八年级上期末模拟试卷

合集下载

2022-2023学年八年级(上)期末数学模拟试卷(三)

2022-2023学年八年级(上)期末数学模拟试卷(三)

2022-2023学年八年级(上)期末数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分。

在每小题所给的四个选项中,有且只有一项是符合题目要求的)1.(3分)下列体育运动图标中,是轴对称图形的是()A.B.C.D.2.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是()A.三角形的稳定性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短3.(3分)光刻机采用类似照片冲印的技术,把掩膜版上的精细图形通过光线的曝光印制到硅片上,是制造芯片的核心装备.ArF准分子激光是光刻机常用光源之一,其波长为0.000000193米,该光源波长用科学记数法表示为()A.193×106米B.193×10﹣9米C.1.93×10﹣7米D.1.93×10﹣9米4.(3分)如图,用直尺和圆规作一个三角形O1A1B1,使得△O1A1B1≌△OAB 的示意图,依据()定理可以判定两个三角形全等.A.SSS B.SAS C.ASA D.AAS5.(3分)下列由左边到右边的变形中,是因式分解的为()A.10x2y3=5xy2•2xy B.m2﹣n2=(m+n)(m﹣n)C.3m(R+r)=3mR+3mr D.x2﹣x﹣5=(x+2)(x﹣3)+1 6.(3分)已知一个正多边形的每个外角的度数都是60°,则该多边形的对角线条数为()A.6B.9C.12D.187.(3分)如图,AE,BE,CE分别平分∠BAC,∠ABC,∠ACB,ED⊥BC于点D,ED=3,△ABC的周长为24,则△ABC的面积为()A.18B.24C.36D.728.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80D.=9.(3分)如图,点D为△ABC的边BC上一点,且满足AD=DC,作BE⊥AD 于点E,若∠BAC=70°,∠C=40°,AB=6,则BE的长为()A.2B.3C.4D.510.(3分)下列说法:①三角形中至少有一个内角不小于60°;②三角形的重心是三角形三条中线的交点;③周长相等的两个圆是全等图形;④到三角形的三条边距离相等的点是三角形三条高的交点.其中正确说法的个数是()A.1B.2C.3D.411.(3分)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为49,小正方形的面积为4,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x2+2xy+y2=49B.x2﹣2xy+y2=4C.x2+y2=25D.x2﹣y2=1412.(3分)如图,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB =2,BC=3,则BD的长是()A.5B.7C.8D.9二、填空题(本大题共4小题,每小题4分,共16分)13.(4分)当x=时,分式的值为0.14.(4分)已知点P(4,2a﹣3)关于x轴对称的点在第一象限,则a的取值范围是.15.(4分)已知a=+2021,b=+2022,c=+2023,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值为.16.(4分)如图,△ABC中,BF是高,延长CB至点D,使BD=BA,连接AD,过点D作DE⊥AB交AB的延长线于点E,当AF=BE,∠CAD=96°时,∠C=.三、解答题(本大题共9小题,共98分。

贵州省铜仁市2023-2024学年八年级上学期期末诊断模拟语文试卷

贵州省铜仁市2023-2024学年八年级上学期期末诊断模拟语文试卷

2023-2024学年贵州铜仁第一学期期末诊断模拟八年级语文注意事项:1.本试卷全卷满分100分,120分钟内完成,闭卷。

2. 答题前填写好自己的姓名、班级、考号等信息。

3.请将答案正确填写在答题卷上,答在本试卷内无效。

4.考试结束后,将答题卷交回。

第一部分阅读(60分)一、诗歌鉴赏(8分)阅读古诗,完成下面小题。

黄鹤楼崔颢昔人已乘黄鹤去,此地空余黄鹤楼。

黄鹤一去不复返,白云千载空悠悠。

晴川历历汉阳树,芳草萋萋鹦鹉洲。

日暮乡关何处是?烟波江上使人愁。

1.诗歌颔联、颈联用精当的词语写出了景物的特点:用“悠悠”形容白云的飘荡无定,用“① ”形容汉阳树的清晰可数,用“萋萋”形容① 。

(4分)2.《藤野先生》中有这样一段文字:“我就往仙台的医学专门学校去。

从东京出发,不久便到一处驿站,写道:日暮里。

不知怎地,我到现在还记得这名目。

”有人推测鲁迅“还记得这名目”与本诗尾联抒发的情感有关,你认为这种推测合理吗?请说明你的理由。

(4分)二、课外阅读(12分)阅读古文,完成下面小题。

【甲】元丰六年十月十二日夜,解衣欲睡,月色入户,欣然起行。

念无与为乐者,遂至承天寺寻张怀民。

怀民亦未寝,相与..步于中庭。

庭下如积水空明,水中藻、荇交横,盖竹柏影也。

何夜无月?何处无竹柏?但.少闲人如吾两人者耳。

(选自苏轼《记承天寺夜游》)【乙】苏子曰:“客亦知夫水与月乎?逝者如斯,而未尝往也;盈虚①者如彼,而卒莫消②长也。

盖将自其变者而观之,则天地曾不能以一瞬;自其不变者而观之,则物与我皆无尽也,而又何羡乎?且夫天地之间,物各有主,苟非吾之所有,虽一毫而莫取。

惟江上之.清风,与山间之明月,耳得之而为声,目遇之而成色,取之无禁,用之不竭,是造物者③之无尽藏也,而吾与子之所共适。

”(节选自苏轼《前赤壁赋》)【注释】①盈虚:盈,指月圆;虚,指月缺。

①消:消失。

①造物者:自然界,原意指“天”。

3.下列加点的词语解释有误的一项是()(2分)A.念.无与为乐者念:考虑,想到。

2023-2024八年级物理期末模拟卷01(考试版A4)(人教版)

2023-2024八年级物理期末模拟卷01(考试版A4)(人教版)

2023-2024学年八年级物理上学期期末模拟考试卷01(人教版)(考试版A4)(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.答题时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版八年级上册。

5.考试结束后,将本试卷和答题卡一并交回。

一、选择题(12个小题,1-10题是单选题,每题2分。

11-12是多选题,每题3分,选对少选得2分,选错不得分。

共26分)1. 下列数据最接近实际情况的是()。

A. 适宜洗澡的水温约为60℃B. 一瓶矿泉水的质量约为50gC. 人心脏正常跳动一次的时间约为5sD. 初中生所坐凳子的高度约为40cm2.关于错误和误差,下列说法中正确的是()。

A.错误是不可避免的;B.通过多次测量取平均值可以减小误差;C.误差是由不规范的操作造成的;D.错误是由于测量工具不够精密造成的3.如图所示,用悬挂着的乒乓球接触正在发声的音叉,乒乓球会多次被弹开。

这个实验是探究()。

A.响度是否与振幅有关B.音调是否与频率有关C.声音的传播是否需要介质D.声音产生的原因4.关于声现象的描述,下列说法正确的是()。

A.禁鸣喇叭是在传播过程中减弱噪声;B.将发声的音叉触及面颊可以探究声音产生的原因;C.“闻其声而知其人”主要是根据声音的响度来判断的;D.超声波能粉碎人体内的“结石”说明声波可以传递信息5.下列各图所举的事例中,利用了相对运动原理的是()。

