探索勾股定理(一)PPT课件

合集下载

勾股定理公开课PPT课件

勾股定理公开课PPT课件

国清末数学家华蘅芳就提供了二十多种精彩的证法。
在这数百种证明方法中,有的十分精彩,有的十分简洁,
有的因为证明者身份的特殊而非常著名。
现在在网络上看到较多的是16种,包括前面的6种,还有:
欧几里得证明、
利用相似三角形性质证明、
杨作玫证明、
李锐证明、
利用切割线定理证明、
利用多列米定理证明、
作直角三角形的内切圆证明、利用反证法证明、
编辑版pppt
C Aa c
b B
SA+SB=SC探
SA=a2 索
SB=b2 勾
SC=c2 股
a2+b2=c2
定 理
猜想
7
编辑版pppt
如果直角三角形的两条直角边
长分别为a,b,斜边长为c,那么 探
c2=a2+b2.


勾a
c弦 股 定
b股

试一试?
8
编辑版pppt
请利用此图象,证明勾股定理 :
a2+b2=c2
角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段
话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4 (长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事
实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的
话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五
编辑版pppt
13
勾股定理,想得再多一点
如图,受台风莫拉克影响,一棵树在离地面4 米处断裂,树的顶部落在离树跟底部3米处,这棵 树折断前有多高?
4米
3米
编辑版pppt

北师大版八年级数学上册《探索勾股定理》课件(24张PPT)

北师大版八年级数学上册《探索勾股定理》课件(24张PPT)

勾是6, 62=36, 勾是5,
股是8, 82=64, 股是12,
弦一定是10;
102=100
62+82=102
弦一定是13,
52=25, 122=144, 132=169 52+122=132 等等. 是不是所有的直角三角形都有这个性质呢?世界上许
多数学家,先后用不同方法证明了这个结论. 我国把它称 为勾股定理.
正方形C的面积是__1_8__ 个单位面积.
(图中每个小方格代表1个单位面积)
C A
B
S正方形C 4 1 33 2
=18个单位面积
把正方形C分割成若干 个直角边为整数的三角 形来求
(图中每个小方格代表1个单位面积)
C A
B
S正方形C
1 2
62
=18个单位面积
把正方形C看成边长为 6的正方形面积的一半
第一章 勾股定理
1 探索勾股定理
1.经历探索勾股定理及验证勾股定理的过程,了解勾股 定理的探究方法及其内在联系. 2.掌握勾股定理,并能运用勾股定理解决一些实际问题.
这是1955年希腊为纪念一个数学学派发行的邮票.
P
C
A
Q
R B
如图,小方格的边长为1.
正方形P 正方形Q 正方形R 的面积 的面积 的面积
2
通过本课时的学习,需要我们掌握: 勾股定理: 直角三角形两直角边的平方和等于斜边的平方,即
a2 b2 c2
没有智慧的头脑,就像没有蜡烛的灯笼.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。

第1章第1课时 探索勾股定理PPT课件(北师大版)

第1章第1课时 探索勾股定理PPT课件(北师大版)

2.(2018·山东滨州)在直角三角形中,若勾为 3,股
为 4,则弦为( A )
A.5
B.6
C.7
D.8
3.在一个直角三角形中,两直角边长分别为 3 和 4,
下列说法正确的是( C )
A.斜边长为 25
B.该三角形的周长为 25
C.斜边长为 5
D.该三角形的面积为 20
4.如图,在由边长均为 1 个单位长度的小正方形组 成的网格中,点 A,B 都是格点,则线段 AB 的长为( A )
1.下列说法正确的是( D ) A.若 a,b,c 是△ABC 的三边,则 a2+b2=c2 B.若 a,b,c 是 Rt△ABC 的三边,则 a2+b2=c2 C.若 a,b,c 是 Rt△ABC 的三边,∠A=90°, 则 a2+b2=c2 D.若 a,b,c 是 Rt△ABC 的三边,∠C=90°,则 a2+b2=c2
变式 3 飞机在空中水平飞行,某一时刻刚好飞到一 个男孩头顶上方 3 km 处,过了 20 s,飞机距离这个男孩 头顶 5 km(如图).这一过程中飞机飞行的速度是每秒多 少千米?
解:在 Rt△ABC 中,BC2=52-32=16. 因为 BC>0,所以 BC=4(km). 4÷20=0.2(km/s). 答:这一过程中飞机飞行的速度是每秒 0.2 千米.
A.5 C.7
B.6 D.25
5.已知在 Rt△ABC 中,∠C=90°,∠A,∠B, ∠C 的对应边分别为 a,b,c.
(1)若 a=3,b=4,则 c=____5____; (2)若 a=40,b=9,则 c=___4_1____; (3)若 a=6,c=10,则 b=____8____; (4)若 c=25,b=15,则 a=___2_0____.

