高中数学必修二-圆与方程_小结与复习
高一数学必修二《圆与方程》知识点整理
高一数学必修二《圆与方程》知识点整理高一数学必修二《圆与方程》知识点整理一、标准方程xa2ybr 221.求标准方程的方法——关键是求出圆心a,b和半径r①待定系数:往往已知圆上三点坐标,例如教材P119例2 ②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解)条件方程形式圆心在原点 xyrr0 222过原点 xayba2b2a2b20 圆心在x轴上xayr22222rr0 0 圆心在y轴上 xybr222圆心在x轴上且过原点 xaya222a0b02圆心在y轴上且过原点 xybb2222与x轴相切 xaybb222b0 a0 与y轴相切 xayba与两坐标轴都相切 xayba二、一般方程xyDxEyF0DE4F0 22222222ab01.AxByCxyDxEyF0表示圆方程则A=B≠0A=B≠0C=0C=0D2+E2-4AF>022DEF>0 + -4AAA2.求圆的一般方程一般可采用待定系数法:如教材P122例r43.D2+E2-4F>0常可用来求相关参数的范围三、点与圆的位置关系1.判断方法:点到圆心的距离d与半径r的大小关系dr点在圆外2.涉及最值:(1)圆外一点B,圆上一动点P,讨论PB的最值PBPB=BN=BC-r =BM=BC+rminmax(2)圆内一点A,圆上一动点P,讨论PA的最值Pmin= PmaxA=A=rr C C思考:过此A点作最短的弦?(此弦垂直AC)四、直线与圆的位置关系1.判断方法(d为圆心到直线的距离)(1)相离没有公共点r(2)相切只有一个公共点=0d=r (3)相交有两个公共点>0d。
数学必修二圆的方程知识点总结
数学必修二圆的方程知识点总结总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以给我们下一阶段的学习和工作生活做指导,快快来写一份总结吧。
但是却发现不知道该写些什么,以下是小编收集整理的数学必修二圆的方程知识点总结,希望能够帮助到大家。
圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的'切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点数学如何预习上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。
高一数学必修二《圆与方程》知识点整理(20200219214201)
y y1 y2
3
2
BD AB
③内角平分线定理:
CD AC
④定比分点公式: AM MB
⑤韦达定理 .
,则 xM xA
xB , yM yA
yB
1
1
6
x2 y2 Dx Ey F 0 D 2 E 2 4F 0
1. Ax2 By2 Cxy Dx Ey F 0表示圆方程则
AB 0
C0
2
D A
2
E
F
4
0
A
A
AB0 C0 D 2 E 2 4 AF 0
2.求圆的一般方程一般可采用待定系数法:
3. D 2 E 2 4F 0 常可用来求有关参数的范围
三、圆系方程: 四、参数方程: 五、点与圆的位置关系
x2 y2 D2x E2 y F2 0 (
1)
说明: 1)上述圆系不包括 C2 ; 2)当
1 时,表示过两圆交点的直线方程(公共弦)
( 2 ) 过 直 线 A x B y C 0 与 圆 x2 y2 Dx Ey F 0 交 点 的 圆 系 方 程 为
x2 y2 Dx Ey F
Ax By C 0
(3)有关圆系的简单应用 (4)两圆公切线的条数问题 ①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相 离时,有四条公切线 十、轨迹方程 (1)定义法(圆的定义) :略 (2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标 的关系式——轨迹方程 .
2
2
d PA PB ,求 d 的最值及对应的 P 点坐标 .