A.联合收割机和运输车 B.歼﹣10空中加油C.大飞机风洞实验 D.接力赛交接棒6.甲、乙两名同学进行百米赛跑,把他俩的运动近似看作匀速直线运动。

他俩同时从起跑线起跑,经过一段时间后,他们的位置如图所示。

则关于他俩在这段时间内运动的路程s、速度v和时间t,下列的关系图象中正确的是()。

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年人教版八年级数学上册期末模拟测试题含答案

2022-2023学年八年级上册期末数学模拟试卷一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±15.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm6.(3分)下列各式中,正确的是()A.B.C.D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x210.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或711.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a212.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为.14.(3分)计算:=.15.(3分)分解因式:3a3﹣12a=.16.(3分)若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为.17.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 .18.(3分)约分:=.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = °.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 .三、解答题:(本题共14分,第21题9分,第22题5分) 21.(9分)(1)因式分解:3m 2﹣24m +48. (2)计算:. (3)解关于x 的方程:.22.(5分)已知,y =﹣2,求代数式(x +2y )2﹣(x ﹣2y )(x +2y )的值.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F 、C 在BE 上,BF =CE ,AB =DE ,∠B =∠E .求证:∠A =∠D .24.(5分)列方程解应用题2014年11月,APEC (“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC 会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC 会议期间这路公交车每天运行多少车次? 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.(5分)已知:如图,△ABC ,射线AM 平分∠BAC .(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG . (2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 ; (2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1= ,x 2= ;(3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D为边BC上一点,并且CD=CA,x=40,y=30时,则AB AC(填“=”或“≠”);(2)如果把(1)中的条件“CD=CA”变为“CD=AB”,且x,y的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.2022-2023学年八年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.1.(3分)如图所示的汽车标志中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,不合题意,故本选项错误;C、轴对称图形,不合题意,故本选项错误;D、轴对称图形,不合题意,故本选项错误;故选:A.2.(3分)下列运算中正确的是()A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选:C.3.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是()A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.4.(3分)若分式的值为0,则x的值为()A.0B.1C.﹣1D.±1【解答】解:∵分式的值为0,∴x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故选:C.5.(3分)如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为()A.7cm B.10cm C.12cm D.22cm【解答】解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=5cm,△ADC的周长为17cm,∴AD+CD=BC=17﹣5=12(cm).故选:C.6.(3分)下列各式中,正确的是()A.B.C.D.【解答】解:A分母中的a没除以b,故A错误;B异分母分式不能直接相加,故B错误;C分式的分子分母没同乘或除以同一个不为零整式,故C错误;D分式的分子分母都乘以(a﹣2),故D正确;故选:D.7.(3分)某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,如果设原计划平均每天植树x棵,那么下面所列方程中,正确的是()A.B.C.D.【解答】解:设原计划平均每天植树棵x棵,现在每天植树(x+50)棵,依题意得,=.故选:B.8.(3分)如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.24°B.25°C.30°D.35°【解答】解:∵∠A=60°,∴∠AEF+∠AFE=180°﹣60°=120°,∴∠FEB+∠EFC=360°﹣120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°﹣120°=120°,∵∠1=95°,∴∠2=120°﹣95°=25°,故选:B.9.(3分)在下列各式的计算中,正确的是()A.a2+a3=a5B.2a(a+1)=2a2+2aC.(ab3)2=a2b5D.(y﹣2x)(y+2x)=y2﹣2x2【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、(ab3)2=a2b6,故选项错误;D、(y﹣2x)(y+2x)=y2﹣4x2,故选项错误.故选:B.10.(3分)已知等腰三角形的两边长分别为7和3,则第三边的长是()A.7B.4C.3D.3或7【解答】解:①7是腰长时,三角形的三边分别为7、7、3,能组成三角形,所以,第三边为7;②7是底边时,三角形的三边分别为3、3、7,∵3+3=6<7,∴不能组成三角形,综上所述,第三边为7.故选:A.11.(3分)化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【解答】解:==﹣ab.故选:B.12.(3分)当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2014【解答】解:因为+=+=0,即当x分别取值,n(n为正整数)时,计算所得的代数式的值之和为0;而当x=0时,==﹣1.因此,当x分别取﹣2014、﹣2013、﹣2012、….﹣2、﹣1、0、1、、、…、、、时,计算分式的值,再将所得结果相加和﹣1,故选:A.二、填空题:(本题共24分,每小题3分)13.(3分)如果分式的值为0,那么x的值为3.【解答】解:x﹣3=0,且x+2≠0,x=3,故答案为:3. 14.(3分)计算:= ﹣1.【解答】解:==﹣1.故答案为:﹣1.15.(3分)分解因式:3a 3﹣12a = 3a (a +2)(a ﹣2) . 【解答】解:3a 3﹣12a =3a (a 2﹣4), =3a (a +2)(a ﹣2).故答案为:3a (a +2)(a ﹣2).16.(3分)若关于x 的二次三项式x 2+kx +b 因式分解为(x ﹣1)(x ﹣3),则k +b 的值为 ﹣1 . 【解答】解:由题意得:x 2+kx +b =(x ﹣1)(x ﹣3)=x 2﹣4x +3, ∴k =﹣4,b =3, 则k +b =﹣4+3=﹣1. 故答案为:﹣117.(3分)如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为 70° .【解答】解:根据三角形内角和可得∠2=180°﹣50°﹣60°=70°, 因为两个全等三角形, 所以∠1=∠2=70°, 故答案为:70°.18.(3分)约分:=. 【解答】解:原式==.故答案为.19.(3分)如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若∠DEF =37°,PB =PF ,则∠APF = 74 °.【解答】解:∵△ABC ≌△DEF , ∴∠E =∠B =37°, ∵PB =PF ,∴∠PFB =∠B =37°, ∴∠APF =37°+37°=74°, 故答案为:74.20.(3分)如图,图中的方格均是边长为1的正方形,每一个正方形的顶点都称为格点.图①~⑥这些多边形的顶点都在格点上,且其内部没有格点,象这样的多边形我们称为“内空格点多边形”. (1)当内空格点多边形边上的格点数为10时,此多边形的面积为 4 ;(2)设内空格点多边形边上的格点数为L ,面积为S ,请写出用L 表示S 的关系式 S =L ﹣1 .【解答】解:(1)由图形可知当内空格点多边形边上的格点数为10时,此多边形的面积=4个小正方形的面积=4×1=4,(2)当格点为3时,内空格点三边形的面积为=×3﹣1;当格点为4时,内空格点四边形的面积为1=×4﹣1; 当格点为5时,内空格点五边形的面积为=×5﹣1; …依此类推,当内空格点多边形边上的格点数为L ,面积为S =L ﹣1,故答案为:4;S=L﹣1.三、解答题:(本题共14分,第21题9分,第22题5分)21.(9分)(1)因式分解:3m2﹣24m+48.(2)计算:.(3)解关于x的方程:.【解答】解:(1)3m2﹣24m+48,=3(m2﹣8m+16),=3(m﹣4)2;(2)÷•,=••,=;(3)=1+,方程两边都乘(x﹣1)(x+3),得x(x﹣1)=(x﹣1)(x+3)+2(x+3),解得:x=﹣,检验,当x=﹣时,(x﹣1)(x+3)≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣.22.(5分)已知,y=﹣2,求代数式(x+2y)2﹣(x﹣2y)(x+2y)的值.【解答】解:原式=x2+4xy+4y2﹣(x2﹣4y2)=x2+4xy+4y2﹣x2+4y2=4xy+8y2,当x=,y=﹣2时,原式=4××(﹣2)+8×(﹣2)2=﹣4+32=28.四、解答题:(本题共9分,第23题4分,第24题5分)23.(4分)如图,点F、C在BE上,BF=CE,AB=DE,∠B=∠E.求证:∠A=∠D.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴∠A=∠D.24.(5分)列方程解应用题2014年11月,APEC(“亚太经济合作组织”的简称)会议在中国北京成功召开.会议期间为方便市民出行,某路公交车每天比原来的运行增加30车次.经调研得知,原来这路公交车平均每天共运送乘客5600人,APEC会议期间这路公交车平均每天共运送乘客8000人,且平均每车次运送乘客与原来的数量基本相同,问APEC会议期间这路公交车每天运行多少车次?【解答】解:设APEC会议期间这路公交车每天运行x车次,则原来的运行为(x﹣30)车次,由题意得,=,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:APEC会议期间这路公交车每天运行100车次.五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分)25.(5分)已知:如图,△ABC,射线AM平分∠BAC.(1)尺规作图(不写作法,保留作图痕迹)作BC的中垂线,与AM相交于点G,连接BG、CG.(2)在(1)的条件下,∠BAC和∠BGC的等量关系为互补,证明你的结论.【解答】解:(1)如图1;(2)互补.证明:作GD ⊥AB ,GK ⊥AC , ∵AG 为∠BAC 的平分线, ∴GD =GK ,∵EF 为BC 的垂直平分线, ∴GB =GC ,在△GBD 与△GCK 中,,∴△GBD ≌△GCK (HL ), ∴∠BGC =∠DGK , ∵∠DGK +∠BAC =180°, ∴∠BGC +∠BAC =180°, ∴∠BAC 和∠BGC 互补. 故答案为:互补.26.(6分)阅读:对于两个不等的非零实数a 、b ,若分式的值为零,则x =a 或x =b .又因为==x +﹣(a +b ),所以关于x 的方程x +=a +b 有两个解,分别为x 1=a ,x 2=b .应用上面的结论解答下列问题:(1)方程x +=6的两个解中较大的一个为 4 ;(2)关于x 的方程x +=的两个解分别为x 1、x 2(x 1<x 2),若x 1与x 2互为倒数,则x 1=,x 2= 2 ; (3)关于x 的方程2x +=2n +3的两个解分别为x 1、x 2(x 1<x 2),求的值.【解答】解:(1)方程x +=6变形得:x +=2+4,根据题意得:x 1=2,x 2=4, 则方程较大的一个解为4;(2)方程变形得:x +=+2,由题中的结论得:方程有一根为2,另一根为, 则x 1=,x 2=2;故答案为:(1)4;(2);2(3)方程整理得:2x ﹣1+=n ﹣1+n +3,得2x ﹣1=n ﹣1或2x ﹣1=n +3,可得x 1=,x 2=,则原式==.27.(6分)在△ABC 中,已知D 为直线BC 上一点,若∠ABC =x °,∠BAD =y °.(1)当D 为边BC 上一点,并且CD =CA ,x =40,y =30时,则AB = AC (填“=”或“≠”); (2)如果把(1)中的条件“CD =CA ”变为“CD =AB ”,且x ,y 的取值不变,那么(1)中的结论是否仍成立?若成立请写出证明过程,若不成立请说明理由.【解答】解:(1)∵CD =CA ,∠ABC =x °=40°,∠BAD =y °=30°,∴∠ADC=∠ABC+∠BAD=70°,∵CD=CA,∴∠CAD=∠CDA=70°,∴∠C=40°,∴∠C=∠ABC,∴AB=AC;故答案为:=;(2)成立.理由:在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°﹣40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°﹣70°=110°,∵BD=BE﹣DE,CE=CD﹣DE,∴BD=EC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴AB=AC.∴AB=AC=CD,由(1)可知,3x+2y=180.。

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)