探索勾股定理ppt课件

探索勾股定理ppt课件
A的面积 B的面积 C的面积
左图 4
9
A a cC b
B
C
A ac b
B
右图 16
9
25
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC. a2+b2=c2
(2)正方形A、B、C与中间的 直角三角形有什么关系?
结论2 以直角三角形两直角 边为边长的小正方形的面积 的和,等于以斜边为边长的 正方形的面积.
自主探究 任务一:探索勾股定理的内容
(指向目标一)
1.观察右图:(时间2分钟)
填表(每个小正方形的面积为单位1)
A的面积 B的面积 C的面积
左图 9
9
18
右图 4
4
8
(1)正方形A、B、C的面积间 有什么关系?
SA+SB=SC.
(2)正方形A、B、C与中间的 等腰直角三角形有什么关系?
SA+SB=SC.
当高AD在△ABC外部时,如图②. 同理可得 BD=16,CD=9. ∴BC=BD-CD=7, ∴△ABC的周长为7+20+15=42. 综上所述,△ABC的周长为42或60.
方法总结 题中未给出图形,作高构造直角三角形时, 易漏掉钝角三角形的情况.如在本例题中,易只考虑 高AD在△ABC内的情形,忽视高AD在△ABC外的情形.
弦 勾

我国古代把直角三角形中 的直角边称为 , 的直角 边称为 , 称为 ,“勾股 定理”因此而得名.
巩固训练(2分钟)
1.钢索的长度?

10m
8m
6m
评价标准:独立完成为优秀,同桌互助为及格。
评价标准:2题全对为优秀,1题全对为及格
合作促学 任务二:熟练运用勾股定理进

《勾股定理》PPT优质课件(第1课时)

《勾股定理》PPT优质课件(第1课时)

A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,

1勾股定理(第1课时)(教学PPT课件(华师大版))28张

1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理

17.1勾股定理(第1课时)课件(共23张PPT)

17.1勾股定理(第1课时)课件(共23张PPT)

让我们一起再探究:等腰直角三角形三边关系
C A B 9 C A B 图2-2 4 9 4 18 8
图2-1
(图中每个小方格代表一个单位面积)
C A B 图2-1 A B
S正方形c
C
1 4 3318 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
弦 勾

图1-1
漂亮的勾股树
活动 2
相传2500年前,毕达哥拉斯有一次 在朋友家里做客时,发现朋友家用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
我们也来观察右 图中的地面,看看有 什么发现?
数学家毕达哥拉斯的发现:
A
B
C
A、B、C的面积有什么关系? SA+SB=SC 直角三角形三边有什么关系? 两直边的平方和等于斜边的平方
设:直角三角形的三边长分别是a、b、c
猜想:两直角边a、b与斜边c 之间的关系? A a B b
Sa+Sb=Sc
c
C
2 2 2 a +b =c
b
a
c b (a+b )2
证 明 二
a
c
c
1 = c 4 ab 2
2
a2 + b2 + 2ab = c2+2ab
b a
c
b
a
可得: a2 + b2 = c2
C A B 图2-1 A B
S正方形c
C
1 6 2
2
1 8(单位面积)
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半

探索勾股定理ppt课件

探索勾股定理ppt课件
度的一般步
边还是斜边或两种均有可能;

