《平行线的性质定理》教案

合集下载

七年级数学上册《平行线的性质》教案、教学设计

七年级数学上册《平行线的性质》教案、教学设计
4.教师引导学生总结平行线性质的应用规律,提高学生的几何推理能力。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如:如何利用平行线性质求解角度或线段长度。
2.学生在小组内展开讨论,互相交流想法,共同解决问题。
3.教师巡回指导,参与学生讨论,引导学生深入思考,拓展思维。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平行线的定义、性质和应用规律。
2.学生分享学习心得,交流学习方法,提高学习效率。
3.教师强调平行线在几何学习中的重要性,激发学生学习几何的兴趣。
4.布置课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好准备。
五、作业布置
3.结合平行线的性质,让学生尝试证明以下几何问题:在三角形中,若两边平行,则这两边所对的角相等。
4.完成一份关于平行线性质的思维导图,要求涵盖平行线的定义、判定方法、性质及应用等方面,培养学生系统梳理知识的能力。
5.针对本节课的学习内容,写一篇学习心得体会,要求学生从知识掌握、能力提升、情感态度等方面进行反思,以提高学生的学习自我监控能力。
为了巩固本节课所学的平行线性质,提升学生的几何素养,特布置以下作业:
1.完成课本第chapter页的练习题,包括选择题、填空题和解答题,要求学生在理解平行线性质的基础上,熟练运用相关知识解决问题。
2.设计一道实际生活中的问题,让学生运用平行线的性质进行求解。例如:在学校的操场上,有一条跑道和两条平行的跳远沙坑,如果已知跑道的宽度为w米,求跳远沙坑的宽度。
6.预习下一节课内容,了解平行线与相交线之间的关系,为后续学习奠定基础。
请同学们认真完成作业,及时发现问题,通过自主学习、合作交流等方式解决疑惑,不断提升自己的几何素养。教师将根据作业完成情况,给予针对性的指导和评价,助力学生成长。

平行线的性质教案

平行线的性质教案

平行线的性质教案课题:平行线的性质一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点:平行线的性质公理及平行线性质定理的推导.(二)难点:平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排:1课时五、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.六、教学过程(一)创设情境,复习导入1.如图1,(1)∵ (已知),∴ ().(2)∵ (已知),∴ ().(3)∵ (已知),∴ ().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:[板书]平行线的性质【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.(二)探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线AB 的平行线CD ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。

2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等。

(2)平行线之间的夹角相等。

(3)平行线与截线所形成的内错角相等。

(4)平行线与截线所形成的同位角相等。

三、教学重点与难点1. 教学重点:平行线的性质及其应用。

2. 教学难点:平行线性质的推理和证明。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。

2. 利用几何画板等软件,直观展示平行线的性质。

3. 组织小组讨论,培养学生的合作能力。

五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。

2. 自主探究:学生独立观察、操作,发现平行线的性质。

3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。

4. 教师讲解:总结平行线的性质,并进行推理和证明。

5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。

6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。

7. 作业布置:布置适量作业,巩固所学知识。

六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。

2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。

3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。

3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。

平行线的性质初中数学教案

平行线的性质初中数学教案

平行线的性质初中数学教案一、教学目标1. 知识与技能:(1)能够识别同位角、内错角和同旁内角;(2)理解平行线的性质,包括同位角相等、内错角相等和同旁内角互补;(3)学会使用量角器测量角度。

2. 过程与方法:(1)通过观察实际情境,培养学生的观察能力和思维能力;(2)通过画图和实验,培养学生的动手操作能力;(3)通过小组讨论,培养学生的合作能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作、交流的良好习惯。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 同位角:两条平行线被第三条直线所截,截得的同侧内角叫做同位角。

