基因克隆载体上的各种常用蛋白标签

合集下载

pet32a载体上的his蛋白表达条件

pet32a载体上的his蛋白表达条件

pet32a载体上的his蛋白表达条件Pet32a是一种常用的表达载体,用于大肠杆菌中His标签蛋白的高效表达。

His标签是由6个连续的组氨酸残基组成,可以用于方便高效地纯化目标蛋白。

在Pet32a载体中,目标蛋白与截短的Thrombin酶N端连接,形成His-Thrombin蛋白复合体。

这样的连接允许在表达后使用Thrombin 酶进行His标签的切割,得到纯化的目标蛋白。

Pet32a载体的启动子为T7启动子,它能够高效地驱动目标蛋白的表达。

在进行表达之前,需要将目标基因克隆到Pet32a载体中,并利用限制酶切和连接酶进行连接。

连通区域包括5'顺序为T7启动子和截短的Thrombin酶,以及3'顺序为截断的Thrombin裂解位点和聚合酶终止剂。

在大肠杆菌中进行Pet32a载体的转化后,通过大量培养和诱导表达来实现目标蛋白的高效表达。

常用的培养基为LB培养基,可以添加适当的抗生素进行筛选。

常用的抗生素有氨苄青霉素(Ampicillin)和卡那霉素(Kanamycin)。

表达时间和诱导条件是Pet32a载体上的His蛋白表达的关键。

通常情况下,在细胞密度达到指定浓度时,使用异丙硫醇(IPTG)来诱导表达。

IPTG能够拮抗大肠杆菌的阻遏基因,并诱导目标蛋白的高效表达。

常见的IPTG最终浓度为0.1-1 mM,孵育时间为3-24小时。

表达温度一般为37°C,并通过调整培养温度和表达时间来优化表达条件。

在大肠杆菌中进行表达后,目标蛋白一般以包涵体形式表达。

包涵体需要经过裂解和纯化步骤来获得目标蛋白的纯化产物。

对Pet32a载体上His蛋白表达的纯化,一般是通过亲和层析柱进行His标签蛋白的选择性吸附和洗脱。

常见的亲和层析柱包括镍柱、铜柱和锌柱等。

纯化过程还包括目标蛋白的洗脱和去除His-Thrombin蛋白复合体的步骤。

洗脱常用的缓冲液是Imidazole缓冲液,通过改变Imidazole 浓度来实现蛋白洗脱。

融合蛋白的标签

融合蛋白的标签

重组蛋白表达技术现已经广泛应用于生物学各个具体领域, 特别是体内功能研究和蛋白质的大规模生产都需要应用重组蛋白表达载体。

蛋白表达载体按照表达宿主的不同分为3类,分别为表达宿主为大肠杆菌,哺乳动物细胞的,以及慢病毒载体,宿主可以为哺乳动物细胞和原代细胞。

当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。

除了必要的复制和筛选的元件,协助表达和翻译的元件外,本文将6个标签的功能初步介绍如下:(一) His 6His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。

组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。

使用His-tag有下面优点:1.标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;2.His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;3.His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;4.His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫制备抗体;5.可应用于多种表达系统,纯化的条件温和;6.可以和其它的亲和标签一起构建双亲和标签。

(二) FlagFlag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

Flag 作为标签蛋白,其融合表达目的蛋白后具有以下优点:1. Flag 作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

克隆载体与表达载体

克隆载体与表达载体
人工染色体
染色体具有复制功能,利用染色体的复制元件来驱动外源DNA片段复制的载体称为人工染色体载体
其装载外源DNA的容量比质粒、噬菌体和噬菌体-质粒杂合载体等有很大的拓展,甚至可以跟染色体的大小相媲美。
人工染色体载体拷贝数少,制备困难,通常采取“穿梭载体”的策略来解决
含有质粒载体所必备的第一受体(大肠杆菌)质粒复制起始位点,这样的载体在大肠杆菌内可以按质粒复制形式进行高拷贝复制,含有第二受体(如酵母)端粒(TEL)、DNA复制起始位点(ARS)和着丝粒(CEN)以及合适的选择标记。载体在体外与目的DNA重组后转化到第二受体细胞,按照染色体复制的形式进行复制和传递。筛选第一受体的克隆子一般采用抗生素抗性选择标记;筛选第二受体的克隆子常用与受体互补的营养缺陷型。
克隆载体
基本性质
基本特征(或载体的构建)
原理机制
常用的载体
克隆载体
质粒载体
质粒能利用寄主细胞的DNA复制系统进行自主复制;不相容性;可转移性(基因工程中采用非接合性质粒)
(1)具有合适的复制起始位点(ORI)(2)具有合适的选择性标记基因(3)若干限制性内切酶的单一位点(4)具有较小的分子量和较高的拷贝数。
M13噬菌体产生单双链DNA的机制)
LacZ’ 5’端的第13个核苷酸G突变成A,产生了一个EcoR I切点
一类人工构建的含有λ-DNA cos序列和质粒复制子的的特殊类型载体。能像l-DNA那样进行体外包装,并高效转染受体细胞;能像质粒那样在受体细胞中自主复制具有较高容量的克隆能力:45kb;具有与同源性序列的质粒进行重组的能力
当带有抗菌素抗性基因的载体进入受体菌后,受体菌才能生长。不带有抗菌素抗性基因的受体菌不能在含有抗菌素的培养基(选择培养基)中生长。(抗菌素选择原理)

