圆与方程知识点小结
圆方程知识点总结

圆方程知识点总结一、圆的基本概念1.1 圆的定义在平面几何中,圆是一个平面上距离一个给定点(圆心)恒定距离的所有点的集合。
这个距离被称为圆的半径。
圆的直径是圆上两个点之间的最大距离,它等于半径的两倍。
1.2 圆的性质(1)圆的直径是圆的最长线段,它恰好将圆分为两个相等的半圆。
(2)圆的任意一条半径都与圆上的任意一点相连,这个半径就是这个点到圆心的距离。
(3)圆的所有直径均相等。
(4)圆上的所有弦都可以把圆分成两个部分,而且这两个部分的面积和相等。
1.3 圆的常见术语在讨论圆方程的时候,我们会使用一些特定的术语来描述圆的性质和位置关系。
下面是一些常见的圆相关术语:(1)圆心:圆的中心点,用O表示。
(2)半径:圆心到圆上任意一点的距离,用r表示。
(3)直径:穿过圆心的两个端点在圆上的线段,用d表示。
(4)弦:连接圆上两点的线段。
(5)弧:圆上两点之间的曲线部分。
二、圆方程的基本形式在平面直角坐标系中,圆的方程可以表示为:(x - h)² + (y - k)² = r²其中(h, k)是圆心的坐标,r是圆的半径。
这就是圆的标准方程形式。
这个方程说明了圆上的任意一点(x, y)到圆心的距离等于半径r。
在笛卡尔坐标系中,任意一条线段的长度可以根据两点的坐标差的平方根计算,所以这个方程实际上是在描述点(x, y)到点(h, k)的距离,然后判断这个距离是否等于半径r。
例如,一个圆心在坐标系原点,半径为3的圆的方程就可以表示为:因为圆心在原点,所以h=0,k=0,半径为3,所以r=3。
所以这个方程描述了所有距圆心距离为3的点的集合,即圆形。
三、圆方程的推导圆的方程可以通过几何推导和代数推导得到。
3.1 几何推导圆的方程可以通过几何推导得到。
如果圆心是坐标系原点,半径为r,那么圆上任意一点(x, y)到圆心的距离等于r。
这可以用勾股定理来表示:(x - 0)² + (y - 0)² = r²简化得到:x² + y² = r²这就是圆心在原点的圆的方程。
圆与方程知识点小结

引言圆与方程是数学中非常重要的概念和知识点之一。
在几何学和代数学中,圆与方程有着密切的联系和应用。
本文将详细讨论圆与方程的相关知识,包括圆的性质、方程的表示和解法等。
概述圆与方程是数学中两个独立但又有联系的领域。
圆是平面上一组到一个给定点的距离相等的点的集合。
方程是数学中用字母和数表示关系的式子。
通过方程,我们可以描述和解决各种数学问题。
圆与方程的结合,使得我们可以通过代数方法来研究和解决关于圆的问题。
正文内容一、圆的性质1. 圆的定义:圆是平面上一组到一个给定点的距离相等的点的集合。
这个给定点称为圆心,相等的距离称为半径。
2. 圆的元素:圆由圆心和半径两个元素确定。
圆心可以用坐标表示,而半径则是一个标量。
3. 圆的直径:圆上任意两点之间的最长距离称为圆的直径。
直径的长度是半径的两倍。
4. 圆弧:由圆上两点间的线段所在的弧称为圆弧。
圆弧的长度是圆周长的一部分。
5. 弦:两点在圆上的线段称为弦。
弦的长度小于等于直径的长度。
二、方程的表示与解法1. 圆的方程:对于平面上的一个点(x,y),距离圆心(h,k)的距离为半径r时,可以用方程表示为:(x-h)²+(y-k)²=r²2. 圆的标准方程:将方程展开,得到标准方程形式:x²+y²-2hx-2ky+h²+k²-r²=03. 方程的解析法:对于给定的圆方程,我们可以通过解方程的方法求解圆上的点坐标。
通过将方程中的未知数替换成已知数,再进行相应的计算或变换,可以得到点的坐标。
4. 方程的几何解释:方程表示了平面上的一条曲线,该曲线是圆与坐标轴的交点。
通过解方程,可以得到圆与坐标轴的交点坐标。
5. 方程的应用:方程的求解方法可以应用于解决与圆相关的各种数学问题,如确定圆心、半径和圆上的点位置等。
三、圆的相关性质与定理1. 切线:过圆上一点的直线称为切线。
切线与半径垂直。
2. 弧长:圆上两点之间的弧长度是弧所对的圆心角的度数的一部分。
高中圆与方程的总结知识点