2
2
4.已知圆 C : x 1 y 2 25 ,直线 l : 2m 1 x m 1 y 7m 4 0( m R )
高一数学必修二《圆与方程 》知识点整理
高一数学必修二《圆与方程》知识点整理一、标准方程()()222x a y b r-+-=1.求标准方程的方法——关键是求出圆心(),a b和半径r①待定系数:往往已知圆上三点坐标,例如教材119P例2②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解)条件方程形式圆心在原点()2220x y r r+=≠过原点()()()2222220x a y b a b a b-+-=++≠圆心在x轴上()()2220x a y r r-+=≠圆心在y轴上()()2220x y b r r+-=≠圆心在x轴上且过原点()()2220x a y a a-+=≠圆心在y轴上且过原点()()2220x y b b b+-=≠与x轴相切()()()2220x a y b b b-+-=≠与y轴相切()()()2220x a y b a a-+-=≠与两坐标轴都相切()()()2220x a y b a a b-+-==≠二、一般方程()2222040x y Dx Ey F D E F++++=+->1.220Ax By Cxy Dx Ey F+++++=表示圆方程则222200004040A B A BC CD E AFD E FA A A⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅>⎪ ⎪⎪⎝⎭⎝⎭⎩2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 43.2240D E F +->常可用来求有关参数的范围 巩固练习11.若方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是( )A .a <-2或a >23B .23-<a <2 C .a >1 D .a <12.若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程为_________.3.设圆C 同时满足三个条件:①过原点;②圆心在直线y =x 上;③截y 轴所得的弦长为4,则圆C 的方程是______________.4.以两点A (3,-4)和B (5,6)为直径端点的圆的标准方程是________.5.已知圆C 过点A (1,0)和B (3,0),且圆心在直线y =x 上,则圆C 的标准方程为_____________.6.若圆C 的半径为2,圆心在第一象限,与直线4x -3y =5和x 轴相切,则该圆的标准方程是______________________.7.已知圆C 过点(2,0),圆心在x 轴的正半轴上,直线l :y =x -2被该圆所截得的弦长为22则圆C 的标准方程为______________________.三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外 2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==- max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC ) 巩固练习21.点P (m,3)与圆(x -2)2+(y -1)2=2的位置关系为( ) A . 点在圆外 B . 点在圆内 C . 点在圆上 D . 与m 的值有关2.已知点(1,1)在圆(x -a )2+(y +a )2=4的外部,则a 的取值范围为___________.3.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0. (1)求证:直线l 过定点;(2)判断该定点与圆的位置关系,并求圆C 上的点到改点距离的最小值; (3)当m 为何值时,直线l 被圆C 截得的弦最长.四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离)(1)相离⇔没有公共点⇔0d r ∆<⇔> (2)相切⇔只有一个公共点⇔0d r ∆=⇔= (3)相交⇔有两个公共点⇔0d r ∆>⇔<这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r(2)常见题型——求过定点的切线方程①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->]第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了!例1:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x =ii )点在圆上1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目.2) 若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为()()()()200x a x a y b y b r --+--=碰到一般方程则可先将一般方程标准化,然后运用上述结果.由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,222AP CP r AP =-⇒=求切点坐标:利用两个关系列出两个方程1AC APAC rk k ⎧=⎨⋅=-⎩3.直线与圆相交(1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用弦长公式:12l x =-=(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内. (3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是_________________. 答案:()4,64.直线与圆相离会对直线与圆相离作出判断(特别是涉及一些参数时)五、对称问题1.若圆()222120x y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____.变式:已知点A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数a =_________.2.圆()()22131x y -+-=关于直线0x y +=对称的曲线方程是________________.变式:已知圆1C :()()22421x y -+-=与圆2C :()()22241x y -+-=关于直线l 对称,则直线l 的方程为_______________.3.圆()()22311x y -++=关于点()2,3对称的曲线方程是__________________.4.