2022-2023学年八年级(上)期末数学模拟试卷(一)一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9 3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8 5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.76.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为.12.(4分)分解因式:3y2﹣12=.13.(4分)计算:=.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).16.(4分)如图,Rt△ABC中,∠ABC=90°,AB=6,BC=8,BD为△ABC 的角平分线,则点D到边AB的距离为.17.(4分)对于两个不相等的实数a,b,我们规定符号Min{a,b}表示a,b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min(其中x≠0)的解为.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.20.(6分)先化简再求值:,其中x=1.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是.22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.2022-2023学年八年级(上)期末数学模拟试卷(一)参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾管理,维护公共环境和节约资源是全社会共同的责任.下列四个垃圾分类标识中的图形是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.2.(3分)下列长度的三条线段(单位:cm),能组成三角形的是()A.4,5,9B.8,8,15C.5,5,11D.3,6,9【解答】解:A、4+5=9,不能构成三角形;B、8+8>15,能构成三角形;C、5+5<11,不能够组成三角形;D、3+6=9,不能构成三角形.故选:B.3.(3分)下列运算正确的是()A.(m+1)(m﹣1)=m2﹣1B.(﹣3a2)2=6a4C.a2⋅a3=a6D.【解答】解:(m+1)(m﹣1)=m2﹣1,故选项A正确;(﹣3a2)2=9a4,故选项B错误;a2⋅a3=a5,故选项C错误;2ab•(﹣ab)=﹣a2b2,故选项D错误;故选:A.4.(3分)华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣8C.0.7×10﹣9D.0.7×10﹣8【解答】解:数0.00 000 0007用科学记数法表示为7×10﹣9.故选:A.5.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.6.(3分)如图,已知AB=AC,添加下列条件仍不能使△ABD≌△ACD的是()A.∠B=∠C=90°B.AD平分∠BAC C.AD平分∠BDCD.BD=CD【解答】解:A、符合HL定理,能推出△ABD≌△ACD,故本选项错误;B、符合SAS定理,能推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;D、符合SSS定理,能推出△ABD≌△ACD,故本选项错误;故选:C.7.(3分)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.8.(3分)如图,把一张长方形纸片沿对角线BD折叠,∠CBD=25°,则∠ABF 的度数是()A.25°B.30°C.40°D.50°【解答】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°.∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°﹣∠EBC=40°.故选:C.9.(3分)在△ABC中,AC<BC,用尺规作图的方法在BC上确定一点D,使AD+CD=BC.根据作图痕迹判断,符合要求的是()A.B.C.D.【解答】解:A、BD=BA,不能得到AD+CD=BC,所以A选项错误;B、DA=DC,AD+CD=2CD,所以B选项错误;C、CD=CA,不能得到AD+CD=BC,所以C选项错误;D、BD=AD,则AD+CD=BD+CD=BC,所以D选项正确.故选:D.10.(3分)如图,在△ABC中,∠ACB=90°,AC>BC,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画()A.9个B.7个C.6个D.5个【解答】解:如图:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE 就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,交AB 于H,△BCF,△BCH就是等腰三角形;④分别作AB,BC,AC的垂直平分线,也可以得到三个分别以AB,BC,AC为底的等腰三角形.所以一共有1+1+2+3=7(个)三角形.故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.14题图11.(4分)要使分式有意义,则x的取值范围为x≠﹣2.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣212.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)计算:=4.【解答】解:原式=3+1=4,故答案为:4.14.(4分)如图是两个边长分别为2a,a的正方形,则△ABC的面积是.【解答】解:∵两个正方形的边长分别为2a,a,∴△ABC的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.15.(4分)全国最长、珠海最美的板障山慢行隧道自开通以来迅速成为网红打卡点,隧道全长约为1200米,小海慢跑的速度是a米/秒(a>0),小东骑车的速度是小海慢跑速度的3倍,两人匀速通过隧道,那么小海花的时间比小东花的时间多秒(用含字母a的式子表示).【解答】解:小海慢跑的速度是a米/秒(a>0),则小东骑车的速度是3a米/秒,小海花的时间比小东花的时间多:﹣==(秒); 故答案为:. 16.(4分)如图,Rt △ABC 中,∠ABC =90°,AB =6,BC =8,BD 为△ABC 的角平分线,则点D 到边AB 的距离为 .【解答】解:过D 作DE ⊥AB 于E ,DF ⊥BC 于F ,∵BD 为△ABC 的角平分线,∴DE =DF ,设DE =DF =R ,∵∠ABC =90°,AB =6,BC =8,∴S △ABC ===24, ∴S △ABD +S △DBC =24,∵AB =6,BC =8,∴R +=24, 解得:R =,即DF =,∴点D 到边AB 的距离是, 故答案为:.17.(4分)对于两个不相等的实数a ,b ,我们规定符号Min {a ,b }表示a ,b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min(其中x ≠0)的解为 4 .【解答】解:(1)x>0时,∵Min(其中x≠0),∴﹣=﹣1,∴=1,解得:x=4.(2)x<0时,∵Min(其中x≠0),∴=﹣1,∴=1,解得:x=2,∵2>0,∴x=2不符合题意.综上,可得:方程Min(其中x≠0)的解为4.故答案为:4.三.解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)化简:2x(x﹣3y)+(5xy2﹣2x2y)÷y.【解答】解:原式=2x2﹣6xy+5xy﹣2x2=﹣xy.19.(6分)如图,在△ABC中,AN是∠BAC的角平分线,∠B=50°,∠ANC =80°.求∠C的度数.【解答】解:∵∠ANC=∠B+∠BAN,∴∠BAN=∠ANC﹣∠B=80°﹣50°=30°,∵AN是∠BAC角平分线,∴∠BAC=2∠BAN=60°,在△ABC中,∠C=180°﹣∠B﹣∠BAC=70°.20.(6分)先化简再求值:,其中x=1.【解答】解:原式=(﹣)×=×=,当x=1时,原式==﹣.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)在图中画出△ABC关于y轴对称的图形△A1B1C1,并写出点A1的坐标;(2)求△ABC的面积;(3)在x轴上有一点P使得P A+PB的值最小,则点P的坐标是(2,0).【解答】解:(1)如图所示,△A1B1C1即为所求,点A1(﹣1,1).(2)S=3×3﹣×1×2﹣×1×3﹣×2×3=.△ABC(3)如图,点P即为所求作,P(2,0).22.(8分)为了帮助湖北省武汉市防控新冠肺炎,某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物资共2000件送往灾区,已知每件甲种物资的价格比每件乙种物资的价格贵10元,用350元购买甲种物资的件数恰好与用300元购买乙种物资的件数相同.(1)求甲、乙两种救灾物资每件的价格各是多少元?(2)经调查,灾区对甲种物资的需求量不少于乙种物资的1.5倍,该爱心组织共需要购买2000件物资,请问乙种物资最多能购买多少件?【解答】解(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=60+10=70,答:甲、乙两种救灾物资每件的价格分别为70元、60元;(2)设购买乙种物品件数为m件,根据题意得:2000﹣m≥1.5m,解得:m≤800,∴乙种物资最多能购买800件.答:乙种物资最多能购买800件.23.(8分)如图,△ABC,△ADE均是等边三角形,点B,D,E三点共线,连接CD,CE,且CD⊥BE.(1)求证:BD=CE;(2)若线段DE=3,求线段BD的长.【解答】证明:(1)∵△ABC、△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;(2)∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠ADB=120°,∵△ABD≌△ACE,∴∠AEC=∠ADB=120°,∴∠CED=∠AEC﹣∠AED=60°,∵CD⊥BE,∴∠CDE=90°,∴∠DCE=30°,∴BD=CE=2DE=6.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=﹣1,n=﹣6;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.【解答】解:(1)将a=﹣3,b=2代入(x+a)(x+b)得:(x+a)(x+b)=(x﹣3)(x+2)=x2﹣x﹣6=x2+mx+n,∴m=﹣1,n=﹣6.故答案为:﹣1,﹣6.(2)∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n.∴,∴+====﹣4.(3)∵a+b=m,ab=n=﹣1,,∴,∴,∴,∴m2﹣2×(﹣1)+4m+2=0,∴m2+4m+4=0,∴(m+2)2=0,∴m=﹣2.25.(10分)如图,在平面直角坐标系中,△ABC的顶点A在y轴上,顶点C 在x轴上,∠BAC=90°,AB=AC,点E为边AC上一点,连接BE交y轴于点F,交x轴于点G,作CD⊥BE交BE延长线于点D,且CD=BF,连接AD,CF.(1)求证:△ABF≌△ACD;(2)若∠ACF=2∠CBF,求证:∠ACO=∠FCO;(3)在(2)的条件下,若点A的坐标为(0,2),求OC的长.【解答】解(1)证明:∵CD⊥BE,∴∠CDE=∠BAC=90°,∵∠CED=∠AEB,∴∠DCE=∠ABF,在△ABF和△ACD中,,∴△ABF≌△ACD(SAS);(2)∵△ABF≌△ACD,∴AF=AD,∠BAF=∠CAD,∴∠BAC=∠F AD=90°,∴∠ADF=45°,∵∠ACB=∠ADB=45°,∠AED=∠BEC,∴∠DAE=∠CBE,∵∠DAF=∠COF=90°,∴AD∥OC,∴∠DAE=∠ACO,∴∠CBE=∠ACO,∵∠ACF=2∠CBF,∴∠ACF=2∠ACO,∴∠FCO=∠ACO.(3)过点D作DH⊥OC交OC于点H,∵∠AOC=∠COF=90°,∠ACO=∠FCO,∴∠OAC=∠OFC,∴AC=CF,∵CA=CF,CO⊥AF,∴OA=OF=2,∴AD=AF=4,∵AD∥OC,∴AO=DH=2,∵DH⊥OC,∠DCG=45°,∴DH=HC=2,∴OC=OH+HC=6.。

2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)及答案解析.

2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)及答案解析.