高中圆与方程的总结知识点一、圆的基本概念1.1. 定义:圆是平面上与一个给定点的距离等于一个常数的点的集合。
1.2. 圆的要素:圆心、半径,圆的圆心记为O,圆的半径记作r。
1.3. 圆的直径:过圆心的两个点之间的线段称为圆的直径,它的长度等于圆的半径的两倍。
1.4. 圆的线段:圆上的一段弧称为圆的线段。
1.5. 圆的弧长:圆的线段的长度。
1.6. 圆的圆周角:圆上的一段的圆弧,其两端点为圆上的两点,则弧所对的圆心角称为圆的圆周角,当圆周角的弧的度数是360度时,这个角也叫圆的周角。
二、圆方程的基本概念2.1. 圆的标准方程:以点(h,k)为圆心,r为半径的圆方程为:(x-h)²+(y-k)²=r²。
2.2. 圆的一般方程:圆的一般方程的一般形式为x²+y²+ax+by+c=0。
三、圆与直线的方程3.1. 圆与坐标轴的交点:圆与x轴的交点(a,0)和与y轴的交点(0,b)。
3.2. 圆与直线的位置关系:圆可能与直线相切、相交或者不相交。
3.3. 圆的切线方程:圆的切线方程要求切点在圆上,与圆的切线垂直于和直径的直线相。
四、圆与圆的方程4.1. 圆的位置关系:两个圆可能相离、外切、内切、相交或者包含。
4.2. 圆的位置关系对应的方程:通过分析圆心之间的距离与半径之间的关系,可以确定两个圆的位置关系。
五、圆的参数化方程5.1. 参数化方程的定义:参数是指由一个或几个变化的量组成的多元函数。
5.2. 圆的参数化方程:圆可以用参数方程表示为:x=r*cos(t),y=r*sin(t)。
六、解题技巧6.1. 圆方程与圆心、半径的关系:根据圆的标准方程,可以直接读出圆心的坐标和半径的值。
6.2. 圆的切线方程:根据圆的切线要求即切点在圆上,利用斜率的关系求出切线的斜率,然后代入切点的坐标得出切线方程。
6.3. 圆与直线的位置关系:通过解方程组,可以得出圆与直线的交点坐标,从而分析它们的位置关系。
圆的方程知识点整理

4.已知圆 : ,直线 : ( )
(1)证明:不论 取什么值,直线 与圆 均有两个交点;
(2)求其中弦长最短的直线方程.
5.若直线 与曲线 恰有一个公共点,则 的取值范围.
6.已知圆 与直线 交于 , 两点, 为坐标原点,问:是否存在实数 ,使 ,若存在,求出 的值;若不存在,说明理由.
条件方程形式
圆心在原点
过原点
圆心在 轴上
圆心在 轴上
圆心在 轴上且过原点
圆心在 轴上且过原点
与 轴相切
与 轴相切
与两坐标轴都相切
二、一般方程
1. 表示圆方程则
2.求圆的一般方程一般可采用待定系数法:如教材 例 4
3. 常可用来求有关参数的范围
三、点与圆的位置关系
1.判断方法:点到圆心的距离 与半径 的大小关系
九、圆与圆的位置关系
1.判断方法:几何法( 为圆心距)
(1) 外离(2) 外切
(3) 相交(4) 内切
(5) 内含
2.两圆公共弦所在直线方程
圆 : ,圆 : ,
则 为两相交圆公共弦方程.
补充说明:
若 与 相切,则表示其中一条公切线方程;
若 与 相离,则表示连心线的中垂线方程.
3圆系问题
(1)过两圆 : 和 : 交点的圆系方程为 ( )
这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围.
2.直线与圆相切
(1)知识要点
①基本图形
②主要元素:切点坐标、切线方程、切线长等
问题:直线 与圆 相切意味着什么?
圆心 到直线 的距离恰好等于半径
(2)常见题型——求过定点的切线方程
圆知识点总结及归纳