常见tag蛋白标签介绍讲课讲稿

常见tag蛋白标签介绍讲课讲稿

常见t a g蛋白标签介绍蛋白标签蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。

随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。

目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。

美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag™、Halo Tag™、AviTag™、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。

•标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;•His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;•His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;•His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。

•可应用于多种表达系统,纯化的条件温和;•可以和其它的亲和标签一起构建双亲和标签。

Flag标签蛋白Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:•FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

•融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。

常用pGEX载体图谱

常用pGEX载体图谱

常用pGEX载体图谱Rosetta系列的表达菌株可以提供T7 RNA聚合酶,它能表达PET系列载体上的外源基因。

pGEX系列载体上的外源基因不需要T7 RNA 聚合酶,普通的大肠杆菌经IPTG诱导即可表达Tac启动子是一组由Lac和trp启动子人工构建的杂合启动子,受Lac阻遏蛋白的负调节,它的启动能力比Lac和trp都强。

其中Tac 1是由Trp启动子的-35区加上一个合成的46 bp DNA片段(包括Pribnow 盒)和Lac操纵基因构成,Tac 12是由Trp的启动子-35区和Lac 启动子的-10区,加上Lac操纵子中的操纵基因部分和SD序列融合而成蛋白标签:A myc tag is a polypeptide proteintag derived from the c-myc gene product that can be added to a proteinusing recombinant DNA technology. It can be used for affinity chromatography, then used to separate recombinant, overexpressed protein from wild type protein expressed by the host organism. Itcan also be used in the isolation of protein complexes with multiple subunits.A myc tag can be used in many different assays that require recognition byan antibody. If there is no antibody against the studied protein, adding a myc-tag allows one to follow the protein with an antibody against the Myc epitope. Examples are cellular localization studies by immunofluorescence or detectionby Western blotting.The peptide sequence of the myc-tag is (in 1- and 3-letter codes, respectively):N-EQKLISEEDL-C,N-Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu -C, where N stands for Amino-terminus and C stands for Carboxy terminus. The tag is approximately 1202 Daltons in atomic mass and has 10 amino acids.It can be fused to the C-terminus andthe N-terminus of a protein. It is advisablenot to fuse the tag directly behind the signal peptide of a secretory protein, since it can interfere with translocation intothe secretory pathway.A monoclonal antibody against themyc epitope, named 9E10, is available from the non-commercial Developmental Studies Hybridoma BankpGEX4T1载体基本信息出品公司: GE别名: pGEX-4T-1, pGEX4T1, pGEX 4T 1质粒类型: 大肠杆菌蛋白表达载体表达水平: 高拷贝启动子: Tac克隆方法: 多克隆位点,限制性内切酶载体大小: 4969 bp5' 测序引物及序列: pGEX5': GGGCTGGCAAGCCACGTTTGGTG3' 测序引物及序列: pGEX3': CCGGGAGCTGCATGTGTCAGAGG载体标签: N-GST载体抗性: Ampicillin 氨苄备注: 复制子是pMB1产品目录号: 27-4580-01稳定性: 瞬时表达 Transient组成型: 诱导表达病毒/非病毒: 非病毒pGEX4T1载体质粒图谱和多克隆位点信息原核生物DNA复制起始点,是DNA链上独特的具有起始DNA复制功能的碱基序列。

蛋白表达载体常用标签综述

蛋白表达载体常用标签综述

蛋白表达载体系统重组蛋白表达技术和重组蛋白表达载体现已广泛应用于生物学各个具体领域,尤其是体内功能研究和蛋白质的大规模生产。

GeneCopoeia的蛋白表达载体按照表达宿主的不同分为3类:B类,M类和Lv 类。

B类的表达宿主为大肠杆菌,M类的宿主为哺乳动物细胞,Lv类是慢病毒载体,宿主可以为哺乳动物细胞或原代细胞。

除了必要的复制和筛选的元件,协助表达和翻译的元件外,本文将各类载体按荧光蛋白标签、多功能标签、促溶解度标签和抗体免疫共沉淀标签四种,先将几种主流的标签功能初步介绍如下:eGFP/eCFP/eYFP/mCherry分别是增强型绿色荧光蛋白/增强型黄绿色荧光蛋白/增强型黄色荧光蛋白/单体红色荧光蛋白标签,具有不同的激发波长和发射波长,均由野生型荧光蛋白通过氨基酸突变和密码子优化而来。

就eGFP而言,相对于GFP,其荧光强度更强、荧光性质更稳定。

同时载体中构建的Kozak序列使得含有eGFP的融合蛋白在真核表达系统中表达效率更高。

mCherry是从DsRed演化来的性能最好的一个单体红色荧光蛋白,可以和GFP系列荧光蛋白共用,实现多色标记体内、外实验表明,mCherry在N端和C端融合外源蛋白时,荧光蛋白活性和被融合的目标蛋白功能相互没有明显影响。

这些荧光标签蛋白,其融合表达目的蛋白后具有以下优点:1.不用破碎组织细胞、不加任何底物,直接通过荧光显微镜就能在活细胞中发出绿色荧光,实时显示目的基因的表达情况,而且荧光性质稳定,被誉为活细胞探针。