2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)一、选择题:(本大题12个小题,每小题4分,共48分),在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的字母填在答题卡上所对应题号下面的表格内.1.(4分)下列计算正确的是()A.(x2)3=x5B.x6+x6=x12C.x2•x3=x5D.(2x)2=2x22.(4分)下列分式的值,可以为零的是()A.B.C.D.3.(4分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.ax+bx+c=x(a+b)+c D.y2﹣1=(y+1)(y﹣1)4.(4分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=3,b=4,c=55.(4分)若则ab的立方根为()A.4B.2C.﹣2D.86.(4分)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间7.(4分)如图,在Rt△ABC中,∠A=90°,点D是AB上一点,且BD=CD=6,∠DBC=15°,则△BCD的面积为()A.9B.12C.18D.68.(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.9.(4分)如图,在一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC折叠,使点B与点A重合,折痕为DE,则CD长为()A.B.C.D.10.(4分)多项式a2﹣2ab+2b2﹣6b+27的最小值为()A.18B.9C.27D.3011.(4分)若关于x的分式方程的解为正整数,且关于x的不等式组有解且最多有6个整数解,则满足条件的所有整数a的值之和是()A.4B.0C.﹣1D.﹣312.(4分)有依次排列的两个整式A=x﹣1,B=x+1,用后一个整式B与前一个整式A作差后得到新的整式记为C1,用整式C1与前一个整式B求和操作得到新的整式C2,用整式C2与前一个整式C1作差后得到新的整式C3,用整式C3与前一个整式C2求和操作得到新的整式C4,……,依次进行作差、求和的交替操作得到新的整式.下列说法:①整式C3=x+1;②整式C5=x+3;③整式C2、整式C5和整式C8相同;④.正确的个数是()A.1B.2C.3D.4二、填空:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡对应的横线上.13.(4分)近几年我国芯片产业出现被卡脖子的情况,其实中国半导体的芯片设计能力已经很强,主要问题和难点在制造环节.目前我国只能做到0.000000014米的制程,用科学记数法将0.000000014可表示为.14.(4分)(﹣0.25)2021×(﹣4)2020的结果是.15.(4分)若二次根式有意义,则x的取值范围是.16.(4分)如图,若实数a,b,c在数轴上的对应点如图所示,则化简=.17.(4分)若关于x的方程有增根,则2k+1=;18.(4分)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是.19.(4分)如图,矩形ABCD中,AD=8,AB=6,将矩形ABCD绕点D顺时针旋转得到矩形EFGD,边BC与DE交于点P,延长BC交FG于点Q,若BQ=2BP,则BP的长为.20.(4分)若一个各位数字均不为0的四位数M=(1≤c≤a≤9,1≤b,d≤9,a,b,c,d为整数)满足:把M的千位数字作为十位数字,M的十位数字作为个位数字组成的两位数与5的和记作X,M的千位数字与个位数字的2倍的和记作Y,如果X的各位数字之和与(Y﹣1)的和是一个正整数K 的平方,则称这个四位数为“赓续数”,正整数K称“赓续元素”:当c=1,d=9时,最小“赓续数”为;若“赓续数”M满足前两位数字之和a+b与后两位数字之和c+d相等,且为整数,则满足条件的最大M为.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.(6分)计算:(1);(2).22.(8分)如图,在四边形ABCD中,∠A=∠C=90°,DE平分∠ADC,交BC于点E.(1)用直尺和圆规作∠ABC的角平分线,交AD于点F;(保留作图痕迹)(2)求证:BF∥DE.证明:∵∠A+∠ABC+∠C+∠ADC=360°,且∠A=∠C=90°,∴∠ABC+∠ADC=°,∴∠ABC+∠ADC=90°.∵BF平分∠ABC,DE平分∠ADC,∴∠ABF=∠ABC,∠1=,∴+∠1=90°.∵∠A=90°,∴∠ABF+∠AFB=90°,∴∠1=,∴BF∥DE.23.(8分)先化简,再求值:÷(1+)﹣,其中x是不等式组的整数解.24.(8分)如图,已知四边形ABCD是边长为4的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点E.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.25.(8分)重庆某社区去年购买了A、B两种型号的共享单车,购买A种单车共花费15000元,购买B种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.(1)求去年购买一辆A种和一辆B种单车各需要多少元?(2)为积极响应政府提出的“绿色发展•低碳出行”号召,该社区决定今年再买A、B两种型号的单车共60辆,恰逢厂家对A、B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B 种单车售价比去年购买时降低了10%,如果今年购买A、B两种单车的总费用不低于33800不超过34000元,那么该社区今年有几种购买A、B种单车的方案?请具体列出.26.(10分)为实现“绿水青山就是金山银山”的理念,重庆市建了多个湿地公园.如图,某区湿地公园有一个湖泊,沿湖修建了四边形ABCD人行步道,经测量,点B在点A的正东方向.点D在点A的正北方向,AD=200米.点C在点B的北偏东45°,在点D的北偏东60°方向,CD=800米.(1)求步道BC的长度(精确到个位);(2)小王每天步行上学都要从点A到点C.他可以从点A经过点B到点C,也可以从点A经过点D到点C.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)27.(10分)如图,平行四边形ABCD,AB=CD=9,AD=BC=5(AB∥CD,AD∥BC),CE⊥AB于E,并且BE=3.(1)如图1所示在平面直角坐标系中,求出点C、D的坐标.(请写出过程)(2)如图2所示直线PQ是第二、四象限的角平分线,M是直线PQ上一个动点,N为x轴上一点,问平面内是否存在K点,使得以K、M、N、B为顶点构成正方形,若没有请说明理由;若有,直接写成K点的坐标.与BD交于点E.(2)如图2,若∠CAB=45°,延长DA至点F,连接CF交BD于点H,若点H为CF的中点,证明:DH=AF;(3)如图3,若∠CAB=60°,AB=2,将△ADB绕点A逆时针旋转得到△AMN,连接CN,取CN的中点G,连接BG.在△AMN旋转过程中,当BG﹣CN最大时,直接写出△ANC的面积.2023-2024学年重庆市渝中区巴蜀中学八年级(上)期末数学模拟试卷(二)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分),在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的字母填在答题卡上所对应题号下面的表格内.1.【分析】根据幂的乘方法则:底数不变,指数相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:A、(x2)3=x6,故原题计算错误;B、x6+x6=2x6,故原题计算错误;C、x2•x3=x5,故原题计算正确;D、(2x)2=4x2,故原题计算错误;故选:C.【点评】此题主要考查了幂的乘方、积的乘方、合并同类项、同底数幂的乘法,关键是掌握各计算法则,不能混淆.2.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:A、分式的值不能为零,故A错误;B、x=﹣1时,分式无意义,故B错误;C、x=﹣1时,分式无意义,故C错误;D、x=﹣1时,分式的值为零,故D正确;故选:D.【点评】本题考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.【分析】直接利用把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而分析得出答案.【解答】解:A、x(a﹣b)=ax﹣bx,是整式乘法,故此选项错误;B、x2﹣1+y2=(x﹣1)(x+1)+y2,不是因式分解,故此选项错误;C、ax+bx+c=x(a+b)+c,不是因式分解,故此选项错误;D、y2﹣1=(y+1)(y﹣1),是因式分解,故此选项正确.故选:D.【点评】此题主要考查了因式分解的意义,正确把握定义是解题关键.4.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.【分析】根据绝对值及二次根式的非负性得出a﹣2=0及b+4=0,求出a,b的值,再根据立方根的定义即可解决问题.【解答】解:因为,且|a﹣2|≥0,,所以a﹣2=0,b+4=0,解得a=2,b=﹣4,所以ab=﹣8,则ab的立方根为﹣2.故选:C.【点评】本题主要考查了立方根、非负数的性质:绝对值及非负数的性质:算式平方根,熟知绝对值、二次根式的非负性及立方根的定义是解题的关键.6.【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选:C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.【分析】根据等边对等角结合三角形的外角,求出∠ADC=30°,进而求出AC的长,利用三角形的面积公式求出△BCD的面积即可.【解答】解:∵BD=CD=6,∠DBC=15°,∴∠DCB=∠B=15°,∴∠ADC=∠B+∠BCD=30°,∵∠A=90°,∴,∴△BCD的面积为;故选A.【点评】本题考查等边对等角,三角形的外角,含30度角的直角三角形,三角形的面积,灵活运用这些性质解决问题是解题的关键.8.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE=cm,故选:D.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种计算方法,及菱形的对角线互相垂直且平分.9.【分析】由翻折易得DB=AD,在直角三角形ACD中,利用勾股定理即可求得CD长.【解答】解:由题意得DB=AD;设CD=x,则AD=DB=(8﹣x),∵∠C=90°,∴AD2﹣CD2=AC2(8﹣x)2﹣x2=36,解得x=;即CD=.故选:A.【点评】本题主要考查了折叠问题和勾股定理的综合运用.本题中得到BD=AD是关键.10.【分析】将原式利用完全平方公式变形后,根据偶次幂的非负性即可求得答案.【解答】解:a2﹣2ab+2b2﹣6b+27=a2﹣2ab+b2+b2﹣6b+9+18=(a2﹣2ab+b2)+(b2﹣6b+9)+18=(a﹣b)2+(b﹣3)2+18∵(a﹣b)2≥0,(b﹣3)2≥0,∴(a﹣b)2+(b﹣3)2+18≥18,即原式的最小值为18,故选:A.【点评】本题考查代数式求值,结合已知条件将原式变形整理得(a﹣b)2+(b﹣3)2+18是解题的关键.11.【分析】依据关于x的分式方程的解为正整数,即可得到a的值,再根据关于x的不等式组有解且最多有6个整数解,即可得到a的取值范围,即可得出满足条件的所有整数a的值之和.【解答】解:由分式方程,去分母可得(3+a)x=8,当a≠﹣3时,x=,∵该分式方程的解为正整数,且x≠2,∴a=﹣2,﹣1或5,解不等式组,可得,又∵该不等式组有解且最多有6个整数解,∴﹣2<a<5,∴a的值为﹣1,∴满足条件的所有整数a的值之和是﹣1,故选:C.【点评】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的能力,并根据题意得到关于a的范围是解题的关键.12.【分析】根据依次进行作差、求和的交替操作可判断即可①②③,根据C2=C5.C4=C7,C6=C9,⋯C2020=C2023,C2024=C2023+C2022进而得出,C2021+2C2023=C2022+C2023即可判定④.【解答】解:由题意依次计算可得:C1=(x+1)﹣(x﹣1)=2,C2=2+(x+1)=x+3,C3=x+1,C4=2x+4,C5=x+3,C6=3x+7,C7=2x+4,C8=5x+11,C9=3x+1,⋯,根据6个一循环的规律可得:C2021=x+3,C2023=2,C2024=x+3,因此,所以①、②、④正确,故选:C.【点评】本题考查整式的加减,正确理解题意和熟练进行整式的运算是关键.二、填空:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡对应的横线上.13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.【解答】解:0.000000014=1.4×10﹣8.故答案为:1.4×10﹣8.【点评】本题考查用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,n可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.14.【分析】先将(﹣0.25)2021化成(﹣0.25)2020×(﹣0.25)再逆用积的乘方运算法则计算即可.【解答】解:(﹣0.25)2021×(﹣4)2020=(﹣0.25)2020×(﹣0.25)×(﹣4)2020=[﹣0.25×(﹣4)]2020×(﹣0.25)=﹣0.25,故答案为:﹣0.25.【点评】本题考查同底数幂的乘法逆用,以及积的乘方运算的逆用,逆用积的乘方运算法则是解题的关键.15.【分析】根据二次根式的被开方数为非负数、分式的分母不等于零,得出x﹣3≥0,4﹣x>0,计算即可得出答案.【解答】解:∵二次根式有意义,∴x﹣3≥0,4﹣x>0,解得:3≤x<4,故答案为:3≤x<4.