(3)利用勾股定理进行计算
续表
1.1 探索勾股定理
返回目录
归纳总结


利用勾股定理解决实际问题的关键是利用数形结合思想

单 将实际问题转化成数学问题,建立直角三角形模型,再利用

读 勾股定理来解决.
1.1 探索勾股定理
返回目录
对点典例剖析


典例3 如图是一个长方形的大门,小强拿着一根竹竿要



技 100 和 36,则以 AD 为直径的半圆的面积是 (

A. 4π
B. 8π


C. 12π
D. 16π
1.1 探索勾股定理
返回目录

[解析] 因为在 Rt△ABD 中,∠ADB=90°,AB2=100,

技 BD2=36,所以 AD2=100-36=64,所以 AD=8,




所以以 AD 为直径的半圆的面积是 π×( AD)2=8π.
行分类讨论.
1.1 探索勾股定理
返回目录
方 ■方法:利用勾股定理解决面积问题

如图,由直角三角形的三边向外作正方形、半圆或等边

巧 三角形,则有 S =S +S (S ,S ,S 分别代表三个图形的
1
2
3
1
2
3

拨 面积,其中 S1 代表以斜边为一边的图形的面积).
1.1 探索勾股定理
返回目录
例 如图,正方形 ABGF 和正方形 CDBE 的面积分别是
1.1 探索勾股定理
● 考点清单解读

北师大版数学八年级上册课件 第一章 1.1 探索勾股定理(共19张PPT)

北师大版数学八年级上册课件 第一章 1.1 探索勾股定理(共19张PPT)
北师大版八年级数学上册第一章第一节
探索勾股定理(1)
2002年世界数学家大会在我国北京召开,下 图是该届数学家大会的会标:
赵爽弦图
毕达哥拉斯——神奇的发现
毕达哥拉斯(公元前 572—前497年),古 希腊著名的数学家、 哲学家.
发现了直角三角形三边 的数量关系!
探究活动1
ac
请你数一数下图正方形A、B、C各占多少个小格子? b
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

求图1中正方形C的面积? 方法二:“补”
Sc
49
4
(
1 2
3
4)
C
25.
求图2中正方形C的面积?
方法一:“割”
Sc 4 ( 1 2 3) 1 2
C
13
求图2中正方形C的面积
方法二:“补”
Sc 25 4 ( 1 2 3)
2
C
13
求图2中正方2 4 5
C
13
总结归纳,得出定理
ac
勾股定理
b
如果直角三角形两直角边长分别
为a,b,斜边长为 c ,那么
a2 b2 c2
即直角三角形两直角边的平方和等于
1.这一节课我们一起学习了哪些知识 和思想方法?
2.对这些内容你有什么体会? 请你在小组内交流.
知识:勾股定理 如果直角三角形两直角边长分别为a,b,斜
边长为 c ,那么 a2 b2 c2.
方法: “割、补、拼”法求面积.
思想:1. 特殊—一般—特殊; 2. 数形结合思想.
布置作业

浙教版数学八上2.7探索勾股定理(1) 课件(共23张PPT)

浙教版数学八上2.7探索勾股定理(1) 课件(共23张PPT)

C
A
A
a
图1
a
C
B
图2
合作学习
大正方形的面积:c²
小正方形面积:(b-a)²


阴影部分面积:4× ab
1
2
它们之间的关系是: c 4 ab (b a )
2
2
化简得: a2+b2=c2
直角三角形三边有下面的关系:
直角三角形两条直角边的平方和等于斜边的平方
讲解新知
勾股定理: 直角形三角形两条直角边的平方和等于斜边的平方.
2.勾股定理
3.勾股定理的应用
等,则E站应建在距A站______km处.
10
即时演练
解:∵C、D两村到E站距离相等,∴CE=DE,
在Rt△DAE和Rt△CBE中,DE2=AD2+AE2,CE2=BE2+BC2,
∴AD2+AE2=BE2+BC2.
设AE为x,则BE=25-x,
将BC=10,DA=15代入关系式为x2+152=(25-x)2+102,
A
∴AB=130(mm)
答:两孔中心A,B之间的距离
90
B
C
40
为130mm
160
即时演练
m
铁路上A、B两站(视为直线上两点)相距25km,C、D为
两村庄(视为两个点),DA⊥AB于A,CB⊥AB于B(如
图),已知DA=15km,CB=10km,现在要在铁路AB上建
设一个土特产品收购站E,使得C、D两村到E站的距离相