2.其自发荧光,不需用目的基因的抗体或原位杂交技术就可推知目的基因在细胞中的定位等情况。

3.同时细胞内的其它产物不会干扰标签蛋白检测,从而使其检测效果更快速、简便、灵敏度高而且重现性好。

4.其低消耗、高灵敏度检测的特性,十分适用于高通量的药物筛选。

现eGFP 表达标签被广泛地应用于基团表达调控、转基因功能研究、蛋白在细胞中的功能定位、迁移变化及药物筛选等方面。

大豆基因的克隆及表达载体的构成

大豆基因的克隆及表达载体的构成

大豆基因的克隆及表达载体的构成大豆(Glycine max)是一种重要的粮食作物和油料作物,其种子中含有高蛋白、高油、高碳水化合物等营养成分,因此在全球范围内广泛种植和应用。

为了深入研究大豆的生长发育、代谢调控等基本生物学问题,以及开发新的大豆品种,需要对大豆基因进行克隆和表达研究。

下面我们来介绍大豆基因的克隆及表达载体的构成。

一、大豆基因的克隆大豆基因的克隆是指从大豆中分离出目标基因的过程。

大豆基因的克隆方法主要有PCR扩增、基因文库筛选和基因芯片等。

其中,PCR扩增是最常用的方法之一。

PCR扩增是指利用DNA聚合酶酶链反应(PCR)技术,通过引物特异性扩增目标基因序列。

PCR扩增方法具有快速、简便、高效、灵敏等优点,适用于小片段基因的克隆。

而对于大片段基因的克隆,则需要使用基因文库筛选和基因芯片等方法。

二、大豆基因的表达载体的构成大豆基因的表达载体是指将目标基因插入到表达载体中,通过转化到宿主细胞中,使目标基因得以表达的载体。

大豆基因的表达载体构成主要包括以下几个部分:1.启动子:启动子是指调控基因转录的DNA序列,它位于基因的上游区域,与转录因子结合后启动基因的转录。

在大豆基因表达载体的构建中,常使用的启动子包括CaMV 35S启动子、nos启动子、ubi启动子等。

2.选择性标记基因:选择性标记基因是指在转化过程中,通过对宿主细胞进行筛选,选择带有表达载体的细胞的基因。

在大豆基因表达载体的构建中,常使用的选择性标记基因包括抗生素耐药基因、草酸乙酯酯化酶基因等。

3.多克隆位点:多克隆位点是指在表达载体中设置多个限制性内切酶切割位点,方便将目标基因插入到载体中。

在大豆基因表达载体的构建中,常使用的多克隆位点包括pUC19多克隆位点、pGEM-T多克隆位点等。

4.表达标签:表达标签是指将目标基因与特定的标签融合,以便于检测目标基因的表达情况。

在大豆基因表达载体的构建中,常使用的表达标签包括His标签、GST标签、FLAG标签等。

蛋白标签-基因克隆载体上的蛋白标签-齐全的各种常用标签

蛋白标签-基因克隆载体上的蛋白标签-齐全的各种常用标签

蛋白标签-基因克隆载体上的蛋白标签-齐全的各种常用标签蛋白标签蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。

蛋白表达载体按照表达宿主的不同新推出3类,分别为表达宿主为大肠杆菌,哺乳动物细胞的,以及慢病毒载体。

除了必要的复制和筛选的元件,协助表达和翻译的元件外,本文将各类载体分别按照功能标签的不同确定种类并将个标签的功能初步介绍如下:His6:His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。

当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。

组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。

使用His-tag有下面优点:1.标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;2.His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;3.His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;4.His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫制备抗体;5.可应用于多种表达系统,纯化的条件温和;6.可以和其它的亲和标签一起构建双亲和标签。

Flag:Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:1.FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

几种常用的蛋白标签的功能和优点

几种常用的蛋白标签的功能和优点

重组蛋白表达技术现已经广泛应用于生物学各个具体领域。

特别是体内功能研究和蛋白质的大规模生产都需要应用重组蛋白表达载体。

美国GeneCopoeia的蛋白表达载体按照表达宿主的不同新推出3类,分别为表达宿主为大肠杆菌,哺乳动物细胞的,以及慢病毒载体,宿主可以为哺乳动物细胞和原代细胞。

除了必要的复制和筛选的元件,协助表达和翻译的元件外,本文将各类载体分别按照功能标签的不同确定种类并将个标签的功能初步介绍如下:His6:His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。

当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。

组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。

使用His-tag有下面优点:1.标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;2.His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;3.His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;4.His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫制备抗体;5.可应用于多种表达系统,纯化的条件温和;6.可以和其它的亲和标签一起构建双亲和标签。

Flag:Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:1.FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