【点评】本题考查了二次根式有意义的条件、分式有意义的条件,熟练掌握二次根式被开方数不小于零的条件和分母不为零的条件是解题的关键.16.【分析】由数轴可知:a<b<0<c,|a|>|b|>|c|,然后根据绝对值的性质和二次根式的性质化简即可.【解答】解:由图可知:a<b<0<c,|a|>|b|>|c|,∴a﹣b<0,a+b﹣c<0,∴=﹣b﹣(b﹣a)﹣(c﹣a﹣b)=﹣b﹣b+a﹣c+a+b=2a﹣b﹣c,故答案为:2a﹣b﹣c.【点评】本题主要考查了二次根式和绝对值的性质,解题关键是熟练掌握绝对值和二次根式的性质,注意利用数形结合的数学思想解决问题.17.【分析】先确定增根,再将分式方程化成整式方程,然后再将增根代入求得k的值,然后代入2k+1求解即可.【解答】解:由方程的增根为x=3,,给方程两边都乘(x﹣3),得k+2(x﹣3)=4﹣x,∵原方程的增根x=3,∴k+2(3﹣3)=4﹣3,解得:k=1,∴2k+1=2×1+1=3.故答案为:3.【点评】本题主要考查了分式方程的增根问题,解决增根问题的步骤如下:①让最简公分母为0,确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为6和8,可求得OA=OD=5,△AOD的=S△AOP+S△DOP=OA•PE+OD•PF求得答案.面积,然后由S△AOD【解答】解:连接OP,过点P作PE⊥AC于E,作PF⊥BD于F,∵矩形的两条边AB、BC的长分别为6和8,=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴S矩形ABCD∴OA=OD=5,=S矩形ABCD=24,∴S△ACD=S△ACD=12,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,∵S△AOD解得:PE+PF=,故答案为【点评】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法以及掌握整体数学思想的运用是解题的关键.19.【分析】作PH⊥FG于点H,设PC=x,则BP=8﹣x,通过HL可证明Rt△CDQ≌Rt△GDQ,得QG =CQ=8﹣2x,再通过AAS证明△PHQ≌△DCP,得PC=HQ=x,则PD=8﹣x,在Rt△PCD中,利用勾股定理列出方程即可解决问题.【解答】解:作PH⊥FG于点H,连接DQ,则PH=EF=AB=6,EP=FH,设PC=x,则BP=8﹣x,∵BQ=2BP,∴P为BQ的中点,∴CQ=PQ﹣PC=8﹣x﹣x=8﹣2x,在Rt△CDQ和Rt△GDQ中,,∴Rt△CDQ≌Rt△GDQ(HL),∴QG=CQ=8﹣2x,∴FQ=2x,∵FG∥ED,∴∠FQP=∠CPD,在△PHQ和△DCP中,,∴△PHQ≌△DCP(AAS),∴PC=HQ=x,∴EP=FH=x,∴PD=8﹣x,在Rt△PCD中,由勾股定理得:即(8﹣x)2=x2+62,解得:x=,∴BP=PQ=8﹣x=,故答案为:.【点评】本题主要考查了矩形的性质,旋转的性质,全等三角形的判定与性质,勾股定理等知识,运用勾股定理列方程是解题的关键.20.【分析】根据题意得出a,b的值,由此可得出答案.由于1≤c≤a≤9,1≤b,d≤9,a,b,c,d为整数,根据为整数,得出a=8,b=1,c=2,d=7,即可得出答案.【解答】解:∵M=,当c=1,d=9时,该四位数X=10a+1+5=10a+6,Y=a+2×9=a+18,∵a,b,c,d≥1,当a=1时,X=11+5=16,各位数字和为7,Y=1+18=19,Y﹣1=1017,K=52,∴最小的赓续数为1119.∵a+b=c+d,=为整数,∴11a与2b的和为9的倍数,∵M是“赓续数”,1≤c≤a≤9,1≤b,d≤9,a,b,c,d为整数,∴最大时,11a=88,b=1,c=2,d=7,∴a=8,∴M为8127.故答案为:1119,8127.【点评】本题主要考查对于因式分解的应用,将题目中的已知条件运用到等式中,理解题意十分重要.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.21.【分析】(1)先把括号内的1写成分母是a+3的分式,再按照同分母的分式相减法则进行计算,然后将除法转化为乘法,进行约分即可化简;(2)根据二次根式的乘法法则计算,最后进行化简合并即可得出答案.【解答】解:(1)====;(2)===.【点评】本题考查了分式和二次根式的混合运算,解此题的关键是熟练掌握分式的通分与约分和二次根式的乘法法则.22.【分析】(1)利用基本作图作∠ABC的平分线即可;(2)先利用四边形内角和得到∠ABC+∠ADC=180°,再根据角平分线的定义得到∠ABF=∠ABC,∠1=∠ADC,则∠ABF+∠1=90°,然后证明∠1=∠AFB,从而可判断BF∥DE.【解答】(1)解:如图,BF为所作;(2)证明:∵∠A+∠ABC+∠C+∠ADC=360°,且∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴∠ABC+∠ADC=90°.∵BF平分∠ABC,DE平分∠ADC,∴∠ABF=∠ABC,∠1=∠ADC,∴∠ABF+∠1=90°.∵∠A=90°,∴∠ABF+∠AFB=90°,∴∠1=∠AFB,∴BF∥DE.故答案为:180,∠ADC,∠ABF,∠AFB.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了平行线的判定.23.【分析】先对题目中的分式进行约分化简,然后根据x是不等式组的整数解,求出x 的值,代入化简后的式子即可解答本题.【解答】解:÷(1+)﹣====,解不等式组得,1≤x<3,∵x是不等式组的整数解,∴x=1或x=2,∴当x=1时,原式=﹣1;当x=2时,原式无意义.【点评】本题考查分式的化简求值、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.24.【分析】(1)由菱形的性质得出AO=CO,AD∥BC,推出∠OCF=∠OAE,再利用“ASA”即可证明△AOE≌△COF;(2)根据菱形的性质得出,AC⊥BD,AD=4,再根据含30°角的直角三角形的性质结合勾股定理得出,,求出∠AEO=90°,从而得出,AE=3,再由全等三角形的性质得出CF=AE=3,,∠CFO=∠AEO=90°,最后由勾股定理计算即可得出答案.【解答】(1)证明:∵四边形ABCD是菱形,∴AO=CO,AD∥BC,∴∠OCF=∠OAE,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:∵四边形ABCD是边长为4的菱形,∠BAD=60°,∴,AC⊥BD,AD=4,∴,∴,∵∠EOD=30°,∴∠AOE=90°﹣∠DOE=60°,∴∠AEO=180°﹣∠OAE﹣∠AOE=90°,∴,∴,∵△AOE≌△COF,∴CF=AE=3,,∠CFO=∠AEO=90°,∴,∴.【点评】本题考查了菱形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质、勾股定理,熟练掌握以上知识点并灵活运用是解此题的关键.25.【分析】(1)设去年A种单车购买单价为x元,则B种单车购买单价为(x+200)元,根据题意列出方程求解即可,注意分式方程需要检验;(2)先根据题意求出今年各种单车购买单价,再设今年购买A种单车y辆,则今年购买的B种单车有(60﹣y)辆,根据题意列出不等式,求出y的取值范围,再根据y的取值一一讨论方案即可.【解答】解:(1)设去年A种单车购买单价为x元,则B种单车购买单价为(x+200)元,根据题意有:,解得:x=500,经检验,x=500是原方程的解,500+200=700(元),∴去年购买一辆A种和一辆B种单车各需要500元和700元;(2)由题可得今年A种单车购买单价为500×(100%+10%)=550元,B种单车购买单价为700×(100%﹣10%)=630元,设今年购买A种单车y辆,则今年购买的B种单车有(60﹣y)辆,根据题意可得:33800≤550y+630(60﹣y)≤34000,解得:47.5≤y≤50,∴y的取值可以为48,49,50,∴有3种方案,方案一:购买A种单车48辆,则购买的B种单车60﹣48=12辆;方案二:购买A种单车49辆,则购买的B种单车60﹣49=11辆;方案三:购买A种单车50辆,则购买的B种单车60﹣50=10辆.【点评】本题考查了分式方程的实际应用和一元一次不等式组的实际应用,解题的关键是熟练掌握并运用相关知识.26.【分析】(1)过点C作CE⊥A交AD的延长线于点E,过点B作BG⊥CE于点G,则四边形ABGE是矩形,得EG=AB,BG=AE,由含30°角的直角三角形的性质得DE=400米,则BG=AE=600米,再由等腰直角三角形的性质即可得出结论;(2)由(1)可知,CE=400米,CG=BG=600米,则EG=AB=CE﹣CG≈93米,再求出AB+BC 和AD+DC的长度,比较即可.【解答】解:(1)如图,过点C作CE⊥A交AD的延长线于点E,过点B作BG⊥CE于点G,则∠CED=∠CGB=90°,四边形ABGE是矩形,∴EG=AB,BG=AE,∵∠CDE=60°,∴∠DCE=90°﹣∠CDE=30°,∴DE=CD=×800=400(米),∴BG=AE=AD+DE=200+400=600(米),∵∠CBG=45°,∴△BCG是等腰直角三角形,∴BC=BG=600≈848(米),答:步道BC的长度约为848米;(2)小王从点A经过点B到点C较近,理由如下:由(1)可知,CE=DE=400(米),CG=BG=600米,∴EG=AB=CE﹣CG=400﹣600≈693﹣600=93(米),∴AB+BC≈93+848=941(米),∵AD+DC=200+800=1000(米)>941米,∴AD+DC>AB+BC,∴小王从点A经过点B到点C较近.【点评】本题考查了解直角三角形的应用—方向角问题,正确作出辅助线构造直角三角形是解题的关键.27.【分析】(1)根据题意得到AE,利用勾股定理得到CE,即可得到点C的坐标,再利用平行四边形性质,即可得到点D的坐标;(2)根据题意画出草图,结合角平分线性质,等腰直角三角形性质,以及正方形性质求解,即可解题.【解答】解:(1)∵AB=CD=9,BE=3,∴AE=9﹣3=6,∵AD=BC=5,CE⊥AB于E,∴,∴点C的坐标为(﹣6,4),∵AB∥CD,﹣6+9=3,∴点D的坐标为(3,4);(2)存在,∵直线PQ是第二、四象限的角平分线,M是直线PQ上一个动点,N为x轴上一点,以K、M、N、B 为顶点四边形为正方形,∴有以下几种情况,①作BM⊥x轴交直线PQ于点M,MK⊥y轴于点k,此时N与A重合,如图所示:有∠MNB=∠NMB=45°,∠MNK=∠NMK=45°,∴BN=BM=KN=KM=AB=9,即四边形KNBM为正方形,∴K点的坐标为(0,9),②K、N点在MB左侧时,构成KNBM为正方形,如图所示:∵NB=AB=9,∴AN=18,此时K点的坐标为(﹣18,9),③作BM⊥PQ于点M,∴∠BAM=∠MBA=45°,∴MB=MA,此时N与A重合,如图所示:∵四边形KNMB为正方形,连接MK交BN于点J,∵BN=9,∴,∴K点的坐标为;④取AB的中点N,过N作MN⊥x轴,交PQ于点M;过M作MK∥x轴,交过B作x轴的垂线于K点,∵N是AB中点,AB=9,∴AN=BN=,∵∠PAB=45°,MN⊥AB,∴MN=AN=BN=,∵MN⊥AB,MK∥AB,KB⊥AB,∴MNBK为正方形,∴KB=MN=,∴K点坐标为:(﹣9,).综上所述,K点的坐标为(0,9)或(﹣18,9)或或(﹣9,).【点评】本题考查坐标与图形,勾股定理,平行四边形性质,角平分线性质,等腰直角三角形性质,以及正方形性质,解题的关键在于利用数形结合的思想解决问题.28.【分析】(1)过点E作EF⊥AB,垂足为F,证△CBE是等边三角形,利用特殊角三角函数求出BC边即可;(2)过点C作CQ∥FD,交BD于点Q,根据ASA证明△FDH≌△CQH,△BAD≌△CBQ,利用等式的性质证明即可;(3)如图3,取AC中点O,连接BM,BG,MG,BO,由“SAS”可证△ABM≌△OBG,可得BM=BG,∠ABM=∠OBG,由三角形的三边关系可得BG﹣NC=MG﹣NG<MN,则当点N在线段MG上时,BG﹣NC有最大值,由勾股定理可求CN的长,即可求解.【解答】解:(1)如图1,过点E作EF⊥AB,垂足为F,∵∠EBA=∠EAB=30°,AD=2,∴EA=EB,AF=FB,AB=AD÷sin30°=4,设BC=x,则AC=2x,∴AB===x,即x=4,解得x=4,∴BC=4,∵∠EBA=∠EAB=30°,∴∠EBC=∠ECB=60°,∴△CBE是等边三角形,∴CE=BC=4;(2)过点C作CQ∥FD,交BD于点Q,∴∠DFH=∠QCH,∠FDH=∠CQH,又∵FH=CH,∴△DFH≌△QCH(ASA),∴DH=HQ,FD=CQ,∵∠ABD=30°,∴∠DAB=∠QBC=60°,∠QCB=30°,∴∠ABD=∠BCQ,∵∠CAB=45°=∠BCA,∴BA=CB,∴△BAD≌△CBQ(ASA),∴AD=BQ,BD=CQ,∴BD=FD,∴BD﹣BQ=FD﹣AD,即DQ=AF,∴DH+HQ=AF,∴2DH=AF,∴DH=AF;(3)∵∠ADB=90°,∠ABD=30°,∴∠DAB=60°,AC=2AB=4,∵∠CAB=60°,∴点D在线段AC上,∵AB=2,∠ABD=30°,∴AD=1,BD=AD=,∵将△ADB绕点A逆时针旋转得到△AMN,∴AM=AD=1,MN=BD=,AN=AB=2,∠ADB=∠AMN=90°,∠MAN=∠DAB=60°,如图3,取AC中点O,连接BM,BG,MG,BO,∵∠ABC=90°,点O是AC的中点,∴AO=BO=CO=2=AB,∴△AOB是等边三角形,∴∠AOB=60°=∠ABO,∴∠COB=120°,∵点G是CN的中点,点O是AC的中点,∴GO∥AN,GO=AN=1=AM,∴∠NAC=∠GOC,∴∠MAN+∠CAB+∠NAC=120°+∠NAC=∠GOC+∠COB,∴∠MAB=∠GOB,∴△ABM≌△OBG(SAS),∴BM=BG,∠ABM=∠OBG,∴∠ABO=∠MBG=60°,∴△BMG是等边三角形,∴MG=BG,∴BG﹣NC=MG﹣NG<MN,此时,如图4,∵CM===,∴CN=CM﹣MN=﹣,=×NC×MA=×1×(﹣)=.∴S△ANC【点评】本题是几何变换综合题,考查全等三角形的判定和性质,等边三角形的判定和性质,旋转的性质,勾股定理等知识点,确定BG=CN的最大值是解题的关键。

