融合蛋白标签

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在蛋白质功能及结构研究过程中,研究的首要任务就是利用多种方法获得纯化的具有完整结构及生物学功能并能够正确折叠的高度纯化蛋白质。除了蛋白质的研究,具有特定生物活性的高价值蛋白质的生产也需要对蛋白质产品进行纯化。因此,科研人员和工业生产往往大量采用多种多样的表达系统来获得高表达的蛋白质,对其纯化后进行研究或加工,这些表达系统包括原核表达系统、酵母菌表达系统、昆虫动物细胞表达系统、真核细胞表达系统等。

如何将系统中表达的目标蛋白质与其他蛋白分离,一直是表达纯化中的一个重点。为了克服从复杂样品中纯化单一蛋白质这种困难,科学家利用生物物质,特别是酶和抗体等蛋白质,具有识别某种特定物质并与该物质分子特异性结合的能力,利用生物分子间的这种特异性结合能力而形成的亲和纯化技术。亲和标签纯化技术已广泛应用于蛋白质,特别是重组蛋白的分离纯化中。在重组蛋白的亲和纯化中,利用基因工程技术,将经过改造优化的亲和标签与目标蛋白融合表达,通过一步简单快速的亲和层析,直接获得纯度较高的重组融合蛋白,已成为重组蛋白纯化的一个通用方法,具有结合特异性高、纯化步骤简便、纯化条件温和、适用性广泛等优点,为蛋白质的有效纯化提供了一条解决的途径,广泛应用于蛋白质结构与功能的研究及重组蛋白纯化工艺的开发中。

自从20世纪70年代中期融合标签技术出现以来,亲和标签已成为一种重组蛋白纯化十分有效的工具,具有结合特异性高、纯化条件温和、纯化步骤简便、适用性广泛等显著优势。通常,亲和标签定义为对特定的生物或化学配基具有高度亲和力的一段氨基酸序列。到目前为止,已经出现了种类众多、功能各异、用途多样的亲和标签,极大地促进了对重组蛋白的有效纯化。

根据自身分子量大小的不同,亲和标签可以分为两大类:一类是结合固定化配基的短肽标签,如His-tag、FLAG-tag、Strep-tagⅡ等;另一类是识别小分子配基的蛋白标签,如GST、MBP等。

短肽标签:

His-tag:His标签是目前高通量蛋白纯化最普遍使用的亲和标签,广泛用于多种重组蛋白在各种表达系统的表达与纯化中。His标签一般为5~15个组氨酸,被认为是重组蛋白纯化的首选标签,具有以下优点:(1)位于目标蛋白N端的His标签与细菌的转录翻译机制相互兼容,利于蛋白的表达;(2)His标签几乎

不影响目标蛋白的理化性质;(3)His标签很小,不会改变目标蛋白的可溶性;(4)His标签在目标蛋白结晶后对蛋白结构几乎没有影响;(5)采用固定化金属离子亲和层析纯化His标签融合蛋白时,其操作非常简便。基于上述优点,几乎所有的大型结构基因组研究中心都把纯化His标签融合蛋白的固定化金属离子亲和层析(immobilized metal-ion affinity chromatography,IMAC)作为主要的蛋白纯化方法。

然而,并不是所有的蛋白质都可以与His标签融合后,采用固定化金属离子亲和层析分离纯化。宿主蛋白中含有半胱氨酸及天然发生的组氨酸丰富区域,在固定化金属离子亲和层析时可能会导致其他蛋白的非特异性结合;目标蛋白含有金属离子,一般也不采用His标签与固定化金属离子亲和层析。

FLAG-tag:除了His标签外,另一个广泛使用的小分子短肽标签是FLAG标签。FLAG标签是由8个氨基酸(DYKDDDDK)组成的一个短肽,分子量很小,因而不会遮盖融合蛋白中其他的蛋白表位与结构域,也不会改变融合蛋白的功能、分泌或运输。该标签具有天然的亲水特性,很容易定位于融合蛋白的表面,便于利用抗体检测;同时含有一个肠激酶切割位点(DDDK),可以利用肠激酶切除标签。FLAG标签有3个特异性的单克隆抗体,分别为M1单抗、M2单抗、M5单抗。FLAG 短肽合成成本较高,不适用于大规模纯化,且需要额外步骤除去结合在层析介质上的短肽。