克隆载体与表达载体

克隆载体与表达载体
表达载体
分类
结构组成及表达兀件
特点或优点
备注
质 粒 表 达 载 体
原核表达载 体
1启动子、
2转录终止子(防止克隆的外源基因表达干
扰载体的稳定性)
(1)基因组大小;去除非必需区,建立 外源DNA片段的克隆或替换位点(2) 在DNA的非必需区插入选择标记:lacZ基因;基因cl失活(cl基因:溶源 过程控制基因);Spi筛选(野生型人 噬菌体在带有P2原噬菌体的溶源性E.coli中的生长会受到限制的表型, 称作Spi+,即对P2噬菌体的干扰敏 感)
YAC的构建有比在细菌中克隆的一些优点,因为某些真核 细胞的序列,特别是重复序列是难以甚至不可能在细菌中 繁殖的,酵母细胞却具有这样的能力
5


细菌人工染色体 载体
BAC
是基于大肠杆菌 的F质粒构建 的,高通量低拷 贝的质粒载体
每个环状DNA分子中携带一个抗生素抗性标 记,一个来源于大肠杆菌F因子(致育因子) 的严谨型控制的复制子oriS(Shizuya et al.
主要使用EcoR I
ColEl
天然质粒,属松弛型多拷贝型
6.3 kb
大肠杆菌素(colicin) E1和对E1免疫的 基因(immE1)
EcoR I位于E1内部,插入外源DNA会导致E1失活,使受体菌不能合成E1 (ColE1-),但仍然 表现出对E1免疫型(皿1^1+)
pBR322
兀件来源①复制起点orip
酵母人工染 色体载体YAC细菌人工染 色体载体BAC
P1噬菌体人 工染色体载 体PAC
质粒载体总结
质 粒 载 体
类型
长度
选择标记
克隆位点
pSC101

基因工程克隆基因设计方案

基因工程克隆基因设计方案

基因工程克隆基因设计方案一、引言基因工程克隆技术是一种重要的生物科技手段,可用于生物学研究、医药、农业等领域。

通过基因工程技术,可以将特定基因从一个生物体(如细菌、动植物等)中剪切出来,然后插入到另一个生物体中,实现基因的重组和调控,从而产生具有新功能的生物体。

本文将介绍基因工程克隆基因设计的具体方案。

二、基因设计1. 初步设想首先,我们需要确定要克隆和设计的基因。

在确定基因后,需要进行初步设想,包括确定需要进行基因工程修改的场景、选择适当的表达载体、确定目标基因在表达载体中的位置等。

2. 基因选择在基因选择时,需要考虑到目标基因的功能和表达的需求。

一般来说,可以选择具有特定功能(如抗菌、抗虫、抗病等)的基因,或者选择具有较高表达水平的基因。

在基因选择时,还需要考虑到目标基因的长度、序列复杂性、GC含量等因素。

3. 基因合成在确定了目标基因后,需要进行基因合成。

一般来说,基因合成可以通过化学合成、PCR 扩增、基因片段连接等方法来实现。

在基因合成时,需要考虑到目标基因的合成效率、合成的准确性、基因片段的连接位置等因素。

4. 启动子选择在进行基因设计时,还需要选择适当的启动子。

启动子是调控基因表达的重要元素,可以影响基因的转录和表达水平。

一般来说,可以选择在特定组织中高效表达的启动子,以实现目标基因在特定组织中的高效表达。

5. 标签蛋白标记在进行基因设计时,还可以选择在目标基因中加入标签蛋白标记。

标签蛋白标记可以帮助我们追踪目标基因在生物体中的表达位置,或者用于纯化和检测目标蛋白。

一般来说,可以选择Flag标签、His标签、HA标签等常用的标签蛋白标记。

6. 表达载体选择在确定了目标基因和相关元素后,还需要选择适当的表达载体。

表达载体是将目标基因导入宿主细胞的载体,一般来说,可以选择真核或原核表达载体,根据目标基因的类型和需要进行表达的组织的特点来选择。

7. 基因调控在确定了表达载体后,还需要进行基因调控的设计。

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。

随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。

目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。

美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag™、Halo Tag™、AviTag™、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。

以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询克隆产品的结果列表里面看到各种推荐的蛋白标签和载体。

TrxHISHis6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。

当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。

组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。

使用His-tag有下面优点:•标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;•His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;•His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;•His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。

•可应用于多种表达系统,纯化的条件温和;•可以和其它的亲和标签一起构建双亲和标签。

Flag标签蛋白Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

cytiva亲和标签纯化原理

cytiva亲和标签纯化原理

cytiva亲和标签纯化原理Cytiva亲和标签纯化是一种常用的蛋白质纯化方法,它利用蛋白质与某种特定亲和标签间的高亲和力,将目标蛋白从复杂的混合物中高效、选择性地纯化出来。