湖北省武汉市2022-2023学年八年级上学期期末物理模拟试卷(二)

湖北省武汉市2022-2023学年八年级上学期期末物理模拟试卷(二)

湖北省武汉市2022-2023学年八上期末物理模拟试卷(二)第I卷(选择题共48分)一、选择题(每小题3分,共48分)1.2021年6月17日,神舟十二号载人飞船入轨后顺利与天和核心舱对接,随后3名航天员从神舟十二号载人飞船进入天和核心舱。

下列说法正确的是()A.对接完成后,以“神舟十二号”为参照物,“天和核心舱”是运动的B.对接完成后,以“神舟十二号”为参照物,地球是静止的C.航天员进入“天和核心舱”过程中,相对于“神舟十二号”是运动的D.航天员进入“天和核心舱”过程中,相对于“天和核心舱”是静止的2.如图记录了甲、乙两辆汽车在某段平直公路上同起点向北行驶时,在相同的时间内通过的过程。

关于甲、乙两车的运动情况,说法正确的是()A.乙车到达800m处所用时间等于甲车达此处所用时间B.根据公式v=,甲车的速度与路程成正比,与时间成反比C.甲车在0~20s内的平均速度等于乙车0~40s内的平均速度D.在整个运动过程以乙车为参照物,甲车始终向北运动3.小红同学在“测量物体运动的平均速度”实验中,斜面的一端用木块垫起,把小车放在斜面A点,金属片先放在斜面底端即C点,再移至B点,让小车从斜面的A点由静止开始下滑,到达B点、C点时在米尺上对应的位置及对应的时刻,如图所示。