第一讲 圆的方程一、知识清单(一)圆的定义及方程定义标准 方程一般方程平面内与定点的距离等于定长的点的会合 (轨迹 )(x - a)2 +(y -b)2= r 2(r>0)圆心: (a , b),半径: rx 2+ y 2+ Dx + Ey +F = 0圆心: - D ,- E,2 2 (D 2+E 2- 4F>0)半径: 1 D 2+ E 2- 4F21、圆的标准方程与一般方程的互化( 1)将圆的标准方程 (x -a)2+( y -b)2= r 2 睁开并整理得 x 2+ y 2- 2ax - 2by + a 2+ b 2- r 2= 0,取 D =- 2a ,E =- 2b , F = a 2+ b 2- r 2,得 x 2+ y 2+ Dx + Ey + F = 0.( 2)将圆的一般方程 x 2+ y 2+ Dx +Ey + F = 0 经过配方后获得的方程为:(x + D 2+ (y + E 2 D 2 +E 2- 4F2 ) 2 ) = 4①当 D 2+E 2- 4F>0 时,该方程表示以 (-D ,- E)为圆心, 1 D 2+ E 2 - 4F 为半径的圆;2 2 2②当 D 2+ E 2- 4F = 0x =- D , y =- E (- D 时,方程只有实数解2 2,即只表示一个点 2 ,-E);③当 D 2+ E 2- 4F<0 时,方程没有实数解,因此它不表示任何图形.22、圆的一般方程的特点是 : x 2 和 y 2 项的系数都为 1 ,没有 xy 的二次项 .3、圆的一般方程中有三个待定的系数 D 、 E 、 F ,所以只需求出这三个系数,圆的方程就确立了.(二)点与圆的地点关系点 M(x 0, y 0)与圆 (x -a)2+(y - b)2 =r 2 的地点关系:( 1)若 M(x 0, y 0)在圆外,则 (x 0- a)2+ (y 0- b) 2>r 2.( 2)若 M(x 0, y 0)在圆上,则 (x 0- a)2+ (y 0- b) 2= r 2.( 3)若 M(x 0, y 0)在圆内,则 (x 0- a)2+ (y 0- b) 2<r 2.(三)直线与圆的地点关系方法一:方法二:(四)圆与圆的地点关系1外离2外切3订交4内切5内含(五)圆的参数方程(六)温馨提示1、方程 Ax2+ Bxy+ Cy 2+ Dx + Ey+ F = 0 表示圆的条件是:( 1)B= 0;( 2) A=C≠0;( 3)D 2+ E2-4AF> 0.2、求圆的方程时,要注意应用圆的几何性质简化运算.( 1)圆心在过切点且与切线垂直的直线上.( 2)圆心在任一弦的中垂线上.( 3)两圆内切或外切时,切点与两圆圆心三点共线.3、中点坐标公式:已知平面直角坐标系中的两点A(x1,y1),B(x2, y2) ,点 M (x, y) 是线段 AB 的中点,则 x=x1x2 ,y=y1y2 .22二、典例概括考点一:相关圆的标准方程的求法【例1】圆22,半径是. x a y bm2 m 0 的圆心是【例2】点 (1,1)在圆 (x- a)2+ (y+ a)2= 4 内,则实数A . (- 1,1)C.( -∞,- 1)∪ (1,+∞ )a 的取值范围是(D. (1,+∞))B. (0,1)【例 3】圆心在 y 轴上,半径为1,且过点 (1,2)的圆的方程为 ()A . x2+ (y-2)2=1B. x2+ (y+ 2)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x2+ (y- 3)2= 1【例 4】圆 (x+2) 2+ y2= 5 对于原点P(0,0)对称的圆的方程为 ()A . (x- 2)2+y2=5B. x2+ (y- 2)2= 5C.( x+ 2) 2+ (y+2) 2= 5D. x2+ (y+ 2)2= 5【变式 1】已知圆的方程为x 1 x 2y 2 y 40 ,则圆心坐标为【变式 2】已知圆 C 与圆x 1221 对于直线 y x 对称,则圆C的方程为y【变式3】若圆 C 的半径为1,圆心在第一象限,且与直线4x- 3y= 0和x 轴都相切,则该圆的标准方程是()A . (x- 3)2+7y- 3 2= 1B. (x- 2)2+ (y- 1)2= 1C.( x- 1) 2+ (y-3) 2= 1D. x- 3 2+(y- 1)2= 12【变式4】已知ABC 的极点坐标分别是 A 1,5 , B 5,5 , C 6, 2 ,求ABC 外接圆的方程 .方法总结:1.利用待定系数法求圆的方程重点是成立对于a, b, r 的方程组.2.利用圆的几何性质求方程可直接求出圆心坐标和半径,从而写出方程,表现了数形联合思想的运用.考点二、相关圆的一般方程的求法【例 1】若方程 x2+ y2+ 4mx- 2y+5m=0 表示圆,则m 的取值范围是()A .1< m< 1 B . m<1或 m> 1 C .m<1D. m> 1 444【例 2】将圆 x2+ y2- 2x- 4y+1= 0 均分的直线是 ()A . x+ y- 1= 0B. x+ y+ 3= 0C. x-y+ 1= 0D. x- y+ 3= 0【例 3】圆 x2-2x+y2- 3=0 的圆心到直线x+3y- 3= 0 的距离为 ________.【变式 1】已知点P是圆C : x2y24x ay 5 0 上随意一点,P点对于直线2 x y 1 0 的对称点也在圆 C 上,则实数a =【变式 2】已知一个圆经过点 A 3,1 、 B 1,3 ,且圆心在3x y 20 上,求圆的方程 .【变式 3】平面直角坐标系中有 A 0,1 , B 2,1 , C 3,4 , D 1,2 四点,这四点可否在同一个圆上?为何?【变式4】假如三角形三个极点分别是O(0,0), A(0,15) , B(- 8,0),则它的内切圆方程为________________ .方法总结:1.利用待定系数法求圆的方程重点是成立对于D, E, F 的方程组.2.娴熟掌握圆的一般方程向标准方程的转变考点三、与圆相关的轨迹问题【例 1】动点 P到点A(8,0)的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【例 2】方程y25 x2表示的曲线是()A. 一条射线B. 一个圆C. 两条射线D. 半个圆【例3】在ABC 中,若点B,C的坐标分别是(-2,0)和(2,0),中线AD的长度是3,则点 A 的轨迹方程是()A. x2y23B. x2y24C. x 2222y 9 y 0 D. x y 9 x 01【例4】已知一曲线是与两个定点O(0,0) ,A(3,0) 距离的比为的点的轨迹.求这个曲线的方程,并画出曲线.【变式 1】方程x 1 12y 1 所表示的曲线是()A. 一个圆B. 两个圆C. 一个半圆D. 两个半圆【变式 2】动点 P 到点 A(8,0) 的距离是到点B(2,0)的距离的 2 倍,则动点P 的轨迹方程为()A . x2+ y2=32B. x2+ y2= 16C.( x- 1) 2+ y2=16D. x2+ (y- 1)2= 16【变式 3】如右图,过点M(- 6,0)作圆 C: x2+y2-6x- 4y+ 9= 0 的割线,交圆C于 A、B 两点,求线段 AB 的中点P 的轨迹.【变式4】如图,已知点A( -1,0)与点长至 D ,使得 |CD |= |BC|,求 AC 与 ODB(1,0), C 是圆 x2+ y2= 1 上的动点,连结的交点 P 的轨迹方程.BC 并延方法总结:求与圆相关的轨迹问题时,依据题设条件的不一样常采纳以下方法:(1)直接法:依据题目条件,成立坐标系,设出动点坐标,找出动点知足的条件,而后化简.(2)定义法:依据直线、圆等定义列方程.(3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点知足的关系式等.考点四:与圆相关的最值问题【例 1】已知圆x2+ y2+ 2x- 4y+ a= 0 对于直线y= 2x+b 成轴对称,则a- b 的取值范围是________【例 2】已知 x, y 知足 x2+ y2= 1,则y-2的最小值为 ________.x- 1【例 3】已知点则|MN|的最小值是M 是直线()3x+ 4y- 2= 0 上的动点,点N 为圆( x+1) 2+ (y+1)2= 1 上的动点,9A. 5B. 14C.5D.135【例 4】已知实数x, y 知足 (x- 2)2+ (y+ 1)2= 1 则 2x- y 的最大值为 ________,最小值为________.【变式 1】 P(x, y)在圆 C: (x- 1)2+ (y- 1)2=1 上挪动,则x2+ y2的最小值为 ________.【变式 2】由直线 y= x+ 2 上的点 P 向圆 C: (x- 4)2+ (y+ 2)2= 1 引切线 PT(T 为切点 ),当|PT|最小时,点 P 的坐标是 ()A . (- 1,1)B. (0,2)C . (- 2,0)D. (1,3)【变式 3】已知两点A(- 2,0), B(0,2),点积的最小值是 ________.C 是圆x2+ y2- 2x= 0 上随意一点,则△ABC面【变式 4】已知圆M 过两点 C(1,- 1), D (- 1,1),且圆心M 在 x+y- 2= 0 上.(1)求圆 M 的方程;(2)设 P 是直线 3x+ 4y+ 8=0 上的动点, PA、 PB 是圆 M 的两条切线, A, B 为切点,求四边形 PAMB 面积的最小值.方法总结:解决与圆相关的最值问题的常用方法(1)形如 u=y-b的最值问题,可转变为定点 (a, b)与圆上的动点 ( x,y)的斜率的最值问题x - a(2)形如 t= ax+ by 的最值问题,可转变为动直线的截距的最值问题;(3)形如 (x- a)2+ (y- b)2的最值问题,可转变为动点到定点的距离的最值问题.(4)一条直线与圆相离,在圆上找一点到直线的最大(小)值: d r (此中d为圆心到直线的距离)。
圆与方程总结知识点