亲和标签是一段具有与特定亲和剂结合能力的多肽序列,可以通过基因工程手段将其连接到感兴趣的蛋白上。

常见的亲和标签包括多肽标签(如His标签、FLAG标签、HA标签等)和蛋白标签(如GST标签、MBP标签等)。

这些亲和标签具有以下特点:小尺寸、易于克隆、高亲和力和对目标蛋白的结构和功能的影响较小。

亲和标签纯化可以分为两个步骤:亲和层的制备和载体表达系统的构建。

在亲和层制备中,需要选择一个合适的亲和剂来制备亲和层,一般是将亲和剂固定在某种固相材料上。

例如,His标签常用的亲和剂是镍离子,可以将镍离子固定在柱子上,形成镍柱。

在制备过程中,需要注意控制亲和剂的浓度、洗脱条件等参数,以获得较高的纯度和回收率。

在载体表达系统的构建中,首先需要将亲和标签的编码序列与目标蛋白的编码序列连接构建融合蛋白的基因,然后将其插入到适当的表达载体中,转入宿主细胞中进行表达。

表达的过程中,亲和标签能够帮助目标蛋白在宿主细胞中得到更高的表达水平,并且易于后续的纯化。

在蛋白质混合物中对目标蛋白的选择性结合和洗脱中,主要是通过亲和力的差异来实现的。

例如,His标签融合蛋白可以很特异性地与固定在柱子上的镍离子结合,而其他蛋白则可以通过洗脱缓冲液中的竞争剂(如Imidazole)将其洗脱出来。

这样,目标蛋白就可以被高效纯化出来。

亲和标签纯化的优点之一是纯化过程简单、快速、高效。

由于在表达过程中亲和标签能够增强目标蛋白的表达量,使其在细胞内占比更高,因此在纯化过程中可以减少非特异性结合的杂质。

此外,亲和标签纯化还具有较高的纯度、高回收率以及易于操作等优点。

然而,亲和标签纯化也存在一些限制和缺点。

首先,亲和标签的引入可能对目标蛋白的结构和功能产生一定影响,因此在使用亲和标签纯化蛋白时,需要进行一定的验证实验来确定目标蛋白的活性是否受到影响。

三四章分子克隆载体---题目_完_

三四章分子克隆载体---题目_完_

第三章分子克隆载体(Molecular cloning vectors)一、名词解析二、填空题1.基因工程中有三种主要类型的载体、和。

2.就克隆一个基因来说,最简单的质粒载体也必须包括三个部分和、。

另外,一个理想的质粒载体必须具有低分子质量。

3.如果两个质粒不能稳定的存在已同一个宿主细胞中,则属于群,这是因为他们的所致。

4.pBR 322是一种改造型质粒,它的复制子来源于,它的四环素抗性基因来源于,它的氨苄青霉素抗性基因来源于。

5.Puc18质粒是目前使用较为广泛的载体。

pUC系列的载体是通过和两种质粒改造而来。

它的复制子来源于,Amp抗性基因则是来源于。

6.当λ噬菌体DNA进入宿主细胞以后是靠宿主细胞的和形成封闭的环状的DNA分子的。

7.λ噬菌体是感染大肠杆菌的噬菌体。

8.α-互补是指 lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的阴性的突变体之间实现互补。

9.溶源化的频率和与有关。

10.噬菌体DNA通过其上唯一的整合位点与宿主染色体DNA上的唯一整合位点发生重组,从而整合到染色体中。

11.通过分析大量缺陷型λ噬菌体的 DNA ,发现 J 基因与 Cro 基因之间的 DNA 被或替换后,不影响λ噬菌体裂解生长。

12.对野生型大肠杆菌来说,向溶源和裂解方向的转变是由和决定的。

13.代表性λ噬菌体载体有和14.粘粒的组成包括________,________,________。

15.柯斯质粒(Cosmid)载体:一种由________和_______cos尾巴构建的复合载体。

16.pcos1 EMBL 是设计用于筛选体内重组的重组粘粒文库,通过同源重组过程达到筛选目标克隆的目的。

该载体的复制起点来源于__________质粒,含_________和_________抗性基因。

17.酵母人工染色体由酵母染色体的__________、__________和__________等功能性DNA序列组成。

克隆载体与表达载体

克隆载体与表达载体

质粒载体总结A噬菌体载体表达载体时表达多个基因。

⑥能表达基因组DNA : 昆虫杆状病毒表达系统具有剪切的功能。

⑦对重组蛋白进行定位的功能:如将核蛋 白转送到细胞核上,膜蛋白则定位在膜 上,分泌蛋白则可分泌到细胞外等。

腺病毒载体是目前最为广泛应用的基因 载体,也是唯一基因药物的载体双链 DNA 的分子大小约为36kb.可应用于1.基因治疗2.表达真核基因3. 研制疫苗一类含单链RNA 的动物病毒。

它的基因组含有2条相同的正链RNA 分子,包装成二倍体病毒颗粒。

(1)在大多数情况下, 反转录病毒的肿瘤基因(onc)都能够在正 常的细胞中转录。

2)反转录病毒的寄主 范围相当广,包括无脊椎动物和脊椎动 物。

3)反转录病毒具有强启动子,外源 基因可得到有效表达。

4)反转录病毒不 但感染效率高,而且不招致寄主细胞的死 亡 ①含有能够被真核细胞识别的有效的启 动子。

②有许多种动物病毒,在其感染周 期中都能够持续地复制,使其基因组拷贝 数达到相当高的水平。

③有些动物病毒具 有控制自己复制的顺式元件和反式作用 首先构建一个含多克隆位点和筛选标志的转 移质粒,该质粒含有病毒基因组某段早期序 歹U ;然后将一个含有启动子一外源基因-poly A 的表达盒插入到上述质粒中腺病毒E1、E3或 E4至右侧的ITR 区之间,构建成载有外源基 因的穿梭质粒。

