设m n <,并且在二部图m n K ,中,m V n V ==||,||21,则n V m V G p =>=-||)(11,这与定理8.8矛盾. 所以, m n ≠时, m n K ,不是哈密尔顿图.8.22 答案 A:②;B ②;C ②.分析图8.15中,两个实边图是同构的,但它们的对偶力(虚边图)是不同构的.(2) 任何平面图的对偶图都是连通图.设G 是非连通的平面图,显然有.**~G G ≠ (3) 当G 是非连通的平面图时,,1*+-=k n r 其中k 为G 的连通分支数.8.23 答案 A:④;B ②;C ②.分析 根据库期基定理可知,所求的图必含有5K 或3,3K 同胚子图,或含可收缩成5K 或3,3K 的子图.由于顶点数和边数均已限定,因而由3,3K 加2条边的图可满足要求,由5K 增加一个顶点,一条边的图可满足要求,将所有的非同构的简单图画出来,共有4个,其中由3,3K 产生的有2个,由5K 产生的有2个.见图8.16所示.。
离散控制系统PPT课件
[e(i) 2e(i
e(i 1)] 1) e(i
2)]
中心
e(t
e(t )
)
1 T2
1 [e(i 2T [e(i 1)
1) e(i 1)] 2e(i) e(i
1)]
例7-3 试将PID控制器离散化
u(t
)
K
p
e(t
)
1 Ti
展开式
或② 或③
n
n
y(k) ai y(k i) bi x(k i)
i 1
i 1
n
n
y(k) bi x(k i) ai y(k i)
i0
i0
级数和式 计算机算式
2、与脉冲传递函数的关系
对②两边Z变换:
Y (z)(1 a1z1 a2 z2 an zn ) X (z)(b0 b1z1 b2 z2 bn zn )
1 0.2s
1
解:代入 s 2 z 1
T z 1
G(z)
2
z
12
1 0.2
2
z
1
1
T z 1
u(k)
u(k
1)
K
p e(k)
e(k
1)
T Ti
e(k )
Td e(k) 2e(k 1) e(k 2)
T
或整理为
u(k) u(k 1) b0e(k) b1e(k 1) b2e(k 2)
b0
K
p
第8章 线性离散时间控制系统
一阶保持器复现原信号的准确度与零阶保持器相比有所 提高。但由于在式(8-16)中仍然忽略了高阶微分,一阶保持器 的输出信号与原连续信号之间仍有不同。
第8章 线性离散时间控制系统 由式(8-16)可知,一阶保持器的响应可以分解为阶跃响应
和斜坡输入响应之和。将式(8-16)的微分形式变换成式(8-17) 的差分形式,对应的传递函数为式(8-18)。
第8章 线性离散时间控制系统
图8-6 零阶保持器输入信号与输出信号的关系
第8章 线性离散时间控制系统 下面推导零阶保持器的表达式。利用泰勒级数展开公式,
可以得到
如果略去含 Δt、(Δt)2等项,可得
第8章 线性离散时间控制系统 这就是零阶保持器的公式。由式(8-11)可得零阶保持器输出 信号的完整表达式为
第8章 线性离散时间控制系统
第8章 线性离散时间控制系统
8.1 信号采样与采样定理 8.2 信号保持器 8.3 离散系统的数学模型 8.4 离散系统的稳定性分析 8.5 离散系统的稳态误差 8.6 离散系统的动态性能 8.7 离散系统的校正
第8章 线性离散时间控制系统
8.1 信号采样与采样定理
8.1.1 概述 离散时间系统(简称离散系统)是指系统中全部或一部分
进而输入给计算机控制器。也就是说,采样后的离散信号必 须能够保留有原连续信号的完整或近似完整的信息。因此, 周期T 的设定非常重要。
采样定理(也叫Shannon定理)从理论上给出了必须以多 快的采样周期(或多高的采样频率)对连续信号进行采样,才能 保证采样后离散信号可以不失真地保留原连续信号的信息。 换句话说,采样定理给出了对采样周期的限定条件,即采样周 期要在多短时间之内,才能保证采样后的离散信号保留有采 样之前的连续信号的尽量多的信息。