3. 内错角:两条平行线被第三条直线所截,截得的同侧外角叫做内错角。

4. 同旁内角:两条平行线被第三条直线所截,截得的非同侧内角叫做同旁内角。

5. 平行线的性质:同位角相等、内错角相等、同旁内角互补。

三、教学重点与难点1. 教学重点:平行线的性质,包括同位角相等、内错角相等和同旁内角互补。

2. 教学难点:如何理解和证明同位角相等、内错角相等和同旁内角互补的性质。

四、教学方法1. 观察法:通过观察实际情境,引导学生发现平行线的性质。

2. 画图法:通过画图和实验,让学生直观地理解平行线的性质。

3. 小组讨论法:通过小组讨论,培养学生的合作能力和口头表达能力。

五、教学过程1. 导入新课:通过展示实际情境,引导学生发现平行线的性质。

2. 讲解与演示:讲解平行线的定义,并通过画图和实验演示同位角、内错角和同旁内角的含义。

3. 练习与巩固:让学生进行课堂练习,巩固所学知识。

4. 小组讨论:让学生分组讨论,探索平行线的性质。

5. 总结与拓展:总结本节课所学内容,并引导学生思考如何应用平行线的性质解决实际问题。

6. 布置作业:布置适量作业,让学生巩固所学知识。

六、教学评价1. 课堂讲解:评价学生在课堂上的参与程度、理解程度和回答问题的准确性。

《平行线的性质》数学教案

《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。

2. 通过实例让学生熟练掌握平行线的性质。

3. 培养学生的空间观念和逻辑思维能力。

二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。

2. 教学难点:如何理解和应用平行线的性质。

三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。

- 提出问题,引导学生思考平行线的相关知识。

2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。

- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。

- 鼓励学生动手操作,亲自验证平行线的性质。

4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。

- 对学生的解答进行点评,帮助他们改正错误,加深理解。

5. 小结与反思:
- 引导学生总结本节课的学习内容。

- 鼓励学生分享自己的学习心得,提出疑问或困惑。

四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。

五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。

- 思考如何改进教学方法,提高教学质量。

《平行线的性质》教案

《平行线的性质》教案

一、教学目标:知识与技能:1. 理解平行线的概念,能够识别和判断平行线;2. 掌握平行线的性质,能够运用平行线的性质解决实际问题。

过程与方法:1. 通过观察、操作、思考等活动,培养学生的观察能力和思维能力;2. 学会用画图工具绘制平行线,提高学生的动手操作能力。

情感态度价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性;2. 培养学生的团队合作精神,学会与他人交流和分享。

二、教学重点与难点:重点:1. 平行线的概念及性质;2. 运用平行线的性质解决实际问题。

难点:1. 平行线的判断;2. 运用平行线的性质解决复杂问题。

三、教学准备:教师准备:1. 平行线的图片或实物;2. 画图工具(如直尺、三角板等);3. 教学课件或黑板。

学生准备:1. 课本及相关学习资料;2. 画图工具。

四、教学过程:1. 导入:1.1 教师出示平行线的图片或实物,引导学生观察并说出平行线的特点;2. 探究平行线的性质:2.1 教师引导学生通过观察、操作、思考等活动,发现平行线的性质;3. 应用平行线的性质:3.1 教师出示实际问题,引导学生运用平行线的性质解决问题;3.2 学生独立思考,小组交流,展示解题过程,教师进行点评和指导。

五、作业布置:1. 练习课本上的相关题目;2. 运用平行线的性质解决实际问题,并将解题过程和答案写在作业本上。

教学反思:本节课通过观察、操作、思考等活动,让学生掌握了平行线的性质,并能运用平行线的性质解决实际问题。

在教学过程中,注意引导学生主动参与,培养学生的观察能力、思维能力和动手操作能力。

通过小组合作,培养学生的团队合作精神。

但在教学过程中,也发现部分学生对平行线的判断仍存在困难,需要在今后的教学中加强练习和指导。

六、教学拓展:1. 引导学生思考:还有哪些几何图形的性质可以运用到实际问题中?2. 学生举例说明,教师进行点评和指导。

七、课堂小结:八、课后反思:1. 教师对本节课的教学效果进行反思,分析学生的掌握情况;2. 针对学生的薄弱环节,制定相应的教学措施。

教案平行线的性质与判定

教案平行线的性质与判定

经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。

2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。

3. 提高学生的逻辑思维能力和团队协作能力。

二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及如何在实际问题中运用。

2. 教学难点:平行线的判定方法,以及如何灵活运用平行线的性质解决复杂问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。