圆与方程总结知识点在数学中,圆与方程是几何学和代数学的重要内容之一,它们在数学中有着广泛的应用和重要的地位。
圆与方程的学习不仅有助于学生对数学的理解和应用,还有助于培养学生的逻辑思维能力和数学解决问题的能力。
本文将对圆与方程的知识点进行总结,希望能够帮助学生更好地掌握这一内容。
圆的基本概念首先,我们来认识一下圆这个几何图形。
圆是一个平面上所有与一个给定点的距离相等的点的集合。
这个给定点叫做圆心,所有距离相等的点到圆心的距离叫做半径。
圆的直径是通过圆心的两条平行线段的长。
圆的周长是圆的边界的长度,用符号C表示。
圆的面积是圆内部的所有点的集合,用符号A表示。
圆的方程通常有两种形式:标准方程和一般方程。
标准方程是x²+y²=r²,其中(x, y)是圆上的任意一点,r是圆的半径。
一般方程是(x-h)²+(y-k)²=r²,其中(h, k)是圆心的坐标。
圆的方程可以通过圆心和半径来确定,也可以通过圆上的某一点和圆的半径来确定。
圆的方程求解求解圆的方程是圆与方程的重要内容之一。
在求解圆的方程时,我们通常需要已知圆的中心坐标和半径。
如果已知圆的中心坐标和半径,我们可以根据标准方程的形式直接写出圆的方程。
如果已知圆上的某一点和圆心的坐标,我们可以利用已知点和圆心的距离等于半径来确定圆的方程。
圆与直线的关系圆与直线的关系是圆与方程的另一个重要内容。
在圆与直线的关系中,我们通常需要研究直线与圆的位置关系、直线与圆的交点和直线与圆的切点等问题。
首先,直线与圆的位置关系包括直线在圆内部、外部和与圆相切三种情况。
其次,直线与圆的交点是指直线与圆的交点的个数。
最后,直线与圆的切点是指直线与圆相切的点的位置。
圆与方程的应用圆与方程的应用是圆与方程的重要内容之一。
在实际应用中,圆与方程的知识可以帮助我们解决实际问题。
例如,在工程领域中,圆与方程的知识可以帮助我们设计圆形结构、计算圆形结构的尺寸等。
《圆的方程》知识点

圆的方程一、圆的标准方程1、圆的标准方程:222()()x a y b r -+-= 圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内二、 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
三、 直线与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D--到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交.四、 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含.。
圆与方程知识点归纳总结