已知直线l :y x b =+与圆C :221x y +=,问:是否存在实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于点247,2525B ⎛⎫⎪⎝⎭?若存在,求出b 的值;若不存在,试说明理由.六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数x ,y 满足方程22410x y x +-+=,求:(1)5yx -的最大值和最小值;——看作斜率 (2)y x -的最小值;——截距(线性规划)(3)22x y +的最大值和最小值.——两点间的距离的平方2.已知AOB ∆中,3OB =,4OA =,5AB =,点P 是AOB ∆内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值. 数形结合和参数方程两种方法均可!3.设(),P x y 为圆()2211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:1c ≥(数形结合和参数方程两种方法均可!)七、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 强化训练31.若直线240mx ny +-=(m ,n R ∈),始终平分圆224240x y x y +---=的周长,则m n ⋅的取值范围是______________.2.已知圆C :222440x y x y +-+-=,问:是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程,若不存在,说明理由.3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22d PA PB =+,求d 的最值及对应的P 点坐标.4.已知圆C :()()221225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点; (2)求其中弦长最短的直线方程.5.若直线y x k =-+与曲线x =k 的取值范围.6.已知圆2260x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存在实数m ,使OP OQ ⊥,若存在,求出m 的值;若不存在,说明理由.九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距)(1)12d r r >+⇔外离 (2)12d r r =+⇔外切 (3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含 2.两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:若1C 与2C 相切,则表示其中一条公切线方程; 若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题(1)过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦)(2)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=(3)有关圆系的简单应用 (4)两圆公切线的条数问题①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线十、轨迹方程(1)定义法(圆的定义):略(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程.例:过圆221x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程.分析:222OP AP OA +=(3)相关点法(平移转换法):一点随另一点的变动而变动↓ ↓动点 主动点特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例1.如图,已知定点()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程. 分析:角平分线定理和定比分点公式.例2.已知圆O :229x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3BAC π∠=,求ABC ∆的重心G 的轨迹方程.法1:3BAC π∠=Q ,BC ∴为定长且等于33设(),G x y ,则33333A B C B C A B C B C x x x x x x y y y y y y ++++⎧==⎪⎪⎨+++⎪==⎪⎩取BC 的中点为33,24E x ⎡⎫∈-⎪⎢⎣⎭,333,2E y ⎛⎤∈- ⎥ ⎝⎦222OE CE OC +=Q ,2294E E x y ∴+=L L (1) 2222B C E B C E B C E B C Ex x x x x x y y y y y y +⎧=⎪+=⎧⎪⇒⎨⎨+=+⎩⎪=⎪⎩,3233322323E E E E x x x x y y yy +-⎧⎧==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩故由(1)得:()2222333933110,,,12242x y x y x y ⎛⎤-⎛⎫⎛⎫⎡⎫+=⇒-+=∈∈- ⎥ ⎪ ⎪⎪⎢ ⎝⎭⎝⎭⎣⎭⎝⎦法2:(参数法)设()3cos ,3sin B θθ,由223BOC BAC π∠=∠=,则 223cos ,3sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设(),G x y ,则()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ⎧⎛⎫+++ ⎪⎪++⎛⎫⎝⎭⎪===+++ ⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪++⎛⎫⎝⎭===++⎪ ⎪⎝⎭⎩L L L 4,33ππθ⎛⎫∈ ⎪⎝⎭,由()()()22112-+得:()2233110,,,12x y x y ⎛⎤⎡⎫-+=∈∈- ⎥⎪⎢ ⎣⎭⎝⎦参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消参..得到动点轨迹方程,通过参数的范围得出x ,y 的范围.(4)求轨迹方程常用到得知识①重心(),G x y ,33A B C AB C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩②中点(),P x y ,121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩③内角平分线定理:BD ABCD AC=④定比分点公式:AMMB λ=,则1AB M x x x λλ+=+,1A B M y y y λλ+=+ ⑤韦达定理. 