控制工程基础-离散控制系统概述(ppt 49张)
u(t) e(t) T e*(t)
1 e Ts s
a s
积分器
eh(t)
y(t)
零阶保持器
( t ) e ( kT ) ( kT t ( k 1 ) T ) 按零阶保持器的作用,其输出应为 e h
按积分器的作用,在一个采样周期内的输出应为
①迭代法:已知k=0下的y(-j) (j=0,1,…,n)和已知输入u(k),以及采样周期T
时。用迭代方法计算差分方程,有
y ( k ) a y ( k 1 ) ... a y ( k n ) b u ( k ) b u ( k 1 ) ... b u ( k m ) 1 n 0 1 m
的数学工具是“z变换”。
离散控制系统的分析思路仍然是:首先,建立数学模 型(脉冲传递函数);其次,基于脉冲传递函数进行性能 分析;再次,基于性能分析给出改善性能的控制器设计; 最后,进行控制器的工程实现
7. 离散控制系统
离散控制系统(计算机控制系统)的主要特点: (1)计算机担任控制器的作用——数字控制器 (2)系统中连续信号和离散信号(数字信号)并存 由此引申出不少的控制优势: (1)控制的适应性强。通过编程可以完成复杂的控制任务
1 1 aT bT bT aT Y ( z ) 1 e e e e aT bT aT bT z ( z e )( z e) z e z e
对照z变换表,z反变换为
akT bkTБайду номын сангаасe e y (t) aT bT e e *
n
akT k ( e) e z 按 z at k 0
第八章 离散系统
e* t
e* t
0
0
t
0 T 2T
t
t 0 T 2T
一个连续信号经采样开关变成了采样信号
• 采样脉冲的持续时间远小于采样周期T和系统的时间常 数
• 可以将窄脉冲看成是理想脉冲,从而可得采样后 的采 样信号为
e* (t) e(t)T (t)
(t) (t kT ) k
因此采样信号只在脉冲 出现的瞬间才有数值, 于是采样信号变为
采样:把连续信号变成脉冲序列(或数码)的过程。 采样器:实现采样的装置叫采样器,可以是机电开关,也 可以是电子开关,A//D转换器。 周期采样:采样开关等间隔开闭。 同步采样:多个采样开关等周期同时开闭。 非同步采样:多个采样开关等周期但不同时开闭。 多速采样:各采样开关以不同的周期开闭。 随机采样:开关动作随机,没有周期性。 保持器:从离散信号中,将连续信号恢复出来的装置,具 有低通滤波功能的电网络和D/A转换器都是这类装置。
保持器
被控对象
反馈环节
计算机控制系统的优点:
1、有利于实现系统的高精度控制;
2、数字信号传输有利于抗干扰;
3、可以完成复杂的控制算法,而且参数修
改容易;
4、除了采用计算机进行控制外,还可以进行显示,报警等 其它功能;
5、易于实现远程或网络控制。
8.2 采样过程和采样信号的复现
信号的采样过程 et
Z et eat E z e at
Z反变换
由F(z)求e*(t)过程称为Z反变换,表示为
f t Z 1 F z
Z反变换只能给出连续信号在采样时刻的数值,而不能 再非采样时刻提供连续信号的有关信息。通过查Z变换表得 到的连续函数,从Z反变换的角度来说,只能是许多可能的 答案之一,而不是唯一的答案。即有
离散控制系统
第八章 离散控制系统8.1 引言自动控制系统发展至今,数字计算机作为补偿装置或控制装置越来越多的应用到控制系统中。
数字计算机中处理的信号是离散的数字信号。
所谓离散信号,是指定义在离散的时刻点上信号,连续信号经过等间隔时间采样后就变成离散时间信号。
而数字信号,是指由二进制数表示的信号,计算机中的信号就是数字信号。
数字信号的取值只能是有限个离散的数值。
如果一个系统中的变量有离散时间信号,就把这个系统叫做离散时间系统,简称离散系统。
如果一个系统中的变量有数字信号,则称这样的系统为数字控制系统。
图8-1为典型的计算机控制系统框图,计算机控制系统是最常见的离散系统和数字控制系统。