载体的构建: 分离原病毒DN A-删去部分序列一组入选择 性标记基因、目的基因和调控元件一克隆到含 有大肠杆菌复制起始位点的克隆载体一转化 大肠杆菌一获得反转录病毒克隆载体一辅助 细胞系(包装细胞系)一扩增 猿猴空泡病毒 40(Simian vacuolating virus 40, SV40)基因组是一种环形双链的DNA ,其 大小仅有5243bp ,很适于基因操作。

导致人 体癌变的可能性极低,对人体是安全的。

一些 质粒型表达载体带有来自SV40DNA 的个别大片段表达载体。

克隆载体与表达载体

克隆载体与表达载体

克隆载体
基因间隔区(intergenic region, IG 区)基因II与基因IV之间存在一段507bp的基因间隔区,内含有复制起始位点,是实施改造、构建人工载体的重点区域。

② IG区内只有一个Bsu I 切点。

(2)加入酶切位点,在IG区内加入单一内切酶位点。

M13mp1 在IG区内插入一个大肠杆菌的LacZ’(-肽序列)。

使克隆的DNA片段以特定单链的形式输出受体细胞外,M13重组分子筛选简便,被M13噬菌体感染的受体细胞生长缓慢,形成混浊斑,易于辨认挑选。

而且重组分子越大,混浊斑的混浊度亦越大但M13-DNA载体的最大缺陷是装载量小,只有 kb
考斯质粒是一类人工构建的含有λ-DNA cos序列和质粒复制子的的特殊类型载体。

能像
-DNA那样进行体外包装,并高效转染受体细胞;能像质粒那样在受体细胞中自主复制具有较高容量的克隆能力:45kb;具有与同源性序列的质粒进行重组的能力粘粒(cosmid)是带有 cos 序列的质粒。

cos序列是噬菌体 DNA 中将DNA 包装到噬菌体颗粒中所需的 DNA 序列。

黏粒的组成包括质粒复制起点(colE1),抗性标记(amp r),cos 位点,因而能象质粒一样转化和增殖。

克隆的最大 DNA 片段可达 45kb 。

有的粘粒载体含有两个cos 位点,在某种程度上可提高使用效率。

质粒载体总结
λ噬菌体载体
表达载体。

常见蛋白质标签

常见蛋白质标签

常见蛋白质标签总结2008-12-08 22:06Protein tags are peptide sequences genetically grafted onto a recombinant protein. Often these tags are removable by chemical agents or by enzymatic means, such as proteolysis or intein splicing. Tags are attached to proteins for various purposes.一、氨基酸标签(含小肽标签)A stretch of amino acids is added to the protein and enables the recovery of the labelled protein by its unique affinity. Usually its easiest to add the tag to either end of the protein to ensure its accessibility and not to disturb the protein folding.组氨酸标签(His tag)一般为6个组氨酸,用Ni2+ (Cu2+)亲和层析纯化FLAG tag :N-DYKDDDDK-C ,recovered with specific antibodyHA tag:an epitope derived from the Influenza protein haemagglutinin (HA,禽流感病毒血凝素),e.g. N-YPYDVP-C,recovery with an HA antibodyMYC tag:an epitope derived from the human proto-oncoprotein MYC,e.g.N-ILKKATAYIL-C, N-EQKLISEEDL-C,recovery with an MYC antibodySBP tag:Streptavidin Binding Peptide,链霉亲合素结合肽,38 amino acid tag (MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP),更多参考在SigmaCBP tag:钙调蛋白结合肽(CBP; 26aa)钙调蛋白结合肽与钙调素结合是Ca2+依赖的,这种结合不受标签所处的位置影响(N端和C端均可),在中性pH条件下使用2mM EGTA可以很方便的将目标蛋白洗脱下来。

几种常用的蛋白标签的功能和优点资料

几种常用的蛋白标签的功能和优点资料

几种常用的蛋白标签的功能和优点重组蛋白表达技术现已经广泛应用于生物学各个具体领域。

特别是体内功能研究和蛋白质的大规模生产都需要应用重组蛋白表达载体。

美国GeneCopoeia的蛋白表达载体按照表达宿主的不同新推出3类,分别为表达宿主为大肠杆菌,哺乳动物细胞的,以及慢病毒载体,宿主可以为哺乳动物细胞和原代细胞。

除了必要的复制和筛选的元件,协助表达和翻译的元件外,本文将各类载体分别按照功能标签的不同确定种类并将个标签的功能初步介绍如下:His6:His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。

当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。

组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。

使用His-tag有下面优点:1.标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;2.His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;3.His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;4.His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫制备抗体;5.可应用于多种表达系统,纯化的条件温和;6.可以和其它的亲和标签一起构建双亲和标签。

Flag:Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:1.FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

常用蛋白标签

常用蛋白标签

表9 His-tag 被认为是蛋白纯化的首选标签的五个因素原文检索:/info/infoSupplyView.htm?id=50c 35b 041b 977f 34011b 97c 7de 673b 66h t t p ://w w w.h o p e b i o.c o m /n e w E b i z 1/E b i z P o r t a l F G /p o r t a l /h t m l /I n f o C o n t e n t.h t m l ?I n f o C o n t e n t 150_action=show&InfoPublish_InfoID=c 373e 90ab 872ab 868ffaaf 954792611cLos, G. V. et al. (2005) HaloTag™ Interchangeable Labeling Technology for cell imaging and protein capture. Cell Notes 11, 2-6.Puck T T, et al. Genetics of somatic mammalian cells III. Long-term cultivation of euploid cells from human and animal subjects. J. Exp. Med. 108: 945-956, 1958. PubMed: 13598821CHO-K 1细胞CHO-K 1细胞是实验中十分常用的一个细胞株,在生物制药中的应用也非常广泛。