强化训练41.已知圆心为C 的圆经过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y +1=0上. (1)求圆C 的方程;(2)线段PQ 的端点P 的坐标是(5,0),端点Q 在圆C 上运动,求线段PQ 的中点M 的轨迹方程.2.如图所示,已知圆O:x2+y2=4与y轴的正方向交于A点,点B在直线y=2上运动,过B作圆O的切线,切点C,求△ABC垂心H的轨迹.3.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.4.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C,过点A(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程.5.已知直线l:与圆C:交于A,B两点.求的面积;若动点P为圆C上一点,点为定点,则线段PN中点的轨迹是什么,并求出该轨迹方程.6.已知圆C:.若圆C上恰有三个点到直线斜率存在的距离为1,且l在两坐标轴上的截距相等,求l的方程.点P为直线上的动点,点M为圆C上的动点.若直线PM与圆C相切,求的最小值;若O为坐标原点,求的最小值.7.已知圆C过点,,且圆心在直线上.求圆C的标准方程;平面上有两点,,点P是圆C上的动点,求的最小值;若Q是x轴上的动点,QR,QS分别切圆C于R,S两点,试问:直线RS是否恒过定点?若是,求出定点坐标,若不是,说明理由.。
高一年级必修2数学第四单元圆的方程知识点梳理
高一年级必修2数学第四单元圆的方程知识点梳理
高一年级必修2数学第四单元圆的方程知识点
梳理
数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高一年级必修2数学第四单元圆的方程知识点,希望你喜欢。
圆的方程
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
特别地,初中历史,以原点为圆心,半径为r(r0)的圆的标准方程为x^2+y^2=r^2。
2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为
(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:
(1)、当D^2+E^2-4F0时,方程表示以(-D/2,-E/2)为圆心,以(D^2+E^2-4F)/2为半径的圆;
(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);
(3)、当D^2+E^2-4F0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cos, y=b+r*sin, (其中为参数)
圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB 为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为。
高一年级必修2数学第四单元圆的方程知识点梳理知识点总结
高一年级必修2数学第四单元圆的方程知识点梳理知识点总
结
2-4F)/4.故有:
(1)、当D +E -4F0时,方程表示以(-D/2,-E/2)为圆心,以(D +E -4F)/2为半径的圆;
(2)、当D +E -4F=0时,方程表示一个点(-D/2,-E/2);
(3)、当D +E -4F0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 _=a+r_cos, y=b+r_sin, (其中为参数)
圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (_-a1)(_-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆 _ +y =r 上一点M(a0,b0)的切线方程为 a0__+b0_y=r
在圆(_ +y =r )外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B 两点所在直线的方程也为 a0__+b0_y=r
高一年级必修2数学第四单元圆的方程知识点就为大家介绍到这里,希望对你有所帮助。
数学人教版必修二圆的方程知识点
数学人教版必修二圆的方程知识点
数学人教版必修二中关于圆的方程的内容主要涉及以下几个知识点:
1. 圆的标准方程:圆的标准方程为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为圆的半径。
2. 圆的一般方程:圆的一般方程为:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
一般方程推导出标准方程的方法是完成平方并合并同类项。
3. 圆的参数方程:若圆的圆心为(a, b),半径为r,则圆的参数方程为x = a + rcosθ,y = b + rsinθ,其中θ为参数。
4. 圆的切线方程:过圆上的一点M(x₁, y₁)的切线方程为xx₁ + yy₁ = r²,其中r为圆的半径。
5. 过圆心的直线方程:过圆心的直线方程为x/a + y/b = 1,其中a和b分别为圆心的横纵坐标。
6. 圆与直线的位置关系:可以利用圆的一般方程和直线的方程,通过解方程组来判断
圆与直线的位置关系。
以上是数学人教版必修二中有关圆的方程的主要知识点。
希望对你有所帮助!。
高中数学必修2--第四章《圆与方程》知识点总结与练习知识讲解
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.[题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x2,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2, 且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根.故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255,所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32, 则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2,解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5,则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值; (3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2. (3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:43 3.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0. 因为圆心O 1(0,-1)到直线AB 的距离为 |r 22-12|42= 4-⎝⎛⎭⎫2222=2, 解得r 22=4或r 22=20.故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。