2. 运用案例分析法,让学生通过实际问题理解平行线在生活中的应用。

3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。

4. 利用多媒体辅助教学,增强课堂趣味性,提高学生的学习兴趣。

五、教学安排1. 课时:2课时(90分钟)2. 教学过程:第一课时:1. 导入:通过生活实例引入平行线的概念,让学生感知平行线。

2. 探究:引导学生发现平行线的性质,总结平行线的判定方法。

3. 应用:运用平行线的性质和判定方法解决实际问题。

4. 总结:对本节课的内容进行总结,布置课后作业。

第二课时:1. 复习:回顾上节课的内容,检查学生的掌握情况。

2. 拓展:引导学生进一步探究平行线的应用,解决更复杂的问题。

3. 练习:进行课堂练习,巩固所学知识。

4. 总结:对本节课的内容进行总结,布置课后作业。

六、教学活动1. 导入:通过复习上节课的内容,引入本节课的学习主题——平行线的性质和判定。

2. 探究:引导学生通过实际操作,发现并证明平行线的性质。

3. 判定:讲解并演示平行线的判定方法,让学生理解并掌握。

4. 应用:运用平行线的性质和判定方法解决实际问题,巩固所学知识。

5. 总结:对本节课的内容进行总结,布置课后作业。

七、教学策略1. 采用问题驱动法,引导学生主动探究平行线的性质和判定。

北师大版八年级上册7.4《平行线的性质》教案

北师大版八年级上册7.4《平行线的性质》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何图形中有着重要的地位,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过观察教室内的墙壁和地板,我们可以发现平行线的应用,以及它们如何帮助我们理解和构造空间。
关于学生小组讨论的部分,我觉得整体效果还是不错的。学生们能够积极参与,提出自己的观点,也能在讨论中互相学习。但我也注意到,有些学生在讨论中比较沉默,可能是因为性格原因或者是缺乏自信。在今后的教学中,我要关注这些学生,鼓励他们大胆发表自己的看法,增强他们的自信心。
最后,总结回顾环节,我觉得可以进一步优化。在今后的课堂中,我可以尝试让学生来总结今天学到的知识点,这样既能检验他们对知识的掌握程度,也能提高他们的表达能力。同时,我要提醒自己在这个环节中加强对学生的反馈,了解他们在学习过程中的困惑和问题,并及时给予解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行线的性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线永远不会相交的情况?”(如铁轨、黑板的边缘等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的奥秘。
-举例:给定两条平行线和一条横截线,运用性质计算未知角度或线段长度。
2.教学难点
-理解平行线性质的推理过程:学生需要通过观察和操作,理解并掌握平行线性质的推理过程,这需要较强的逻辑思维能力。
-难点解析:如何引导学生从特殊实例中发现规律,进而推广到一般情况,并用严谨的几何语言表达出来。
-识别和应用平行线的条件:在实际问题中,学生需要能够识别哪些线段或角度与平行线有关,并运用性质来解决问题。

八年级数学上册《平行线的性质定理和判定定理》教案、教学设计

八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
(2)运用判定定理判断两条直线是否平行。
(3)综合应用平行线的性质和判定定理解决几何问题。
2.根据课堂学习,同学们尝试自己设计一道关于平行线的性质或判定的几何题目,并给出解题步骤和答案。
3.结合生活中的实例,举例说明平行线的性质定理在实际中的应用,并简述其原理。
4.撰写一篇关于平行线性质定理和判定定理的学习心得,内容包括:
(4)情境教学:创设生活情境,让学生在实际问题中感受几何知识的应用价值。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如参与度、思维活跃度等,及时给予鼓励和指导。
(2)形成性评价:通过作业、测试等形式,了解学生对平行线性质定理和判定定理的掌握程度。
(3)综合性评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评估学生的学习成果。
3.布置课后作业,巩固学生对平行线性质和判定方法的理解。
4.鼓励学生继续探索几何知识,激发他们对数学的兴趣和热情。
五、作业布置
为了巩固学生对平行线性质定理和判定定理的理解,以及提高学生的几何解题能力,特布置以下作业:
1.请同学们完成课本第十章第2节后的练习题,重点掌握以下题型:
(1)运用性质定理解决角度问题。
八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平行线的定义,掌握平行线的性质定理,如同位角相等、内错角相等、同旁内角互补等。
2.学会使用直尺和圆规画平行线,掌握平行线的判定定理,如同位角相等、内错角相等、同旁内角互补等。
3.能够运用平行线的性质和判定定理解决几何图形中的相关问题,如求角度、证明线段平行等。
(1)自己在本节课中的收获和感悟。
(2)对平行线性质定理和判定定理的理解。