计算机工作在离散状态,控制对象和测量元件工作在模拟状态。
偏差信号)(t e 是模拟信号,经过A/D 变换后转换成离散的数字信号)(*t e 进入计算机。
计算机按照一定的控制规律处理输入信号,完成控制器的功能。
计算机的输出信号)(*t u 为离散的数字信号,经过D/A 变换后转换成模拟信号)(t u h 。
)(t u h 输入到控制对象,是其按预定方式工作。
将图8-1中的A/D 转换器由一个采样开关代替,D/A 转换器由采样开关和保持器代替,得到图8-2。
在量化误差可以忽略的情况下,计算机控制系统可以看作是离散控制系统。
8.2 采样系统在离散控制系统中,数字计算机只能处理离散的数字信号,而系统中其余元件则处理模拟信号,所以在数字计算机与其余元件之间需要进行信号转换。
信号经过A/D 转换,变成离散的数字信号输入到计算机。
而计算机输出的离散的数字信号经过D/A 转换,变成模拟信号输入到其余元件。
在分析离散控制系统时,假定输入到计算机和从计算机输出的每一个数字量之间的时间间隔为T ,称为采样时间,T /1为采样频率,单位为Hz 。
所以在图8-2中,偏差信号图8-1 计算机控制系统图8-2 离散控制系统∑∞=-=0*()()(k t kT e t e δ(8-1))(*t e 为离散信号,该信号实际上是由二进制表示的数字信号,通常为8位、10位、12位或者16位数字信号。
第八章 离散控制系统(2)
▽e(k)
(k-1)T kT (k+1)T
t
n阶后向差分: ▽ne(k)=▽n-1[▽e(k)]=▽n-1e(k) - ▽n-1e(k-1)]=
3 3 2 2 2
例8-24 一阶离散系统的差分方程为 c(k+1)-bc(k) =r(k) 已知r(k)=ak,初始条件 c(0)=0,求响应c(k)。 解:对差分方程两边取z变换 zC(z)-zc(0)-bC(z)=R(z)
代入 R ( z ) Z ( a )
k
z za z
, c(0) 0
3. 脉冲传递函数的求法 1) 由差分方程求脉冲传函 令初始条件为零,对方程两端进行z变换 → 整理 → 脉冲传递函数
例8-21 已知离散系统差分方程
c ( k 2 ) 2 c ( k 1) c ( k ) Tr ( k 1 )
求脉冲传递函数。
(z
2
2 z 1 ) C ( z ) TzR ( z )
c ( k ) a 1c ( k 1) a n c ( k n ) b 0 r ( k ) b1 r ( k 1 ) b m r ( k m )
在实际当中, 应用较广泛
n—系统的阶次
k—系统的第k个采样周期
m n
线性定常系统差分方程的一般形式。 递推形式
t
n阶前向差分:
e (k )
n n 1
第8章 z变换离散时间系统的z变换分析
-n -n
收敛域 为 z >1
3. 斜变序列
间接求 解方法 已知 两边对(z -1)求导
两边乘(z -1)
∴
同理,两边再求导,得
…
4. 指数序列
x(n) a n u(n)
运用留数定理来进行运算。又称为留数法,即
f (n) Res[F ( z )z n1 ]z pm
m
略!
二、幂级数展开法(长除法)
F ( z ) f (n)z n f (0) f (1)z 1 f ( 2)z -2
n 0
!
一般为变量z的有理分式,可用长除法,
例
s = 2,
例题 解
求x(n) = ?
∴
∴
见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性 若 x(n) ←→ X(z) y(n) ←→ Y(z)
则
Rx1 < |z| < Rx2 Ry1 < |z| < Ry2
ax(n) + by(n) ←→ aX(z) + bY(z)
F ( z ) f (0) f (1) z 1 f (2) z 2
所以
f (0) 0, f (1) 1, f (2) 0, f (3) 3, f (4) 4,
重点!