高中数学必修2知识点总结第四章-圆和方程
第四章 圆与方程 知识点与习题1. ★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ; 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内;(2)一般方程022=++++F Ey Dx y x (x+D/2)2+(y+E/2)2=(D2+E2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; ②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k ,①若求得两个不同的解,带入所设切线的方程即可; ②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
人教A版高中数学必修2《四章 圆与方程 小结》教案_2
第四章圆与方程小结教学设计一、教材分析:本章在第三章“直线与方程”的基础上,在直角坐标系中建立圆的方程,并通过圆的方程研究直线与圆、圆与圆的位置关系。
在直角坐标系中建立几何对象的方程,并通过方程研究几何对象,这是研究几何问题的重要方法,通过坐标系把点与坐标、曲线与方程联系起来,实现空间形式与数量关系的结合。
坐标法是贯穿本章的灵魂,在教学中要让学生充分的感受体验。
二、教学目标:1.了解解析几何的基本思想,了解用坐标法研究几何问题;掌握圆的标准方程和一般方程,加深对圆的方程的认识。
2.能根据给定的直线、圆的方程判断直线与圆、圆与圆的位置关系,能用直线与圆的方程解决一些简单问题。
3.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,会用空间两点间的距离公式。
4.通过本节的复习,使学生形成系统的知识结构,掌握几种重要的数学思想方法,形成一定的分析问题和解决问题的能力。
三、教学重点:解析几何解题的基本思路和解题方法的形成。
教学难点:整理形成本章的知识系统和网络。
四、教学过程:(一)回顾本章知识结构图(二)回顾本章知识1、圆的定义 平面内到一个定点的距离等于定长的点的集合(轨迹) 叫做圆,定点叫做圆心,定长叫做圆的半径。
2、圆的方程(1)圆的标准方程 以(a,b )为圆心,r 为半径的圆的标准方程为:(2)圆的一般方程①②本章知识结构圆 与 方 程222)()(r b y a x =-+-022=++++F Ey Dx y x F E D r E D F E D 421)2,2(042222-+=-->-+,半径为圆心为,表示圆的一般方程,当2,2(0422E D F E D --=-+,只表示一个点当③3、直线与圆的位置关系▲4、圆与圆的位置关系以及公切线,不表示任何图形。
当0422<-+F E D▲4条公切线3条公切线2条公切线1条公切线0条公切线5、与圆有关的弦长问题▲6、空间中两点间距离公式空间中任意一点 到点 之间的距离是),,(1111z y x P ),,(2222z y x P(三)夯实基础25)3(825)3(85)3(85)3(8)1,5()3,8(.122222222=++-=-++=++-=-++-y x D y x C y x B y x A A C )()()()(的圆的标准方程为()且过点圆心为点4.4.24.4.24.4.24.4.2,,22,202322----=+-++D C B A c b a c by ax y x 的值依次为()的圆,则)为半径为表示圆心(方程22122122121)()()(z z y y x x P P -+-+-=的取值范围是表示圆,则a a ay ax y x 02.422=+-++____内切相交相切相离位置关系是()和圆或的取值范围是()的内部,则)在圆点(D C B A y y x x y x Da a Ca a B a A a a y a x 0402611110114)()(1,15222222=-+=-+±=>-<<<<<-=++-6323262)2()2(03814320131040744722222221D C B A y x y x D C B A y x y x C y x y x C 截得的弦长等于()被圆直线条条条条则两圆的公切线有()的方程为圆的方程是若圆=-++=+-=+--+=+--+ 相交、相切、相离?与圆为何值时直线当0401922=-+=--x y x y mx m(四)思考(五)课堂小结:本章的知识点主要是实现由形到数的一种转变,所以在今后的学习中要把握关键,寻求规律,掌握方法,要时刻把握好直线与圆的综合问题、相交及交点等问题的应用以及直线与圆的实际应用。
必修二数学圆与方程知识点总结(精选3篇)
必修二数学圆与方程知识点总结(精选3篇)必修二数学圆与方程知识点总结篇11、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条。
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条。
当时两圆相交,连心线垂直平分公共弦,有两条外公切线。
当时,两圆内切,连心线经过切点,只有一条公切线。
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线。
圆的辅助线一般为连圆心与切线或者连圆心与弦中点。
数学集合的运算知识点运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).学数学的方法学习方法很多女生在学习数学的时候喜欢按部就班,注重基础,但是却很少做难题,所以便导致了解题能力薄弱。
高中数学必修二第四章小结与复习课件
例2 过点M(-3,-3)的直线l 被圆x2+y2+4y-21=0所截得的弦 长为 ,求直线l的方程.
y A
C M
o
x
B
例3 求过点P(2,1),圆心在 直线2x+y=0上,且与直线x-y-1=0 相切的圆方程.