Strep-tag Ⅱ:与His-tag、FLAG-tag相似,Strep-tag Ⅱ也是一个小分子的短肽标签,广泛用于多种目标蛋白在原核表达系统、哺乳动物细胞表达系统等的表达与纯化中。在自然界中,链霉亲和素(streptavidin)与生物素(biotin)之间存在着非常强烈的非共价相互作用,其生物学上的解离常数极低;即使生物素与其他蛋白质共价结合之后,两者仍可以相互作用。基于这两者之间的强烈相互作用,运用一系列蛋白质工程手段,通过对短肽文库的筛选,第一个链霉亲和素结合肽应运而生,即Strep-tag,极大地方便了重组蛋白的一步快速亲和纯化。然而,Strep-tag与链霉亲和素结合时需要一个自由的羧基末端,因而该标签只能位于目标蛋白的C端,限制了它的应用范围。在Strep-tag的基础上,通过对合成短肽的筛选,获得了一个与其相似、由8个氨基酸(WSHPQFEK)组成的链霉亲和素结合肽,即Strep-tagⅡ,可以位于融合蛋白的任意位置,从而弥补了

Strep-tag的不足。同时,通过对链霉亲和素特定氨基酸的定向突变,获得了与Strep-tagⅡ具有更高亲和力的亲和介质Strep-tactin,在Strep-tagⅡ融合蛋白的亲和纯化中表现出良好的纯化效果,且蛋白质产量较高,所需成本适中。Strep-tagⅡ系统的纯化条件比较宽泛,在普通缓冲液下就可与strep-Tactin 层析介质结合,使用2.5mmol/L的脱硫生物素就可将Strep-tagⅡ融合蛋白洗脱下来,螯合剂、去污剂、还原剂及高达1mol/L的盐均可加入到缓冲液中。此外,Strep-tag Ⅱ在纯化过程中不依赖金属离子,十分适合含金属离子蛋白质的纯化。

蛋白标签:

GST:GST标签由211个氨基酸组成,大小约为26kDa,是目前广泛用于重组蛋白融合表达与亲和纯化的一种蛋白标签。大量的表达实验发现,外源蛋白在大肠杆菌表达系统中过量表达时,常会以包涵体的形式形成不溶性的聚合体,大大降低了可溶性重组蛋白的产量,增加了后续蛋白分离纯化的难度。然而,在融合GST 标签进行原核表达的过程中发现,原本用于亲和纯化的GST标签能在一定程度上增大融合蛋白的可溶性,使融合蛋白以可溶形式存在于细胞质中,不仅促进了目标蛋白的正确折叠,提高了蛋白产量,而且有助于后续的蛋白纯化。除了增大融合蛋白的可溶性之外,GST标签还具有高效的翻译起始、纯化条件温和、亲和树脂成本相对低廉等显著优点,成为重组蛋白融合表达经常使用的亲和标签。MBP:MBP标签由大肠杆菌K12的malE基因编码的396个氨基酸组成,大小约为40kDa,是除了GST标签之外又一个很好的增大融合蛋白可溶性的蛋白标签。MBP 标签能够增大在原核表达系统中过量表达的融合蛋白的可溶性,提高其表达量,已在多个表达实验中得到确认。研究发现,当改变MBP“开放”与“关闭”构象之间的平衡时,MBP增大融合蛋白可溶性的能力将受到明显影响,表明 MBP增大融合蛋白可溶性的特性是由其“开放”构象所介导;同时,对MBP配基结合间隙中保守的疏水性氨基酸残基进行定向突变,MBP表现出相似的表型,表明这个配基结合间隙在MBP增大融合蛋白可溶性的机制中具有一定的作用。

然而,从蛋白纯化的角度来看,MBP标签并不是一个最有效的亲和标签;在某些情况下,MBP标签并不能特异性地与亲和树脂有效结合,亲和层析后融合蛋白的纯度也并不合适。

相关文档
最新文档