∴S△ABC= ×BC×AC=6,

∴AC=4(cm).
∵BC2+AC2=AB2,

探索勾股定理ppt课件

探索勾股定理ppt课件
星人联系的信号.
欣赏下面一幅美丽的图案,仔细观察,你能发现这 幅图中的奥秘吗?带着疑问我们来一步认识
做一做 观察正方形瓷砖铺成的地面. (1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米;
AR P
CQ B
(3)正方形R的面积是 2 平方厘米.
左图 4
9
13
右图 16
9
25
分析表中数据,你发现了什么?
A的面积
左图
4
右图 16
B的面积 9 9
C的面积 13 25
结论 以直角三角形两直角边为边长的小 正方形的面积的和,等于以斜边为边长 的正方形的面积.
总结归纳
勾股定理
直角三角形两直角边的平方和等于斜边的 平方.
几何语言 ∵在Rt△ABC中 ,∠C=90°, ∴.AC2+BC2=AB2 (勾股定理)
五、分层作业 课后思考
基础训练:1、小明的妈妈买了一部29in的电 视机。小明量了电视机的屏幕后,发现屏幕只 有58cm长和46cm宽,他觉得一定是销售员搞错 了。你同意他的想法吗?你能解释这是为什么 吗?
2、求下列图中未知数x,y的值
提高训练:1.今有池方一丈,葭生其中央,出水一 尺.引葭赴岸,适与岸齐.问水深、葭长各几何?译: 有一个一丈大小的池子,中央长有芦苇,高出水面 一尺长.把芦苇拽向岸边,刚好与到岸.请问水有多 深,芦苇有多高?
小男孩又问道:“如果两条直角边分别为5和7,那么这个直角 三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“ 那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道 :“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无 法解释了,心理很不是滋味。于是伽菲尔德不再散步,立即回 家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演 算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了 他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十 任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、 明了的证明,就把这一证法称为“总统。”证法。

1.1勾股定理_1PPT课件(沪科版)

1.1勾股定理_1PPT课件(沪科版)

2.勾股定理的适用条件: 直角三角形,它反应了直角三角形三边的关系,
即已知直角三角形两边长可求第三边长.对于非直 角三角形问题,可根据图形特征构造直角三角形.
3.由勾股定理的基本关系式: a2+b2=c2可得到一些变形关系式: c2=a2+b2=(a+b)2-2ab= (a-b)2 + 2ab ; a2=c2-b2=(c+b)(c-b)等.
3和4,则第三边长为( D )
A.5
B. 7 C. 5 D.5或 7
知识点 2 勾股定理与图形面积
知2-讲
1.命题:如果直角三角形的两条直角边长分别为a, b,斜边长为c,那么a2+b2=c2.
2.常用证法:利用拼图法,通过求面积来验证;这 种方法以数形转换为指点思想、图形拼补为手段, 以各部分面积之间的关系为根据而到达目的.
知2-讲
(1)如图①,△DEF为直角三角形,正方形 P的
面积为9,正方形Q的面积为15,则正方形
M的面积为________;
知2-讲
(2)如图②,分别以直角三角形ABC的三边长为直径 向三角形外作三个半圆,则这三个半圆形的面积 之间的关系式是________; (用图中字母表示)
知2-讲
(3)如图③,如果直角三角形两直角边的长分别为3 和4,分别以直角三角形的三边长为直径作半圆, 请你利用(2)中得出的结论求阴影部分的面积.
知1-导
探究 在行距、列
距都是1的方格网
中,任意作出几
个 以格点为顶点
的直角三角形,
分别以三角形的各边为正方形的一边,向形外作正方形,
如图.并以 S1, S2与S3分别表示几个正方形的面积.
视察图(1),并填写:
视察图(2),并填写:
知1-导
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
心动 不如行动
2.6探索勾股定理(1)
2020年10月2日
1
合作学习
(1)作两个直角三角形,使其两直角边分 别是3厘米和4厘米,5厘米和12厘米,
(2)分别测量两个直角三角形的斜边的长度。 (3)你能发现直角三角形三边长度之间存 在什么关系吗?
2020年10月2日
2
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等
于斜边的平方。 在西方又称毕达