2x+y=0
P
作业:
P128练习:2,3,4. P132习题4.2A组:2,3,5.
y
y
y
C
C
C
o
x
o
x
o
x
D=0
E=0
F=0
知识探究二:圆的直径方程
思考1:已知点A(1,3)和B(-5,5),如 何求以线段AB为直径的圆方程?
思考2:一般地,已知点A(x1,y1), B程(如x2,何y?2),则y以线P段AB为直径的圆方
B
A
o
x
(x-x1)(x-x2)+(y-y1)(y-y2)=0
x2+y2-6x-4=0
例2 已知一个圆的圆心为M(2,1), 且与圆C:x2+y2-3x=0相交于A、B两 点,若圆心M到直线AB的距离为 ,求 圆M的方程.
A
DC
M
B
x2+y2-4x-2y-1=0
作业:
P132习题4.2A组:4,6,9,10.
4.2.3 直线与圆的方程的应用
问题提出
通过直线与圆的方程,可以确定 直线与圆、圆和圆的位置关系,对 于生产、生活实践以及平面几何中 与直线和圆有关的问题,我们可以 建立直角坐标系,通过直线与圆的 方程,将其转化为代数问题来解决. 对此,我们必须掌握解决问题的基 本思想和方法.
位于台风中心正北40 km处,如果这艘
轮船不改变航线,那么它是否会受到台
数学必修二圆的方程知识点总结
数学必修二圆的方程知识点总结数学必修二圆的方程知识点总结总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以给我们下一阶段的学习和工作生活做指导,快快来写一份总结吧。
但是却发现不知道该写些什么,以下是小编收集整理的数学必修二圆的方程知识点总结,希望能够帮助到大家。
圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的`位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点数学如何预习上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。
高中数学必修2知识点总结第四章-圆与方程(K12教育文档)
(完整)高中数学必修2知识点总结第四章-圆与方程(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修2知识点总结第四章-圆与方程(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修2知识点总结第四章-圆与方程(word版可编辑修改)的全部内容。
第四章 圆与方程 知识点与习题★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆径.设M(x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA | = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+-〉2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-〈2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形.(3)求圆的方程的方法:待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;直接法:直接根据已知条件求出圆心坐标以及半径长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以 x+y 的最大值与最小值分别为 6+2 3与 6-2 3.
初中我们从平面几何的角度研究过圆的问题,本章则主要是利 用圆的方程从代数角度研究了圆的性质,如果我们能够将两者 有机地结合起来解决圆的问题,将在处理圆的有关问题时收到 意想不到的效果. 圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图 形,它的许多几何性质在解决圆的问题时往往起到事半功倍的 作用,所以在实际解题中常用几何法,充分结合圆的平面几何 性质.那么,我们来看经常使用圆的哪些几何性质: (1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心 的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、 圆外一点及该点所引切线的切点构成直角三角形的三个顶点 等等.
又因为圆心在直线 x y 2 0 上,解得圆心为1,1.
所以, r2 (11)2 [1 (1)]2 4.
所以,圆的方程为 x 12 y 12 4 .
【解答】 方法一: 设所求的圆的方程是(x-a)2+(y-b)2=r2, 则圆心(a,b)到直线 x-y=0 的距离为|a-b|,
2
∴r2=(|a-b|)2+( 7)2,即 2r2=(a-b)2+14 ①; 2
(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直 于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、 半径、弦长的一半构成直角三角形的三边,满足勾股定理. (3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定 经过圆心;直径所对的圆周角是直角.
联立④⑤⑥,解得 D=-6,E=-2,F=1 或 D=6,E=2,F=1.
故所求圆的方程是 x2+y2-6x-2y+1=0 或 x2+y2+6x+2y+1=0.
方法三:
∵所求圆的圆心在直线 x-3y=0 上,且与 y 轴相切, ∴设所求圆的圆心为 C(3a,a),半径为 r=3|a|, 又圆在直线 y=x 上截得的弦长为 2 7, 圆心 C(3a,a)到直线 y=x 的距离为 d= |3a-a| ,
当直线 y=x+b 与圆相切时,纵截距 b 取得最大值或最小值, 此时|2-0+b|= 3,解得 b=-2± 6.