圆与方程1. 圆的标准方程:以点C(a,b)为圆心,r为半径的圆的标准方程是( x a) 2 ( y b) 2 r2.特例:圆心在座标原点,半径为r 的圆的方程是: x 2 y 2 r 2.2.点与圆的地点关系:(1). 设点到圆心的距离为d,圆半径为r :a.点在圆内d< r ;b. 点在圆上d=r ;c. 点在圆外d> r(2). 给定点M ( x0, y0) 及圆 C : ( x a) 2 ( y b) 2 r 2.①M在圆C内( x0 a) 2 ( y0 b )2 r 2②M在圆C上( x0 a) 2 ( y 0 b) 2 r 2③M在圆C外( x0 a) 2 ( y0 b )2 r 2(3)涉及最值:①圆外一点 B ,圆上一动点 P ,谈论 PB 的最值PB min BN BC rPB max BM BC r②圆内一点 A ,圆上一动点P ,谈论 PA 的最值PA min AN r ACPA max AM r AC思虑:过此 A 点作最短的弦?(此弦垂直AC )3. 圆的一般方程:x2 y2 Dx Ey F 0 .(1) 当D2 E2 4F 0时,方程表示一个圆,此中圆心 C D , E ,半径 r D2 E2 4F .2 2 2(2) 当 D 2 E 2 4F 0 时,方程表示一个点 D , E .2 2(3) 当D2 E2 4F 0 时,方程不表示任何图形.注:方程 Ax 2 Bxy Cy 2 Dx Ey F 0表示圆的充要条件是:B 0且A C 0 且D 2 E2 4AF 0 .4.直线与圆的地点关系:直线 Ax By C 0 与圆( x a) 2 ( y b)2 r 2圆心到直线的距离 d Aa Bb C A2 B 21)d r 直线与圆相离无交点;2) d r 直线与圆相切只有一个交点;3) d r 直线与圆订交有两个交点;弦长 |AB| =2 r2 d2 rdd=r r dAx By C 0 还可以利用直线方程与圆的方程联立方程组y2 求解,经过解x2 Dx Ey F 0 的个数来判断:( 1)当0 时,直线与圆有 2 个交点,,直线与圆订交;( 2)当0 时,直线与圆只有 1 个交点,直线与圆相切;(3)当0 时,直线与圆没有交点,直线与圆相离;5.两圆的地点关系(1)设两圆C1: (x a1 ) 2( y b1 )2r12与圆 C 2 : (x a2 ) 2( y b2 )2r22,圆心距 d (a1 a2 )2 (b1 b2 )2① d r1 r2 外离4条公切线;② d r1 r2 外切3条公切线;③r1 r2 d r1 r2 订交2条公切线;④ d r1 r2 内切1条公切线;⑤0 d r1 r2 内含无公切线;外离外切订交内切(2)两圆公共弦所在直线方程圆 2 21 : x y D1 x E1 y F1 0 ,C圆 C2: x2 y2 D 2 x E2 y F2 0 ,则D1 D2 x E1 E2 y F1 F2 0 为两订交圆公共弦方程.增补说明:①若 C1与 C2相切,则表示此中一条公切线方程;②若 C1与 C2相离,则表示连心线的中垂线方程.(3)圆系问题过两圆C1: x2 y2 D1 x E1 y F1 0 和 C 2: x2 y2 D 2x E2 y F2 0 交点的圆系方程为x2 y2 D1 x E1 y F1 x2 y2 D2x E2 y F2 0 ( 1 )增补:①上述圆系不包含C2;②2)当1时,表示过两圆交点的直线方程(公共弦)③过直线 A x B y C 0 与圆x2 y2 Dx Ey F 0 交点的圆系方程为x2 y2 Dx Ey F Ax By C 06.过一点作圆的切线的方程:(1)过圆外一点的切线:①k 不存在,考据能否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即y1 y 0 k( x1 x0 )b y1 k(a x1 )RR2 1求解 k,获得切线方程【必定两解】例 1.经过点P(1,—2)点作圆(x+1)2+(y—2)2=4的切线,则切线方程为。
高二圆与方程的知识点总结

高二圆与方程的知识点总结圆与方程是高二数学学习中的重要知识点,掌握好这部分内容对于后续学习和解题都非常关键。
本文将对高二圆与方程的知识点进行总结,帮助同学们更好地理解和应用这些知识。
一、圆的基本性质1. 定义:平面上到定点距离相等的点的集合就是一个圆。
2. 圆的部分:圆心、半径和圆周。
3. 公式:- 圆心坐标公式:设圆心为(a,b),半径为r,则圆的方程为:(x-a)² + (y-b)² = r²。
- 圆的一般方程:将圆心坐标公式展开,整理得:x² + y² + Dx + Ey + F = 0。
(注:D、E、F为常数)二、直线与圆的位置关系1. 直线与圆相交的情况:- 相离:直线与圆没有交点。
- 相切:直线与圆有且仅有一个交点。
- 相交:直线与圆有两个交点。
2. 直线与圆的判别方法:- 写出直线方程和圆方程,将直线方程代入圆方程,解方程组即可得到交点或判别关系。
- 使用几何方法判别,如定理、推论等。
三、圆的方程与位置关系1. 一般方程的性质:- 如果D²+E² > 4F,则方程代表一个实心圆。
- 如果D²+E² = 4F,则方程代表一个过圆心的直线。
- 如果D²+E² < 4F,则方程代表一个过圆心的虚圆。
2. 圆的标准方程:- 圆的标准方程为:(x-h)² + (y-k)² = r²。
其中,(h, k)为圆心坐标,r为半径。
四、圆的切线与法线1. 切线与法线的定义:- 切线:圆上的一点到圆心的直线称为该点处的切线。
- 法线:垂直于切线的直线称为切线的法线。
2. 切线的斜率公式:- 设圆的方程为:x² + y² + Dx + Ey + F = 0,过圆上一点P(x₀, y₀)的切线方程为:xx₀ + yy₀ + (Dx₀+Ey₀) + F = 0。
圆与方程知识点总结

圆与方程知识点总结圆的定义和性质:圆的方程及表达方式:1.标准方程:圆的标准方程是(x-h)^2+(y-k)^2=r^2,其中(h,k)表示圆心的坐标,r表示半径。
标准方程用于表示圆心不在原点的圆。
2.一般方程:圆的一般方程是x^2+y^2+Dx+Ey+F=0,其中D、E、F为任意实数。
一般方程用于表示圆心在原点的圆。
3. 参数方程:圆的参数方程分别为x=h+r*cosθ y=k+r*sinθ,其中(h,k)为圆心坐标,r为半径,θ为取值范围在0到2π之间的参数。
参数方程用于描述圆上各点的坐标。
圆的方程与图像的关系:1.圆心位置:圆的方程可以帮助确定圆心的位置。
当方程为标准方程时,圆心的坐标就是方程中"(h,k)"的值。
当方程为一般方程时,根据方程的形式可以得知圆心在(x等于D/2,y等于E/2)的点上。
2.半径大小:圆的方程中的r值表示半径的大小。
半径是圆上任意一点到圆心的距离,通过方程可以得到半径的值。
3.图像形状:圆的方程描述了圆的几何形状,通过方程可以确定圆的半径,并且可以利用方程画出圆的图像。
当方程中的常数项F为0时,表示圆心在原点,可以用该方程画出圆的图像。
圆与方程的应用:1.几何学中,圆是一种重要的几何图形,广泛应用于计算圆的面积、周长和弧长。
通过圆的方程可以帮助几何学家推导圆的相关性质,以及与其他几何图形的关系。
2.物理学中,圆的方程用于描述运动中的圆形轨迹,如行星在椭圆轨道上运动。
通过分析轨道方程可以计算出行星的运动轨迹、速度和加速度等物理量。
3.工程学中,圆的方程广泛应用于计算机图形学、计算机辅助设计(CAD)和机器人技术等领域。
利用圆的方程可以计算出圆形图案和零件的尺寸,使得工程师能够更好地设计和制造产品。
4.经济学中,圆的方程可应用于计算边际收益、成本曲线和供求关系等经济学模型。
通过圆的方程可以计算出最优决策和市场均衡等经济指标。
总结:圆是数学中一个重要的几何图形,通过方程可以描述圆的几何形状、圆心位置和半径大小。
初中数学圆的方程知识点