5.4平行线的性质定理和判定定理-青岛版八年级数学上册教案

5.4平行线的性质定理和判定定理-青岛版八年级数学上册教案

5.4 平行线的性质定理和判定定理-青岛版八年级数学上册教案一、知识要点1. 平行线的判定定理1.1 垂线垂直于同一直线的两个线段互相垂直。

1.2 夹角同侧两条直线与第三条直线所成的内角互不相等,则这两条直线平行。

1.3 平移若平面上两条直线同向平移,它们平行。

1.4 平行线的性质(定理)1.4.1 平行线的性质一:平行线夹角定理平面上两条平行线与第三条直线所成的内角互不相等。

1.4.2 平行线的性质二:同位角同位角是两条平行线加上一条第三条直线所形成的内角,同位角互相相等。

1.4.3 平行线的性质三:对顶角对顶角是两个交叉直线形成的补角,对顶角互相相等。

2. 平行线的性质定理2.1 垂线定理过平面外一点引平面上一条直线,该直线与引线段的垂线所形成的直角是唯一的。

2.2 垂线之间的关系式设两个垂线互相垂直,则它们分别在同一平面内,而且它们的交点是这两个平面的公共点。

2.3 垂线和平行线之间的关系式设一条直线与两条平行线相交,则所成的两个内角互不相等;设一条直线与两条平行线相交,则向所成的内角相等。

2.4 平行线夹角的定理若两直线在平面内一个点的两侧分别与另外一条直线交成两对内角互相相等,那么这两条直线互相平行。

3. 平行线的应用由平行线夹角定理和对位角性质,常用于平面图形中的切线和垂足问题的求解。

二、教学重点与难点重点:1.了解平行线的判定定理、性质定理和应用。

2.能够掌握垂线、夹角和平移等概念。

3.了解平行线夹角定理及对位角的性质。

难点:1.掌握平行线夹角定理及对位角的性质。

2.根据所给的数据判断直线是否平行。

3.利用平行线夹角定理和对位角的性质解决实际问题。

三、教学建议•学生可通过上网查找资料、阅读相关文献加深对平行线相关知识的理解。

•教师可配合多媒体教学工具,通过图片、图示等形式让学生更好的理解和掌握知识。

•教师可以将平行线运用到实际日常生活中的问题中,让学生更好地理解和应用平行线。

四、教学方法•理论教学:让学生在理论硬知识上有更加深刻的理解,注重同步练习(例如平行线的相关定理)•活动教学:在教学过程中,增加设计相关的实际操作活动,能够提高学生对知识的实用性的掌握(例如画出相关的图形)•启发式教学:注重启发学生的思维,引导学生,在实际应用中独立发掘相关知识,培养学生的发散性思维和创造性思维。

《平行线的性质》教案

《平行线的性质》教案

《平行线的性质》教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。

2. 培养学生观察、思考、推理的能力。

3. 培养学生运用几何知识解决实际问题的能力。

二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的性质:a. 平行线上的任意一对对应角相等。

b. 平行线之间的任意一对内错角相等。

c. 平行线之间的任意一对同位角相等。

三、教学重点与难点1. 教学重点:平行线的性质及应用。

2. 教学难点:平行线性质的证明及运用。

四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。

2. 运用几何画板软件,直观展示平行线的性质。

3. 小组讨论法,培养学生合作学习的能力。

五、教学步骤1. 导入新课:通过生活实例引入平行线的概念,引导学生思考平行线的特点。

2. 探究平行线的性质:让学生自主尝试证明平行线性质,教师给予引导和指导。

4. 练习巩固:布置适量练习题,让学生运用平行线性质解决问题。

5. 拓展延伸:引导学生思考平行线在实际生活中的应用,如交通标志、建筑设计等。

六、教学评估1. 课堂问答:通过提问方式检查学生对平行线概念和性质的理解。

2. 练习批改:对学生的练习题进行批改,了解学生对平行线性质的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作学习和解决问题的能力。