该细胞株培养条件简单,贴壁强度适中,比较容易转染,很适合用它来研究一般哺乳动物基因的功能。

来源:中国仓鼠(Cricetulus griseus )卵巢形态:表皮细胞生长特性:贴壁CHO-K 1由CHO 衍生而来,CHO 是T. T. Puck 在1957年从一只成年中国仓鼠的卵巢中获得的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因克隆载体上的各种常用蛋白标签蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。

随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。

目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。

美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag™、Halo Tag™、AviTag™、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。

以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询克隆产品的结果列表里面看到各种推荐的蛋白标签和载体。

TrxHISHis6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。

当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。

组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。

使用His-tag有下面优点:标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能;His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性;His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究;His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。

可应用于多种表达系统,纯化的条件温和;可以和其它的亲和标签一起构建双亲和标签。

Flag标签蛋白Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。

FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。

融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。

FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。

因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。

MBP(麦芽糖结合蛋白)MBP(麦芽糖结合蛋白)标签蛋白大小为40kDa,由大肠杆菌K12的malE基因编码。

MBP可增加在细菌中过量表达的融合蛋白的溶解性,尤其是真核蛋白。

MBP标签可通过免疫分析很方便地检测。

有必要用位点专一的蛋白酶切割标签。

如果蛋白在细菌中表达,MBP 可以融合在蛋白的N端或C端。

纯化:融合蛋白可通过交联淀粉亲和层析一步纯化。

结合的融合蛋白可用10mM麦芽糖在生理缓冲液中进行洗脱。

结合亲和力在微摩尔范围。

一些融合蛋白在0.2% Triton X-100或0.25% Tween 20存在下不能有效结合,而其他融合蛋白则不受影响。

缓冲条件为pH7.0到8.5,盐浓度可高达1M,但不能使用变性剂。

如果要去除MBP融合部分,可用位点特异性蛋白酶切除。

检测:可用MBP抗体或表达的目的蛋白特异性抗体检测。

GST(谷胱甘肽巯基转移酶)GST(谷胱甘肽巯基转移酶) 标签蛋白本身是一个在解毒过程中起到重要作用的转移酶,它的天然大小为26KD。

将它应用在原核表达的原因大致有两个,一个是因为它是一个高度可溶的蛋白,希望可以利用它增加外源蛋白的可溶性;另一个是它可以在大肠杆菌中大量表达,起到提高表达量的作用。

GST融合表达系统广泛应用于各种融合蛋白的表达,可以在大肠杆菌和酵母菌等宿主细胞中表达。

结合的融合蛋白在非变性条件下用10mM 还原型谷胱甘肽洗脱。

在大多数情况下,融合蛋白在水溶液中是可溶的,并形成二体。

GST标签可用酶学分析或免疫分析很方便的检测。

标签有助于保护重组蛋白免受胞外蛋白酶的降解并提高其稳定性。

在大多数情况下GST融合蛋白是完全或部分可溶的。

纯化:该表达系统表达的GST标签蛋白可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶(Glutathione sepharose)亲和树脂进行纯化。

GST标签蛋白可在温和、非变性条件下洗脱,因此保留了蛋白的抗原性和生物活性。

GST在变性条件下会失去对谷胱甘肽树脂的结合能力,因此不能在纯化缓冲液中加入强变性剂如:盐酸胍或尿素等。

如果要去除GST融合部分,可用位点特异性蛋白酶切除。

检测:可用GST抗体或表达的目的蛋白特异性抗体检测。

HAHA标签蛋白,标签序列YPYDVPDYA,源于流感病毒的红细胞凝集素表面抗原决定簇,9个氨基酸,对外源靶蛋白的空间结构影响小, 容易构建成标签蛋白融合到N端或者C 端。

易于用Anti-HA抗体检测和ELISA检测。

c-MycC-Myc 标签蛋白,是一个含11个氨基酸的小标签,标签序列Glu-Gln-Lys-Leu-Ile- Ser-Glu-Glu-Asp-Leu,这11个氨基酸作为抗原表位表达在不同的蛋白质框架中仍可识别其相应抗体。

C-Myc tag已成功应用在Western-blot杂交技术、免疫沉淀和流式细胞计量术中, 可用于检测重组蛋白质在靶细胞中的表达。

eGFPeGFP标签蛋白,是增强型绿色荧光蛋白eGFP,激发波长为488nm,发射波长为507nm,其是由野生型绿色荧光蛋白GFP通过氨基酸突变和密码子优化而来的。

相对于GFP,eGFP荧光强度更强、荧光性质更稳定。

同时载体中构建的Kozak序列使得含有eGFP 的融合蛋白在真核表达系统中表达效率更高。

eGFP作为标签蛋白,其融合表达目的蛋白后具有以下优点:不用破碎组织细胞和不加任何底物,直接通过荧光显微镜就能在活细胞中发出绿色荧光,实时显示目的基因的表达情况,而且荧光性质稳定,被誉为活细胞探针。