2020年10月2日
哥拉斯定理!
股 3
读一读
勾股世界
我国是最早了解勾股定理的国家之一。早在三千多年
前,周朝数学家商高就提出,将一根直尺折成一个直角三 角形,如果勾等于三,股等于四,那么弦就等于五。即 “勾三、股四、弦五”。它被记载于我国古代著名的数学 著作《周髀算经》中。在这本书中的另一处,还记载了勾 股定理的一般形式。
12
E
算一算
1. 一高为2.5米的木梯,架在高为2.4米的墙上 (如图),这时梯脚与墙的距离是多少?
A
C
B
2020年10月2日
13
议 一 议
小明的妈妈买了一部29英寸(74厘 米)的电视机。小明量了电视机的屏 幕后,发现屏幕只有58厘米长和46厘 米宽,他觉得一定是售货员搞错了。
你能解释这是为什么吗?
汇报人:XXX 汇报日期:20XX年10月10日
15
我们通常所说的29 英寸或74厘米的电视 机,是指其荧屏对角 线的长度
46
58
∵ 5824625480 742 5476
202荧0年1屏0月2对日 角线大约为74厘米
ቤተ መጻሕፍቲ ባይዱ
∴售货员没搞错 14
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
1945年,人们在研究古巴比伦人遗留下的一块数学泥 板时,惊讶地发现上面竟然刻有15组能构成直角三角形三 边的数,其年代远在商高之前。
相传二千多年前,希腊的毕达哥拉斯学派首先证明了
勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯
定理。
2020年10月2日
4
利用拼图来验证勾股定理:
1、准备四个全等的直角三角形(设直角三 角形的两条直角边分别为a,b,斜边c);
2、你能用这四个直角三角形拼成一个正 方形吗?拼一拼试试看
3、你拼的正方形中是否含有以斜边c为边 的正方形?
4、你能否就你拼出的图说明a2+b2=c2?
c a
2020年10月2日
b
5
大正方形的面积可以表示为 c2 ;
也可以表示为
4•
ab 2
+(b- a)2
∵ c2= 4• ab +(b-a)2
2
=2ab+b2-2ab+a2
你能用刻度尺和圆规作一条线段,使它的长度为√5cm?
2020年10月2日
8
想一想
1、下图中的三角形是直角三角形,其余是正 方形,求下列图中字母所表示的正方形的面 积.
A =625
225
400
81
B =144
225
2020年10月2日
9
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。
B
A
C D
7cm
2020年10月2日
10
例2、 如图所示是一个长方形零件的 平面图,尺寸如图所示, 求两孔中心A, B 之间的距离.(单位:毫米)
40 A
90
C
B 40
160
2020年10月2日
11
议一议
以直角三角形三边为边作等边三角形, 这3个等边三角形的面积之间有什么关系?
F
A
D
C
B
2020年10月2日
c
a
=a2+b2
b
∴a2+b2=c2
c a
b
c a
b
c a
b
2020年10月2日
6
大正方形的面积可以表示为 (a+b)2 ; 也可以表示为 c2 +4•ab/2
c a
b
c a
b
c a b 2020年10月2日
c a
b
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab
∴a2+b2=c2
7
例1、已知△ABC中, ∠C= Rt∠,BC= a ,AC= b ,AB=c
(1)已知: a=1, b=2, 求 c;
(2)已知: a =15 , c =17, 求 b;
(3)已知: a = 3
4 ,b=
, 求 c;
55
(4)(4)已知:c=34 , a : b = 8 : 15,求 a ,b.
相关文档
最新文档