七、课后作业1. 请学生绘制一组平行线,并标出相应的角度。

2. 选择一道与平行线性质相关的练习题,进行解答。

八、课程拓展1. 邀请建筑师或交通工程师,讲解平行线在实际工程中的应用。

2. 组织学生进行实地考察,观察生活中的平行线现象。

九、教学反思1. 反思本节课的教学效果,检查教学目标是否达成。

2. 分析学生的学习情况,调整教学方法,以提高学生的学习兴趣和效果。

十、课程资源1. 几何画板软件:用于展示平行线的性质。

2. 教学PPT:用于辅助教学,展示平行线的性质和实例。

3. 练习题库:用于课后作业和课堂练习。

(2024年)平行线的性质公开课教案

(2024年)平行线的性质公开课教案

通过平行线的性质,可以推导出 梯形的面积公式。
2024/3/26
17
其他几何图形中平行线应用
在三角形中,如果一条线段与三角形的两边平行,则这条线段与三角形的第三边成 比例。
在圆中,两条平行弦所夹的弧相等。
2024/3/26
在多边形中,如果一条线段与多边形的两边平行,则这条线段将多边形分成面积相 等的两部分。
3
课程背景与意义
2024/3/26
01
平行线是初中数学中的重要概念, 对于理解几何图形和解决实际问题 具有重要意义。
02
掌握平行线的性质有助于学生建立 空间观念,提高几何思维能力和解 决问题的能力。
4
教学目标与要求
01
02
03
知识目标
理解平行线的定义和性质, 掌握平行线的判定方法。
2024/3/26
2024/3/26
20
三角形高与平行线关系
2024/3/26
定义与性质
三角形的高是从一个顶点垂直到对边或对边的延长线的线段。高 与对应的底边垂直,因此与底边上的任何平行线也垂直。
判定方法
通过证明线段与三角形的一边垂直,并且经过三角形的另一个顶点。
应用举例
利用三角形高与平行线的关系解决角度、距离等问题。
何证明题中有着广泛的应用。
22
06
平行线在解决实际问 题中应用举例
2024/3/26
23
测量问题中平行线应用
利用平行线测量距离
在无法直接测量两点间距离的情况下,可以通过构造平行线,利用相似三角形的性 质来间接测量。
平行线在角度测量中的应用
通过构造平行线和利用同位角、内错角等性质,可以方便地测量某些难以直接测量 的角度。

平行线的性质教案:考察学生平行线性质的理解和应用,提高学生的数学推理能力

平行线的性质教案:考察学生平行线性质的理解和应用,提高学生的数学推理能力

平行线的性质教案:考察学生平行线性质的理解和应用,提高学生的数学推理能力:大家好,今天我们就来学习一下平行线的性质。

平行线在数学中是一个非常重要的概念,它不仅在几何中起到了重要的作用,而且在其他领域中也发挥着重要的作用。

因此,学习平行线的性质对于我们的数学知识体系的建设是非常重要的。

教学目标:1.了解平行线的基本定义和性质2.能够判断两条直线是否平行3.能够应用平行线的质解决相关的数学问题教学内容:一、平行线的定义和性质平线是指在同一平面内,不相交的两个直线,这两条直线在平面内从来不会交叉,永远保持一定的距离。

平行线围成的图形是平行四边形。

(板书)定义:同一平面内的两条直线,如果它们有且仅有一个公共点,那么这两条直线互相垂直;如果没有交点,则这两条直线互相平行。

性质1:平行线向同一方向延伸的两条直线比较时,离直线较远的直线较大。

(板书)性质2:在平面内,一条直线与平行于它的另一条直线所截的两条平行线段是比例的。

(图1)二、判断两条直线是否平行当我们用眼睛看两条直线的时候,我们只能直观地感觉出它们是否平行,但是如果需要精确地判断它们是否平行,我们就必须使用几何知识进行判断。

方法1:使用锐角三角形的基本定理。

如果在两条直线之间插入一条直线,三条直线将会截成许多三角形,如果两条直线夹角都是锐角,那么它们是平行线。

(图2)方法2:使用同位角的性质。

如果两条直线被一条横线交叉,那么同位角相等;如果同位角相等,那么两条直线是平行的。

(图3)方法3:使用平行线的性质。

如果在两条直线之间插入一条直线,三条直线将会截成许多三角形,如果其中两个三角形对应的两个角之和等于180度,那么它们是平行线。

(图4)三、应用平行线的性质解决相关的数学问题。

问题:在图5中,AB//CD。

比较EF和GH的长度。

解法:根据性质2,可以得到EF/AB=GH/CD所以EF=GH*(AB/CD)=GH*(10/5)=2*GH因此,EF是GH长度的两倍。

公开课平行线的判定与性质教案

公开课平行线的判定与性质教案

公开课平行线的判定与性质教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 引导学生探索平行线的性质,并能运用平行线的性质解决实际问题。