三、部分分式展开法
一般Z变换式是有理函数
以下研究因果序列的逆变换,即
X(z) (|z|>R) ← Z → x(n)
对于N阶LTI离散系统的差分方程:
自控原理离散控制系统课件
通过状态方程可以求解系统的 状态响应和输出响应,进而进 行系统分析和设计。
离散控制系统传递函数
传递函数是用于描述离散控制系 统输入输出关系的数学模型。
它通常表示为 G(z) = b0 + b1z^-1 + b2z^-2 + ... + bd*z^-d,其中 z 是复数变量
,bi 是已知系数。
传递函数可以用于分析系统的稳 定性、频率响应和系统性能等。
抗干扰性能定义
抗干扰性能是指系统在受到外部干扰信号作用时,系统能够保持 稳定输出的能力。
抗干扰性能的指标
主要包括干扰信号的类型、幅度、频率等。
提高抗干扰性能的方法
通过增强系统自身的稳定性、采用滤波技术、引入鲁棒控制等手段 提高抗干扰性能。
05
CATALOGUE
离散控制系统的设计方法
离散控制系统的设计原则与步骤
奈奎斯特判据
对于线性离散控制系统,如果系统的极点都位于Z平面的左半部分,且没有极点 在虚轴上,则系统是稳定的。
离散控制系统的稳定性分析方法
根轨迹法
通过绘制系统的根轨迹图,分析 系统的极点和零点分布,从而判 断系统的稳定性。
频率域分析法
通过分析系统的频率响应,判断 系统是否稳定。频率域分析法通 常使用劳斯-赫尔维茨判据或奈奎 斯特判据进行稳定性分析。
04
CATALOGUE
离散控制系统的性能分析
离散控制系统的稳态误差分析
稳态误差定义
稳态误差是控制系统在输入信号作用下,系统达到稳态后其输出 量与期望输出量之间的偏差。
稳态误差的来源
主要来源于系统本身的结构和参数设计,如系统增益、积分环节、 微分环节等。
减小稳态误差的方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关。可以把这种关系用n阶后向差分方程描述:
c ( k ) a 1 c ( k 1 ) a n c ( k n )
在实际当中,
b 0 r ( k ) b 1 r ( k 1 ) b m r ( k m ) 应用较广泛
n—系统的阶次 k—系统的第k个采样周期
线性定常系统差分方程的一般形式。
递推形式
m
n
c(k) bjr(kj) aic(ki)
j 0
i 1
特别适合在计算机上求解。比连续系统方便!
线性定常离散系统,也可以用n阶前向差分方程 描述, 即
c ( k n ) a 1 c ( k n 1 ) a n c ( k ) b 0 r ( k m ) b 1 r ( k m 1 ) b m r ( k )
n—系统的阶次 k—系统的第k个采样周期
递推形式
在实际当中, 较少应用
m
n
c (k n ) b jr (k m j) a ic (k n i)
j 0
i 1
3. 差分方程的解法
有经典法*-较繁琐:通解+特解、迭代法和z变换法。
1) 迭代法
线性定常系统差分方程可以写成递推形式
m
n
c(k) bjr(kj) aic(ki)
j 0
i 1
m
n
c (k n ) b jr (k m j) a ic (k n i)
j 0
i 1
当给出输出函数的n个初始值后,可以从n+1个值
递推计算下去,它适合于计算机运算,简单快捷。
例8-18 已知离散系统的后向差分方程
c(k)-5c(k-1)+6c(k-2)=r(k)
初始条件c(0)=0, c(1)=1。
* 例8-23 将后向差分方程 c(k)-5c(k-1)+6c(k-2)=r(k)
转换为前向差分方程,并用迭代法求输出序列c(k)。
解: 对后向差分方程 c(k)-5c(k-1)+6c(k-2)=r(k) 令k’=k-2,则变换为前向差分方程
c(k’+2)-5c(k’+1)+6c(k’)=r(k’+2)
根据新的初始条件,并令k’=2, 3, 4…,逐拍递推, 有