初中数学圆的方程知识点
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的'标准方程是(xa)^2+(yb)^2=r^2。
特殊地,以原点为圆心,半径为r(r0)的圆的标准方程为x^2+y^2=r^2。
2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^24F)/4.故有:
(1)、当D^2+E^24F0时,方程表示以(D/2,E/2)为圆心,以(√D^2+E^24F)/2为半径的圆;
(2)、当D^2+E^24F=0时,方程表示一个点(D/2,E/2);
(3)、当D^2+E^24F0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数) 圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB 为直径的圆的方程为 (xa1)(xa2)+(yb1)(yb2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2
在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2 圆的方程学问在学校数学逇学习中涉及到的并不是许多,同学们把握基础就好。
第1页。
圆与方程知识点整理

圆与方程知识点整理一、圆的定义和性质圆是由平面上与一定点距离相等的点的集合组成。
圆的性质:1. 圆心与圆上任意点的距离相等。
2. 圆上任意两点与圆心的连线垂直。
3. 圆的直径是圆上任意两点的距离中最大的。
4. 圆的半径是圆上任意一条线段的一半。
二、圆的方程1. 标准方程一般地,圆的标准方程为:(x - h)² + (y - k)² = r²其中,(h, k)为圆心坐标,r为半径长度。
2. 一般方程圆的一般方程为:x² + y² + Dx + Ey + F = 0其中,D、E、F为实数。
三、圆的常见问题1. 判定点与圆的位置关系当给定一个点P(x₁, y₁)和圆C[(x - h)² + (y - k)² = r²]时,可以通过计算点到圆心的距离是否等于半径来判断点与圆的位置关系。
若 d(P, C) < r,则点P在圆内部;若 d(P, C) = r,则点P在圆上;若 d(P, C) > r,则点P在圆外部。
2. 圆的相交关系两个圆的相交关系有三种情况:(1)外离:两个圆的圆心之间的距离大于两个圆的半径之和;(2)外切:两个圆的圆心之间的距离等于两个圆的半径之和;(3)相交:两个圆的圆心之间的距离小于两个圆的半径之和。
四、圆的应用1. 定义:圆在几何图形中具有重要的作用,常用于解决与圆相关的几何问题。
2. 圆的建模:在现实世界中,很多物体或运动都可以用圆的概念进行建模,例如轮子、钟表等。
3. 圆的运动学:圆的运动学涉及到圆的半径、速度、角速度等概念,广泛应用于航天、机械等领域。
总结:圆是几何学中的重要概念,具有独特的定义和性质。
我们可以通过圆的方程来描述和计算圆的属性,同时也可以利用圆的性质解决与圆相关的问题。
圆的应用范围广泛,不仅在几何学中有重要作用,还在物理学、工程学等领域发挥着重要的作用。
掌握圆与方程的知识点,对于学习和应用几何学具有重要意义。
高二数学必修二-第四章-圆与圆的方程知识点汇总

高二数学必修二-第四章-圆与圆的方程知识点汇总————————————————————————————————作者:————————————————————————————————日期:第四章 圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内; (2)一般方程022=++++F Ey Dx y x(x+D/2)2+(y+E/2)2=(D 2+E 2-4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k ,①若求得两个不同的解,带入所设切线的方程即可;②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线)(3) 过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2两圆的位置关系 判断条件 公切线条数外离 d>r1+r2 4条 外切 d=r1+r2 3条 相交 |r1-r2|<d<r1+r2 2条 内切 d=|r1-r2| 1条 内含d<|r1-r2|0条★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
圆与方程知识点

1 2 2 )半径 2 D E 4F
2.特殊位置的圆的标准方程设法(无需记,关 键能理解)
圆心在原点 圆心在 x 轴上 圆心在 y 轴上 与 x 轴相切 与 y 轴相切 与两坐标轴都相切
x2 y 2 r 2 r 0
2 2 x a y r r 0 2
变式5.求圆 x2 y 2 4 x 12 y 39 0 关于直线3x-4y+5=0 的对称圆方程.
题型二 求轨迹方程与切线方程
例1.一曲线是与定点O(0,0),A(3,0)距离的 1 比是 的点的轨迹,求此曲线的轨迹方程
2
例2.从点P(4,5)向圆(x-2)2+y2=4引切线,求切线方程.
③ M 在圆 C 外 ( x0 a)2 ( y 0 b)2 r 2
三、直线与圆的位置关系判断方法
(1)几何法:由圆心到直线的距离d和圆的半径r的 大小关系来判断。 d=r 为相切, d<r 为相交, d>r为相离。
适用于已知直线和圆的方程判断二者关系。 利用这种方法,可以简单的算出直线与圆相交时的相交弦的长, 以及当直线与圆相离时,圆上的点到直线的最远、最近距离等。
D F 4, 3 2 2
得圆心坐标为(4,-3).
变式2(01年全国卷.文)过点A (1,-1)、B (-1,1)且圆 心在直线x+y-2=0上的圆的方程是(C)
A.( x 3) ( y 1) 4
2 2
B.( x 3) ( y 1) 4
2 2
C.( x 1) ( y 1) 4
解:将圆的方程写成标准形式有 x2+(y+2) 2=25,所以圆心为(0,-2),半径为 5.因为直线 l 被圆 x2+y2+4y-21=0 所截得的弦长为 4 5 ,所以弦心距为 5 (2 5 ) = 5 ,圆心到直线的距离
必修二数学圆与方程知识点总结