下列说法不正确的是()A.小车经过AB段的路程s AB=40.0cmB.小车在AC段的平均速度约为0.27m/sC.小车从斜面的A点由静止开始下滑,由以上测量数据,即可测出小车在BC段的平均速度D.为了便于计时,应将木块向斜面底端移动4.下列下列四幅图中,关于声现象的描述错误的是()A.图甲中,人说话时声带在振动,表明声音是由物体振动产生的B.图乙中,用相同的力从左向右依次敲击玻璃瓶,发出声音的音调逐渐变高C.图丙中,倒车雷达利用了电磁波传递信息D.图丁中,武汉鹦鹉洲大桥桥头的“隔音蛟龙”是从“阻断噪声传播”的方面着手控制噪音5.如图所示,在空气均匀,且温度处处相同的室内,小明吹响长笛一个音,并用A、B两个相同设置的声音监测器在距小明不同距离的位置监测,得出如图的波形图,以下说法正确的是()A.声音从监测器B处传播到监测器A处,频率减小B.声音从监测器B处传播到监测器A处,听到声音的响亮程度减小C.声音从监测器B处传播到监测器A处,音色改变D.声音从监测器B处传播到监测器A处,声速改变6.下列关于物态变化情景描述错误的是()A.甲图:冰棍“冒”出的“白气”向下落B.乙图:将装有酒精的塑料袋口扎紧后放入热水中发生的物态变化是酒精的汽化C.丙图:冬天窗户上的冰花形成在玻璃的外侧D.丁图:冰箱制冷过程同时存在着汽化和液化7.下列一些关于生活中的热现象及原因分析,正确的是()A.干冰给食品保鲜,利用了干冰熔化吸热B.使用高压锅,食物容易被煮熟,是锅内气压增大,液体沸点升高C.北方的冬天,为了保存蔬菜,在菜窖里放几桶水,利用了水凝华放热D.衣柜里的樟脑丸变小了,原因是樟脑丸发生了熔化现象8.美丽的树挂、霜是怎样形成的?如图甲所示,将冰块放入易拉罐中并加入适量的盐。

人教版八年级上册物理期末模拟试卷(含答案)

人教版八年级上册物理期末模拟试卷(含答案)

人教版八年级上册物理期末模拟试卷时量:90分钟,满分:100分一、单选题(每个2分;共28分)1.下列估测的数据中最接近事实的是()A. 遂宁6月平均气温约50℃B. 自行车正常骑行速约5m/sC. 一名初中学生的质量约500kgD. 教室内课桌高约40cm2.关于物理实验中的测量,下列说法中正确的是()A. 在“测量平均速度”实验中,斜面的坡度不能太大B. 用托盘天平称量质量时,如果砝码磨损,会使测量结果偏大C. 长度测量结果的倒数第一位代表所用刻度尺的分度值D. 用温度计测量液体的温度,为方便读数应将温度计从液体中取出3.下列操作正确的是()A. B. C. D.4.某学习小组对一辆在平直公路上做直线运动的小车进行观测研究。

他们记录了小车在某段时间内通过的路程与所用的时间,并根据记录的数据绘制了路程与时间的关系图像,如下左图。

据图像可以判断下列说法正确的为()A. 2s—5s内,小车做匀速运动B. 0—7s内,小车的平均速度是1.5m/sC. 0—5s内,小车的平均速度是0.4m/sD. 5s—7s内,小车运动了6m5.甲、乙两同学从同一地点同时向相同方向做直线运动,他们通过的路程随时间变化的图象如上右图所示,则下列说法错误的是()A. 两同学在距离出发点100m处相遇B. 甲乙两同学始终在运动C. 在0~10s内,甲同学比乙同学运动的慢D. 在0~10s内,乙同学的速度为10m/s6.在央视2套“是真的吗”栏目中,一位网友演示了一把如图所示的“铜丝琴”;他将一根张紧的铜丝两端与扬声器接通,铜丝旁边放置一块磁铁,用手指拨动铜丝,就能使扬声器发声,演奏出优美的乐曲。

这个声音是()A.振动的铜丝直接发出的B.空气振动而发出的C.通电铜丝在磁场中受力振动而发出的D.振动的铜丝切割磁感线产生感应电流使扬声器发出的7.下面关于乐音和噪声的叙述中,错误的是()A. 乐音悦耳动听,给人以享受;噪声使人烦躁不安,有害于健康B. 乐音是乐器发出的声音;噪声是机器发出的声音C. 乐音振动遵循一定的规律;噪声的振动杂乱无章,无规律可循D. 乐音有益于人的生活,噪声经常给人带来麻烦8.在探究光的反射规律时,老师把一块平面镜CD竖立在讲台上,坐在B点的甲同学通过平面镜看到了坐在A点的乙同学(如图).在这一现象中,光线的反射角是()A. ∠1B. ∠2C. ∠3D. ∠49.人看到水池里鱼的像,它的形成是由于()A. 光的色散B. 光的反射C. 光的直线传播D. 光的折射10.测绘人员绘制地图时,常常需要在高空的飞机上向地面照相,称为航空摄影,若要使用航空摄影照相机的镜头焦距为50 mm,则底片到镜头间的距离为()A. 100 mm以外B. 略大于50 mmC. 恰为50 mmD. 50 mm以内11.小丽同学对冰加热,她将冰熔化成水直至沸腾,并绘制成如图所示的温度随时间变化的图象,下列分析正确的是()A. 水沸腾时温度不变,说明沸腾过程不需要吸热B. 冰熔化时温度不变,内能不变C. 冰的升温比水快,说明冰的比热容比水小D. 图中DE段表示冰的熔化过程12.我国的“二十四节气”正式列入人类非物质文化遗产名录.“以下关于“二十四节气”中蕴含的物态变化知识正确的是()A. “白露”是指天气转凉后,植物上有露珠出现;此现象是由空气的液化形成的B. “霜降”是指10月23日前后,植物上出现霜;霜在形成过程中需要吸热C. “小雪”指即日起北方开始下雪;雪是由水蒸气的凝固形成的D. ““大寒小寒,滴水成冰”.“滴水成冰”的过程会放热13.小明利用天平和量杯测量某种液体的密度,得到的数据如下表,根据数据绘出的图象如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008—2009学年度上学期期末模拟试卷初二语文试卷一、基础知识(22分)1.(4分)请你给下面这段话中的两个加点字注音,并改正这段话中的两个错别字。

起点如天色破晓的绯红,微微晨曦点染着气象万千的苍穹.;起点如大江大河的源头,涓涓细流孕育着一泄千里的波涛。

起点之美,起点之力,必将激发你永往直前的斗志,百折.不挠地完成每一份人生的答卷。

注音:穹折改错:应改为应改为2.(4分)下面这段文字中两处画横线的句子有语病,请逐一修改。

(4分)①随着电脑文字录入技术的应用,使人们逐渐不喜欢用笔写字了。

这一问题已经引起了有关部门的高度重视。

我国正在制订中小学生汉字书写等级标准,要求学生不仅要会认会写,还要写得规范和美观。

②学校也要加强宣传,提高同学们对汉字书写重要性。

3.诗、文名句填空。

(共8分,每题1分。

请注意:①~⑥题为必答题;⑦~⑩题为选答题,从中任选二题作答,若回答三题,只批阅最前的二道题。

)必答题:①黑云压城城欲摧,(李贺《雁门太守行》)②几处早莺争暖树,(白居易《钱塘湖春行》)③低头乍恐丹砂落,(白居易《池鹤》)④铁马冰河入梦来。

(陆游《十一月四日风雨大作》)⑤淮南秋雨夜,(韦应物《闻雁》)⑥相伴过年华。

(葛天民《迎燕》)选答题:⑦日暮乡关何处是,(崔颢《黄鹤楼》)⑧羌笛何须怨杨柳,(王之涣《凉州词》)⑨江春入旧年。

⑩冬天是美丽的季节,常引发诗人写景抒情。

请写出古诗词中与冬天有关的句子。

(写出连续的两句),。

4.【爱心寄语】(2分)仿照示例,以灾区一个孩子的口吻给失踪的母亲写两句话。

示例:妈妈妈妈我深信你还活着我深信你还活着深信地震只能深信地震只能击碎钢筋水泥击不碎你坚强的心5.(4分)名著阅读下午放学后,李林同学来到学校图书室,准备借一本文学名著,面对眼前众多的书,李林不知怎样选择,这时,你走过去热情地向他推荐。

请在下列书目中任选一本(部),从作品特点和自己的阅读感受方面来向他介绍。

备选书目:《童年》《水浒》《钢铁是怎样炼成的》《格列佛游记》《骆驼祥子》①书名:②作品的特点(指作品内容、主题思想、写作手法、人物形象、语言特点等,可任意选取一点作简介):③自己的阅读感受:二、阅读(58分)(一)、阅读《苏州园林》,回答6—9题。