k’=0 c(0)=6 k’=1 c(1)=25 初始条件 k’=2 c(2)=r(2)+5c(1)-6c(0)=90 k’=3 c(3)=r(3)+5c(2)-6c(1)=301 k’=4 c(4)=r(4)+5c(3)-6c(2)=966 … 由此可以画出输出c(k)随时间变化的曲线。
对应的初始条件可根据原方程初值及变量和的关系求出。
当,k’=0有k=2,则 c(k’)|k’=0 =c(0’)=6 r(k’)|k’=0 =r(0’)=1
当,k’=1有k=3,则 c(k’)|k’=1 =c(1’)=25 r(k’)|k’=1 =r(1’)=1
写出差分方程的递推形式
c(k’+2)= r(k’+2) +5c(k’+1)-6c(k’)
n阶后向差分:
▽ne(k)=▽n-1[▽e(k)]=▽n-1e(k) - ▽n-1e(k-1)]=
n(1)i
i0
i! (n n ! i)! e(ki)
2. 线性常系数差分方程
对于单输入单输出线性定常离散系统,在某一采样时刻的输
出值 c(k) 不仅与这一时刻的输入值 r(k)有关,而且与过去时刻的
第八章离散控制系统
第八章 离散控制系统 (2)
• 数学模型
–
1.差分方程
–
2.脉冲传递函数
• 离散系统的时域分析
–
1.稳定性
–
2.动态性能
–
3.稳态误差
8.5 离散系统的数学模型
数学模型是系统定量分析的基础。 连续系统—微分方程—L变换—代数方程—传递函数 离散系统—差分方程— Z变换—代数方程—脉冲传函 类比:相似性 把握住两者的共同点和不同点,可事半功倍!
8.5.1 差分方程 在离散系统中,由于采样时间的离散性,要描述脉
冲序列随时间的变化规律,可以采用差分的概念。
1. 差分的定义
差分:是采样信号两相邻采样脉冲之间的差值。一系列差值变 化的规律,可反映出采样信号的变化规律。
设离散函数序列e(kT) ,为了方便可简写为e(k)。
1) 前向差分 是下一时刻采样值e(k+1)与现在时刻采样值e(k) 之差 Δe(k) 。即 Δe(k)= e(k+1) - e(k) Δe(k)称为一阶前向差分。
k=2 c(2)=r(2)+5c(1)-6c(0)=6
k=3 c(3)=r(3)+5c(2)-6c(1)=25
k=4 c(4)=r(4)+5c(3)-6c(2)=90
T 2T 3T 4T
t
…
由此可以画出输出c(k)随时间变化的曲线。
n阶方程需要n个初始值,从n+1开始递推,初始值
不同解也不同,初始值可以看作为输入。
n阶前向差分: ne(k) n 1[ e(k) ] n 1e(k1) n 1e(k)
i n0(1)ii! (n n ! i)! e(kni)
2) 后向差分
是现在时刻采样值e(k)与上一时刻采样值e(k-1)之差
▽e(k) 。即, ▽e(k)= e(k) - e(k-1)
▽e(k)称为一阶后向差分。
二阶后向差分:
e*(t)
Δe(k)
▽2e(k)=▽[▽e(k)]=▽[ e(k) - e(k-1)] = ▽e(k) - ▽e(k-1)]
▽e(k)
= e(k) - 2e(k-1) +e(k-2)]
(k-1)T kT (k+1)T t
试用迭代法求在r(k)=1(k)=1 (k>0)作用下的输出序列。
解:可以写出后向差分方程的递推形式
c(k)= r(k) + 5c(k-1)-6c(k-2)
根据初始条件c(0)=0, c(1)=1,并令k=2, 3, 4…,逐
拍递推,有 e*(t)
k=0 c(0)=0 k=1 c(1)=1 初始条件
二阶前向差分:
Δ2e(k)=Δ[Δe(k)]=Δ[ e(k+1) - e(k)] = Δe(k+1) - Δe(k)] = [ e(k+2) - e(k+1)] - [ e(k+1) - e(k)] = e(k+2) - 2e(k+1) +e(k)
e*(t)
▽e(k)
Δe(k)
(k-1)T kT (k+1)T t