2 所以 y-x 的最大值为-2+ 6,最小值为-2- 6.
(2)x2+y2 表示圆上的一点与原点距离的平方,由平面几何知 识知,在原点和圆心连线与圆的两个交点处取得最大值和最 小值.
又因为圆心到原点的距离为 2-02+0-02=2,
所以 x2+y2 的最大值是(2+ 3)2=7+4 3,
x2+y2 的最小值是(2- 3)2=7-4 3.
变式训练 如果实数 x,y 满足方程(x-3)2+(y-3)2=6,求: (1)xy的最大值与最小值;
(2)x+y 的最大值与最小值.
解答 (1)设方程(x-3)2+(y-3)2=6 所表示的圆 C 上的任意一点 P(x,y).xy的几何意义就是直线 OP 的斜率,设xy=k,则直线 OP 的 方程为 y=kx. 由图①可知,当直线 OP 与圆相切时,斜率取最值. 因为点 C 到直线 y=kx 的距离 d=|3kk2-+31|,所以当|3kk2-+31|= 6,即
故过 M 点的圆的切线方程为 x=3 或 3x-4y-5=0.
(2)由题意有|a-a22++14|=2,解得 a=0 或 a=43. (3)∵圆心到直线 ax-y+4=0 的距离为 |aa+2+2|1,
∴
|aa+2+2|12+2
2
32=4,解得
a=-34.
变式训练 已知点 P(0,5)及圆 C:x2+y2+4x-12y+24=0. (1)若直线 l 过点 P,且被圆 C 截得的线段长为 4 3,求 l 的方程; (2)求过 P 点的圆 C 的弦的中点的轨迹方程. 解答 (1)如图所示,|AB|=4 3,设 D 是线段 AB 的中点,则 CD⊥AB, ∴|AD|=2 3,|AC|=4. 在 Rt△ACD 中,可得|CD|=2.
令 x=0,得 y2+Ey+F=0,由圆与 y 轴相切,得 Δ=0,即 E2=4F④;
又圆心(-D2 ,-E2 )到直线
x-y=0
的距离为|-D2 +E2 |, 2
由
已
知
,得|-
D+ 2
E 2|
2+(
7)2=r2,即(D-E)2+56=2(D2+E2-4F)⑤;
2
又圆心(-D2 ,-E2 )在直线 x-3y=0 上,∴D-3E=0⑥;
11 D E F 0,
由题意得 11 D E F 0,
D
E
2
0.
2 2
所以, D 2, E 2, F 2 .
所以,圆的方程为 x 12 y 12 4 .
方法 3: 由题意得,圆心在线段 AB 的垂直平分线上.
因为线段 AB 中点为 0,0,斜率为 1,
所以,线段 AB 的垂直平分线为 y x .
例 2 已知点 M(3,1),直线 ax-y+4=0 及圆(x-1)2+(y-2)2=4. (1)求过 M 点的圆的切线方程; (2)若直线 ax-y+4=0 与圆相切,求 a 的值; (3)若直线 ax-y+4=0 与圆相交于 A,B 两点,且弦 AB 的长为 2 3,求 a 的值.
分析: 设出切线方程 → 利用圆心到直线的距离等于半径求得参数 → 利用关系L22=r2-d2求得a值
12+ 12 ∴有 d2+( 7)2=r2,即 2a2+7=9a2,∴a=±1, 故所求圆的方程为(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9.
题型二 直线与圆的位置关系 直线与圆的位置关系有三种:相交、相离、相切,其判断方 法有两种:代数法(通过解直线方程与圆的方程组成的方程 组,根据解的个数来判断)、几何法(由圆心到直线的距离 d 与半径长 r 的大小关系来判断). (1)当直线与圆相离时,圆上的点到直线的最大距离为 d+r, 最小距离为 d-r,其中 d 为圆心到直线的距离. (2)当直线与圆相交时,圆的半径长、弦心距、弦长的一半 构成直角三角形; (3)当直线与圆相切时,经常涉及圆0,y0)在圆上还是在圆外, 若点(x0,y0)在圆外,则切线有两条,要注意斜率不存在的 情况也可能符合题意.若点(x0,y0)在圆(x-a)2+(y-b)2=r2 上,则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.