必修二数学圆与方程知识点总结1. 圆的定义:圆是由平面上与一点(圆心)距离相等的点的集合。
2. 圆的元素:圆心、半径。
可以用(x-a)² + (y-b)² = r²表示,其中(a,b)表示圆心的坐标,r表示半径。
3. 圆的方程:一般方程:Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E为常数,A和B不能同时为零。
4. 圆的标准方程:(x-h)² + (y-k)² = r²,其中(h,k)表示圆心的坐标,r表示半径。
5. 圆的性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径的两倍。
- 圆的半径垂直于切线,切线与半径的夹角为90度。
- 圆的弦是圆上两点之间的线段,弦的中点与圆心连线垂直,且中点在弦的中垂线上。
- 圆的弧是圆上的一段连续的线段。
- 圆心角是以圆心为顶点的角,在弧上所对的圆心角相等的弧相等。
6. 圆的相关公式:- 圆的周长:C = 2πr,其中r为半径。
- 圆的面积:A = πr²,其中r为半径。
7. 方程相关知识点:- 一次方程:形如ax + b = 0的方程,其中a和b为常数,a ≠ 0。
- 二次方程:形如ax² + bx + c = 0的方程,其中a、b、c为常数,a ≠ 0。
- 一元二次方程:只含有一个未知数的二次方程。
- 二元二次方程:同时含有两个未知数的二次方程。
- 解方程的方法:因式分解法、配方法、求根公式等。
这些是必修二数学中关于圆与方程的一些重要知识点总结,希望能对你有所帮助!。
圆与方程知识点整理