(13分)苏州园林里都有假山和池沼。

假山的堆叠,可以说是一项艺术而不仅是技术。

或者是重峦叠障,或者是几座小山配合着竹子花木,全在乎设计者和匠师们生平多阅历,胸中有丘壑,才能使游览者攀登的时候忘却苏州城市,只觉得身在山间。

至于池沼,大多引用活水。

有些园林池沼宽敞,就把池沼作为全园的中心,其他景物配合着布置。

水面假如成河道模样,往往安排桥梁。

假如安排两座以上的桥梁,那就一座一个样,决不雷同。

池沼或河道的边沿很少砌齐整的石岸,总是高低屈曲任其自然。

还在那儿布置几块玲珑的石头,或者种些花草:这也是为了取得从各个角度看都成一幅画的效果。

池沼里养着金鱼或各色鲤鱼,夏秋季节荷花或睡莲开放,游览者看“鱼戏莲叶间”,又是入画的一景。

6.(3分)用简明的语言概括文段内容大意。

7.(3分)苏州园林假山和池沼的共同特征是什么?(用原文话回答)8.(3分)为什么说“假山的堆叠,可以说是一项艺术?用简明的语言回答。

9.(4分)这段文字的说明中心是,结构特点是。

(二)、阅读《风吹一生》,回答10—14题。

(15分)风吹一生①天真的冷了,连风也受不了了,半夜三更来敲打我的窗户,它们想进来。

这种节奏的敲打声我熟悉,这些风一定是从我的家乡来的。

所有的风都来自北方的野地和村庄,我家在城市的北面。

我掀开窗帘,看到风在闪烁不定的霓虹灯里东躲西藏,它们对此十分陌生。

风的认识里只有光秃秃的树,野火烧光的草,路边的草堆,孩子们头上的乱发和整个村庄老人的一生。

风不认识城市的路,一定是谁告诉了它们我在这里,才会爬上五楼来找我。

②城市里没有风声,没有歪脖子树和草堆供它们存活下去。

它们远道而来是为了唤一个人回去,是唤我吧,我已经很长时间没回家了。

我从床上起来,打开北向的窗户,黑暗阔大的北风滚滚而来,像旗帜和荒沙一样悬在城市的半空,只等着我从钢筋水泥的一块堡垒里伸出头来,与我面对面,告诉我一些风中的人的消息。

③我家乡的人生活在风里。

离家的那天,一大早我就看见祖父坐在门口的小马扎(一种便携可折叠的小凳子)上。

天色灰沉清冷,秋天的早上永远是一副将要下雨的模样。

风很大,地上的杨树叶子转着圈堆到祖父的鞋子上。

我对祖父说,进屋吧,外边冷。

祖父说没事,不冷,都在风里活了一辈子了。

然后问我坐火车还是汽车。

我说火车,这个问题他已经问了好几遍了。

祖父自言自语地把火车重复了一遍,说他夜里也梦见我坐的火车了,跑得太快,怎么叫都停不下来,他就是过来看看,我是不是已经被火车带走了。

我让祖父进屋吃早饭,他也不肯,只想坐坐,守在门口的风里。

那个早上我离开了家,前往一个远离家乡的城市。

祖父拎着小马扎跟在我后面穿过巷子,风卷起的尘土擦着裤脚。

我说巷子里风大,回去吧。

祖父说你走你的,我想在巷子头坐坐。

然后就放下小马扎坐在了路边上。

村庄坐落在野地里,村前村后都是麦地,麦地上的风毫无阻碍地从村南刮到村北,沿村庄中宽阔的土路,一次次宽阔地刮过。

我走了很远回过头,还看见祖父坐在风里,面对着我的背影,被风刮得有点抖。

④祖父老了。

风吹进他的身体。

当风吹进一个人的身体里时,他就老了。

二十多年来,我目睹了来来去去的风如何改变了一个人。

从我记事时起,祖父一直骑着自行车带我去镇上赶集,五天一次,先在集市边的小吃摊坐下,吃逐渐涨价的油煎包子,然后到菜市旁边的空地上看小画书,风送过来青菜和肉的味道。

那时候祖父骑车很稳健,再大的风也吹不倒。

有风的时候我躲在祖父身后,贴着他的脊背,只能感到风像一场大水流过我抓着祖父衣服的手。

长大了,自己也能骑车了,少年心性,车子骑得飞快,在去姑妈家的路上远远甩下了祖父。

我停在桥头上,看见祖父顶着风吃力地蹬车。

祖父骑车的速度从此慢了下去。

有一天祖父从外面回来,向我们抱怨村边的路太差,除了石子就是车辙和牛蹄印。

祖父说,风怎么突然就大了呢,车头都抓不稳了。

但是谁都没有在意。

⑤从菜地回家的路上,我遇到祖父从镇上回来,第一次看见祖父骑着车子在风里摇摇晃晃。

祖父不经意间被风吹歪了。

祖父不再骑自行车了,我们担心他出事,不让他再骑。

他被风彻底地从车上吹了下来。

不能骑车之后,祖父走到哪儿都拎着一个小马扎,他终于意识到很难再在风中站直了,风也不会让他长久地站在一个地方。

风强迫他坐上了马扎。

⑥一个人就这样被风吹老了。

风逐渐穿过人的身体,吹走了黑发留下了白发,吹干了皮肤留下了皱纹,最后,风把祖父带到了另一个去处。

我随着一阵一阵的风往前走,走着走着就长大了,最终却走进了没有风的城市,只有祖父和他的小马扎还不时吹进我的梦中。

(作者徐则臣选自《视野》2004年4期,有删节)10.作者为什么把“风吹一生”作为文章的标题?(2分)11.“我掀开窗帘,看到风在闪烁不定的霓虹灯里东躲西藏,它们对此十分陌生。

”风本无形,为何作者会看见它在“东躲西藏”,并知道它对城市“十分陌生”?这表达了作者怎样的感情?(3分)12.第四段说,“二十多年来,我目睹了来来去去的风如何改变了一个人”,又说“但是谁都没有在意”,这是否自相矛盾?为什么?(3分)13.说出第五段中“他被风彻底地从车上吹了下来”的含义。

(3分)14.风慢慢吹大了我,也慢慢吹老了祖父,祖孙二人多年的心灵对话让我们体味到了一种细腻的亲情。

可是现实中却有很多老人在城里城外独守“空巢”,亲情的风儿已不容易吹进他们的生活。

今晚,风儿又为“我”捎来了故乡的思念,请你为文章续写一个结尾,模仿作者的口吻,将“我”体会到的情义吹进..四面八方渴望亲情的心田。

..城里城外的“空巢”,吹向(4分)(三)、阅读《遗传的快乐和不幸的中年》,回答15—19题。

(13分)遗传的快乐和不幸的中年①50%的快乐基因是天生的。

快乐也会受年龄影响,45岁的人感觉最不幸福。

②最无奈的莫过于有些事情无论怎么努力都没办法彻底改变,比如快不快乐。

③爱丁伯格大学的研究者认为:基因变异决定着一个人50%的快乐水平,快乐在很大程度上也决定于一个人的个性品质。

善于交际、活泼、踏实、勤奋、有责任心的人会更快乐。

④发表于2008年3月《心理科学》的快乐研究样本取自973对成年双胞胎。

这些双胞胎接受了人格和情商问卷测试。

正如同卵双胞胎和异卵双胞胎分享的基因不同一样,他们对快乐的反应也不尽相同。

当被问及是否快乐时,同卵双胞胎回答的相似度要远远高于异卵双胞胎。

这就证明快乐和个性特征都具有非常强的基因遗传特征,而且正是天生的个性决定了一个人快不快乐。

那些在个性特征(外向、冷静、负责)上得分相同的人,在快乐得分上也相同。

⑤爱丁伯格大学心理学教授摩西·贝茨和他的同事对快乐的研究长达20年,最终发现“结果导向型”的人会最快乐。

“当他们开始为目标而努力时,他们的快乐会加分”,这是贝茨对于行为决定幸福的最初观察。

最出乎人们意料的快乐研究结果是,快乐虽然受环境的影响,但环境并不会长期决定一个人的快乐水平。

因为研究者在对样本分析中发现,有钱的人不一定比穷人快乐,即使有残疾的人也可能会非常快乐。

用贝茨的话说,那就是“即使谦卑地活着,但如果可以做自己想做的事,也会感到快乐”。

⑥另外一项关于快乐的研究是发表在2008年3月《社会科学和医学》上的快乐曲线:人在童年和老年的时候都比较快乐,45岁左右,快乐指数跌到最低点。

这项研究的主持者英国华威大学经济学教授安德鲁·奥斯瓦德在一定程度上同意贝茨的研究结果。

他说收入、教育和婚姻状况都与快乐无关。

他之所以敢这么自信,是因为他和美国新罕布什尔州达特茅斯学院的经济学教授大卫·布莱克弗劳尔,在过去30年中一直从事快乐与年龄关系的研究。

事实上,加利福尼亚大学的研究者也用25年的研究证实了年轻时人们会更乐观,而当人进入50岁时会慢慢地不太在乎外界对自己的评论,也越来越会处理自己不喜欢的事情。

在解释中年人为什么不快乐时,奥斯瓦德说是因为“中年人会突然发现青春不再,而自己梦想的事情还没有完成,这样的沮丧感会持续将近10年”。

⑦得到快乐基因遗传的人就算是经历了最大的打击,也会很快恢复过来。

如果不幸没有得到快乐基因的人,那就改变自己的后天习惯。

比如不要拖沓,有计划地完成任务,每一个小任务的完成都会带来小快乐。

而快乐是可以积累的,毕竟,还有50%的快乐指数与遗传无关。

(选自《新世纪周刊》2008年第10期,作者:西罗,有改动)15.文章第④段举973对成年双胞胎研究样本的事例,是为了说明(2分)。

16.为什么人到中年,快乐指数会跌到最低点?(2分)答:。

17. 文中说“有钱的人不一定...非常快乐”。

这个句子中加...比穷人快乐,即使残疾的人也可能点的词语能否删去,为什么?(3分)答:18.本文作者要说明的主要观点有:(2分)①②19.文章最后说,“快乐是可以积累的,毕竟,还有50%的快乐指数与遗传无关”。

相关文档
最新文档