置关系问题,再根据圆的几何性质确定最值.
例 3 已知实数 x,y 满足方程 x2+y2-4x+1=0. (1)求 y-x 的最大值和最小值; (2)求 x2+y2 的最大值和最小值. 解答 (1)方程 x2+y2-4x+1=0 可化为(x-2)2+y2=3,表示 以(2,0)为圆心,以 3为半径的圆. 设 y-x=b,则 y-x 可看作是直线 y=x+b 在 y 轴上的截距,
解答 (1)圆心 C(1,2),半径为 r=2, ①当直线的斜率不存在时,方程为 x=3. 由圆心 C(1,2)到直线 x=3 的距离 d=3-1=2=r 知, 此时,直线与圆相切.
②当直线的斜率存在时,设方程为 y-1=k(x-3), 即 kx-y+1-3k=0. 由题意知|k-2+ k2+1-1 3k|=2,解得 k=34. ∴方程为 y-1=34(x-3),即 3x-4y-5=0.
(2)设过 P 点的圆 C 的弦的中点为 D(x,y), 则 CD⊥PD,所以 kCD·kPD=-1, 即xy-+62·y-x 5=-1, 化简得所求轨迹方程为 x2+y2+2x-11y+30=0.
题型三 与圆有关的最值问题 与圆有关的最值问题,往往是已知圆的方程 f(x,y)=0,求xy, y-x,x2+y2 等量的最值或范围.解决的方法是:设(x,y)是 圆上任意一点,分别把给定的式子xy,y-x,x2+y2 赋予一定 的几何意义,这样就把有关最值问题转化成点、直线与圆的位
由于所求的圆与 y 轴相切,∴r2=a2 ②; 又因为所求圆心在直线 x-3y=0 上,∴a-3b=0 ③. 联立①②③,解得 a=3,b=1,r2=9 或 a=-3,b=-1,r2=9. 故所求的圆的方程是(x-3)2+(y-1)2=9 或(x+3)2+(y+1)2=9.
方法二:
设所求的圆的方程是 x2+y2+Dx+Ey+F=0,圆心为(-D2 ,-E2 ),半径为12 D2+E2-4F.
k=3±2 2时,直线 OP 与圆相切. 所以xy的最大值与最小值分别是 3+2 2与 3-2 2.
(2)设 x+y=b,则 y=-x+b,由图②知,当直线与圆 C 相切时, 截距 b 取最值.而圆心 C 到直线 y=-x+b 的距离为 d=|6-2b|. 因为当|6-b|= 6,即 b=6±2 3时,直线 y=-x+b 与圆 C 相切,
【解答】
方法 1:
1 a2 1 b2 r2, 设圆的方程为 x a2 y b2 r2 (r 0) .由题意得 1 a2 1 b2 r2,
a b 2 0.
所以, a 1,b 1,r 2 .
所以,圆的方程为 x 12 y 12 4 .
方法 2:
设圆的方程为 x2 y2 Dx Ey F 0 D2 E2 4F 0 .
•圆与方程 小结与复习
题型一 求圆的方程
求圆的方程需要三个独立条件.待定系数法是求圆的 方程的基本方法,当题设中圆心的条件明确时,常设 标准方程;当题设中圆与圆心、半径关系不密切,或 更突出方程的二次形式时,常设圆的一般方程.
例 1 求过 A1,1, B1,1,且圆心在直线 x y 2 0 上的圆的方程.
设所求直线 l 的斜率为 k,则直线 l 的方程为:y-5=kx,即 kx-y +5=0.由点 C 到直线 AB 的距离公式:|-2kk-2+6+1 5|=2,得 k=34,
此时直线 l 的方程为 3x-4y+20=0. 又∵直线 l 的斜率不存在时,也满足题意,此时方程为 x=0.
∴所求直线 l 的方程为 x=0,或 3x-4y+20=0.