关于圆与方程的知识点整理 一、标准方程:()()222x a y b r -+-= 二、一般方程:()2222040x y Dx Ey F D E F ++++=+->1.220Ax By Cxy Dx Ey F +++++=表示圆方程则 222200004040A B A B C C D E AF D E F A A A ⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅> ⎪ ⎪⎪⎝⎭⎝⎭⎩ 2.求圆的一般方程一般可采用待定系数法。
3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小:d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==-max PA AM r AC ==+四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离):(1)相离⇔没有公共点⇔0d r ∆<⇔>;(2)相切⇔只有一个公共点⇔0d r ∆=⇔=;(3)相交⇔有两个公共点⇔0d r ∆>⇔<。
这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围.2.直线与圆相切(1)知识要点:①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线l 与圆C 相切意味着什么?圆心C 到直线l 的距离恰好等于半径r(2)常见题型——求过定点的切线方程①切线条数:点在圆外——两条;点在圆上……一条;点在圆内……无②求切线方程的方法及注意点...i )点在圆外:如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上……千万不要漏了!如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程. ii )点在圆上:(1)若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r +=(2)若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为()()()()200x a x a y b y b r --+--= 由上述分析:过一定点求某圆的切线方程,非常重要的第一步——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,22222AP CP r AP CP r =-⇒=- 求切点坐标:利用两个关系列出两个方程1AC APAC r k k ⎧=⎨⋅=-⎩ 3.直线与圆相交(1)求弦长及弦长的应用问题:垂径定理....及勾股定理——常用 弦长公式:()()222121212114l k x x k x x x x ⎡⎤=+-=++-⎣⎦(2)判断直线与圆相交的一种特殊方法:直线过定点,而定点恰好在圆内.(3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是_________________. 答案:()4,64.直线与圆相离:会对直线与圆相离作出判断(特别是涉及一些参数时)五、对称问题1.若圆()222120x y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____.答案:3(注意:1m =-时,2240D E F +-<,故舍去) 变式:已知点A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数a =_________.2.圆()()22131x y -+-=关于直线0x y +=对称的曲线方程是________________. 变式:已知圆1C :()()22421x y -+-=与圆2C :()()22241x y -+-=关于直线l 对称,则直线l 的方程为_______________.3.圆()()22311x y -++=关于点()2,3对称的曲线方程是__________________.4.已知直线l :y x b =+与圆C :221x y +=,问:是否存在实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于点247,2525B ⎛⎫ ⎪⎝⎭?若存在,求出b 的值;若不存在,试说明理由. 六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程1.已知实数x ,y 满足方程22410x y x +-+=,求: (1)5y x -的最大值和最小值;——看作斜率 (2)y x -的最小值;——截距(线性规划) (3)22x y +的最大值和最小值.——两点间的距离的平方2.已知AOB ∆中,3OB =,4OA =,5AB =,点P 是AOB ∆内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值. 数形结合和参数方程两种方法均可!3.设(),P x y 为圆()2211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:1c ≥(数形结合和参数方程两种方法均可!)七、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ;()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数八、相关应用1.若直线240mx ny +-=(m ,n R ∈),始终平分圆224240x y x y +---=的周长,则m n ⋅的取值范围是______________.2.已知圆C :222440x y x y +-+-=,问:是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程,若不存在,说明理由.提示:12120x x y y +=或弦长公式12d x =-. 答案:10x y -+=或40x y --=3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22d PA PB =+,求d 的最值及对应的P 点坐标.4.已知圆C :()()221225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点;(2)求其中弦长最短的直线方程.5.若直线y x k =-+与曲线x =,则k 的取值范围.6.已知圆2260x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存在实数m ,使OP OQ ⊥,若存在,求出m 的值;若不存在,说明理由.九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距):(1)12d r r >+⇔外离 (2)12d r r =+⇔外切(3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含2.两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.补充说明:若1C 与2C 相切,则表示其中一条公切线方程;若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题(1)过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦)(2)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程()220x y Dx Ey F Ax By C λ+++++++= (3)两圆公切线的条数问题:①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线十、轨迹方程(1)定义法(圆的定义)(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式…轨迹方程.例:过圆221x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程. 分析:222OP AP OA +=(3)相关点法(平移转换法):一点随另一点的变动而变动特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例1.如图,已知定点()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.分析:角平分线定理和定比分点公式.例2.已知圆O :229x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3BAC π∠=,求ABC ∆的重心G 的轨迹方程.法1:3BAC π∠=Q ,BC ∴为定长且等于33设(),G x y ,则33333A B C B C A B C B Cx x x x x x y y y y y y ++++⎧==⎪⎪⎨+++⎪==⎪⎩取BC 的中点为33,24E x ⎡⎫∈-⎪⎢⎣⎭,333,2E y ⎛⎤∈- ⎥ ⎝⎦ 222OE CE OC +=Q ,2294E E x y ∴+=L L (1) 2222B C E B C E B C E B C E x x x x x x y y y y y y +⎧=⎪+=⎧⎪⇒⎨⎨+=+⎩⎪=⎪⎩,3233322323E E E E x x x x y y y y +-⎧⎧==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩故由(1)得:()2222333933110,,,12242x y x y x y ⎛⎤-⎛⎫⎛⎫⎡⎫+=⇒-+=∈∈- ⎥ ⎪ ⎪⎪⎢ ⎝⎭⎝⎭⎣⎭⎝⎦法2:(参数法)设()3cos ,3sin B θθ,由223BOC BAC π∠=∠=,则 223cos ,3sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设(),G x y ,则()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ⎧⎛⎫+++ ⎪⎪++⎛⎫⎝⎭⎪===+++ ⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪++⎛⎫⎝⎭===++⎪ ⎪⎝⎭⎩L L L 4,33ππθ⎛⎫∈ ⎪⎝⎭,由()()()22112-+得:()2233110,,,12x y x y ⎛⎤⎡⎫-+=∈∈- ⎥⎪⎢ ⎣⎭⎝⎦参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消参..得到动点轨迹方程,通过参数的范围得出x ,y 的范围.(4)求轨迹方程常用到得知识①重心(),G x y ,33A B C A B C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩②中点(),P x y ,121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩ ③内角平分线定理:BDABCD AC =④定比分点公式:AM MB λ=,则1A B M x x x λλ+=+,1A B M y y y λλ+=+ ⑤韦达定理. 高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.圆的方程为20)1(22=++y x ;点P 在圆外. 例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切,∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等. ∴5252yx yx +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上.设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC , ∴22)53(532-+=+t t tt .化简整理得0562=+-t t .解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55.∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x . 说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r .则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2.∴222b r = 又圆截y 轴所得弦长为2.∴122+=a r . 又∵),(b a P 到直线02=-y x 的距离为52ba d -= ∴2225b a d -=ab b a 4422-+=)(242222b a b a +-+≥1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b ba∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a 又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x解法二:同解法一,得52ba d -=. ∴db a 52±=-. ∴2225544d bd b a +±=. 将1222-=b a 代入上式得: 01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d , ∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢? 类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y根据r d =∴ 21422=++-k k解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x . 说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆与方程
2、1圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.
特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.
2、2点与圆的位置关系:
1. 设点到圆心的距离为d ,圆半径为r :
(1)点在圆上 d=r ; (2)点在圆外 d >r ; (3)点在圆内 d <r .
2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-.
①M 在圆C 内22020)()(r b y a x <-+-⇔ ②M 在圆C 上22020)()r b y a x =-+-⇔
( ③M 在圆C 外22020)()(r b y a x >-+-⇔
2、3 圆的一般方程:022=++++F Ey Dx y x .
当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫ ⎝⎛--2,2E D C ,半径2
422F E D r -+=. 当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝
⎛--2,2E D . 当0422<-+F E D 时,方程无图形(称虚圆).
注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.
圆的直径或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A
2、4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种
(1)若22B A C
Bb Aa d +++=,0<∆⇔⇔>相离r d ;
(2)0=∆⇔⇔=相切r d ; (3)0>∆⇔⇔<相交r d 。
还可以利用直线方程与圆的方程联立方程组⎩⎨
⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解
的个数来判断:
(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;
(2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切;
(3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;
即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为Δ,圆心C 到直线l
的距离为d,则直线与圆的
位置关系满足以下关系:
相切⇔d=r ⇔Δ=0(2)相交⇔d<r ⇔Δ>0; (3)相离⇔d>r ⇔Δ<0。
2、5 两圆的位置关系
设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21。
(1)条公切线外离421⇔⇔+>r r d ;(2)条公切线外切321⇔⇔+=r r d ;
(3)条公切线相交22121⇔⇔+<<-r r d r r ;(4)条公切线内切121⇔⇔-=r r d ;
(5)无公切线内含⇔⇔-<<210r r d ;
外离 外切 相交 内切 内含
2、6 圆的切线方程:圆222r y x =+的斜率为k 的切线方程是r k kx y 21+±=过圆
022=++++F Ey Dx y x
上一点),(00y x P 的切线方程为:02
20000=++++++F y y E x x D y y x x . 一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0 – b)=R 2.
特别地,过圆222r y x =+上一点),(00y x P 的切线方程为200r y y x x =+.
若点(x 0 ,y 0)不在圆上,圆心为(a,b)则⎪⎩
⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y ,联立求出⇒k 切线方程.。