其自发荧光,不需用目的基因的抗体或原位杂交技术就可推知目的基因在细胞中的定位等情况。

同时细胞内的其它产物不会干扰标签蛋白检测,从而使其检测更显得快速、简便、灵敏度高而且重现性。

其低消耗、高灵敏度检测,十分适用于高通量的药物筛选。

因此现eGFP 表达标签被广泛地应用于基团表达调控、转基因功能研究、蛋白在细胞中的功能定位、迁移变化及药物筛选等方面。

此外由我公司提供的IRES双顺反子载体,可同目的基因共表达eGFP,用于目的基因的体内蛋白示踪研究。

eYFPeYFP标签蛋白为增强型黄绿色荧光蛋白eYFP,激发波长为513nm,发射波长为527nm,其是由野生型黄绿色荧光蛋白YFP通过氨基酸突变和密码子优化而来的。

相对于YFP,eYFP荧光强度更强、荧光性质更稳定。

同时载体中构建的Kozak序列使得含有eYFP 的融合蛋白在真核表达系统中表达效率更高。

eYFP作为标签蛋白,其融合表达目的蛋白后具有以下优点:不用破碎组织细胞和不加任何底物,直接通过荧光显微镜就能在活细胞中发出绿色荧光,实时显示目的基因的表达情况,而且荧光性质稳定,被誉为活细胞探针。

其自发荧光,不需用目的基因的抗体或原位杂交技术就可推知目的基因在细胞中的定位等情况。

同时细胞内的其它产物不会干扰标签蛋白检测,从而使其检测更显得快速、简便、灵敏度高而且重现性。

其低消耗、高灵敏度检测,十分适用于高通量的药物筛选。

因此现eYFP 表达标签被广泛的应用与基团表达调控、转基因功能研究、蛋白在细胞中的功能定位、迁移变化及药物筛选等方面。

此外由我公司提供的IRES双顺反子载体,可同目的基因共表达eYFP,用于目的基因的体内蛋白示踪研究。

eCFPeCFP标签蛋白为增强型青色荧光蛋白eCFP,激发波长为433nm或453nm,发射波长为475nm或501nm,其是由野生型青色荧光蛋白CFP通过氨基酸突变和密码子优化而来的。

相对于CFP,eCFP荧光强度更强、荧光性质更稳定。

同时载体中构建的Kozak序列使得含有eCFP的融合蛋白在真核表达系统中表达效率更高。

eCFP作为标签蛋白,其融合表达目的蛋白后具有以下优点:不用破碎组织细胞和不加任何底物,直接通过荧光显微镜就能在活细胞中发出绿色荧光,实时显示目的基因的表达情况,而且荧光性质稳定,被誉为活细胞探针。

其自发荧光,不需用目的基因的抗体或原位杂交技术就可推知目的基因在细胞中的定位等情况。

同时细胞内的其它产物不会干扰标签蛋白检测,从而使其检测更显得快速、简便、灵敏度高而且重现性。

其低消耗、高灵敏度检测,十分适用于高通量的药物筛选。

因此现eCFP 表达标签被广泛的应用与基团表达调控、转基因功能研究、蛋白在细胞中的功能定位、迁移变化及药物筛选等方面。

Avi TagAviTag标签蛋白是一个15 个氨基酸的短肽,具有一个单生物素化赖氨酸位点,与已知天然可生物素化序列完全不同,可以加在目标蛋白的N端和C端。

融合表达后,可被生物素连接酶生物素化,为了纯化重组蛋白选用低亲和性的单体抗生物素蛋白或抗生物素蛋白衍生物,除了用于蛋白质分离纯化,还用于蛋白质相互作用研究。

Avi Tag标签系统具有以下几大优点:无论在体外或者体内,几乎所有的蛋白都可以在一个独特的Avi Tag位点轻易且有效地被生物素化;生物素化是通过酶和底物的反应来实现,反应条件相当温和而且标记的专一性极高;生物素Avi Tag只有15个氨基酸,对蛋白空间结构的影响非常小。

SNAP-TagSNAP-Tag是新一代的蛋白标签技术,不仅专一性极高而且稳定,最大的优点是适用于多种环境下的蛋白质检测与纯化,如活细胞内、溶液中、或固态相(如SDS-PAGE gels)等。

SNAP-Tag是从人的O6-甲基鸟嘌呤-DNA甲基转移(O6-alkylguanine-DNA- alkyltransferase)获得。

无论体内还是体外,SNAP-Tag都能与底物高特异性地共价结合,使蛋白标记上生物素或荧光基团(如荧光素和若丹明)。

SNAP所带的活性巯基位点接受了苯甲基鸟嘌呤所携带的侧链苯甲基基团,释放出了鸟嘌呤。

这种新的硫醚键共价结合使SNAP 所带的目的蛋白携带上了苯甲基基团所带的标记物。

苯甲基鸟嘌呤在生化条件下稳定,并且没有其他蛋白会和这类物质作用,所以SNAP标签反应是高特异的。

检测:生物素或各种颜色荧光的底物(如荧光素、若丹明)可渗透进入细胞,方便快捷地进行活细胞内SNAP-Tag 融合蛋白的标记与检测。

相关文档
最新文档