3. 培养学生的观察能力、思考能力及动手操作能力。

二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1) 同位角相等,两直线平行。

(2) 内错角相等,两直线平行。

(3) 同旁内角互补,两直线平行。

3. 平行线的性质:(1) 平行线上的任意一对同位角相等。

(2) 平行线上的任意一对内错角相等。

(3) 平行线上的任意一对同旁内角互补。

(4) 如果两条直线都与第三条直线平行,这两条直线也互相平行。

三、教学重点与难点1. 教学重点:平行线的概念,平行线的判定方法,平行线的性质。

2. 教学难点:平行线的判定方法的应用,平行线的性质的证明。

四、教学方法1. 采用问题驱动法,引导学生探索平行线的性质。

2. 运用多媒体课件辅助教学,直观展示平行线的判定与性质。

3. 注重学生动手操作能力的培养,让学生通过实际操作来理解平行线的判定与性质。

五、教学过程1. 导入新课:通过展示生活中的平行线现象,引导学生进入对平行线的认识。

2. 讲解平行线的概念,引导学生理解平行线的定义。

3. 讲解平行线的判定方法,引导学生掌握平行线的判定技巧。

4. 探索平行线的性质,引导学生发现平行线的性质规律。

5. 运用平行线的性质解决实际问题,巩固学生对平行线的理解。

6. 课堂小结:回顾本节课所学内容,总结平行线的判定与性质。

7. 布置作业:设计相关练习题,让学生巩固所学知识。

六、教学评估1. 课堂问答:通过提问学生,了解学生对平行线概念、判定方法和性质的理解程度。

2. 练习题:布置一些有关平行线的练习题,检查学生对知识的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的能力。

七、教学反思在课后,对整个教学过程进行反思,分析教学中的成功之处和不足之处,以便在今后的教学中进行改进。

教案平行线的性质与判定

教案平行线的性质与判定

经典教案平行线的性质与判定一、教学目标:1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。

2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。

3. 培养学生的观察能力、思维能力和动手能力。

二、教学内容:1. 平行线的概念:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的点到另一条平行线的距离相等。

(2)平行线之间的夹角相等。

(3)平行线与横截线(与平行线垂直的直线)之间的夹角相等。

3. 平行线的判定方法:(1)同位角相等,两直线平行。

(2)内错角相等,两直线平行。

(3)同旁内角互补,两直线平行。

三、教学重点与难点:1. 教学重点:平行线的性质和判定方法。

2. 教学难点:平行线的判定方法的应用。

四、教学方法:1. 采用直观演示法,让学生通过观察、操作,理解平行线的性质和判定方法。

3. 采用练习法,让学生通过练习巩固所学知识。

五、教学准备:1. 教具:直尺、三角板、多媒体课件。

2. 学具:练习本、直尺、三角板。

教案编辑专员:X日期:年月日六、教学过程:1. 导入:通过复习直线、射线、线段的概念,引入平行线的概念。

2. 新课讲解:(1)讲解平行线的概念,让学生明确平行线的定义。

(2)讲解平行线的性质,结合直观演示,让学生理解并掌握平行线的性质。

(3)讲解平行线的判定方法,结合实例,让学生理解并掌握平行线的判定方法。

3. 练习巩固:(1)让学生独立完成课后练习题,巩固所学知识。

(2)进行小组讨论,让学生互相交流、解答疑问。

七、课堂小结:2. 强调平行线在实际生活中的应用,激发学生的学习兴趣。

八、课后作业:1. 完成课后练习题,加深对平行线性质和判定方法的理解。

2. 结合生活实际,运用平行线的性质和判定方法解决问题。

九、教学反思:1. 教师在课后对自己的教学进行反思,分析教学过程中的优点和不足。

2. 根据学生的学习情况,调整教学策略,为下一步的教学做好准备。

十、教学评价:1. 学生对平行线的性质和判定方法的掌握程度。

人教版七年级下5.3平行线的性质教学设计(3课时)

人教版七年级下5.3平行线的性质教学设计(3课时)

第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻ab3 c124性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?BCA DB C学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB 与DE 是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC ∥EF .教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略. 问题4:如图,若AB //CD ,你能确定∠B 、∠D 与∠BED 的大小关系吗?说说你的看法.学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB . 变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.FBDCEAEDCB A小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点平行线的性质公理及平行线性质定理的推导.(二)难点平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤(一)明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.(二)整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.(三)教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).1.如图1,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.根据学生的回答,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手回答.【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.教师根据学生回答,给予肯定或指正的同时板书.[板书]∵(已知),∴(两条直线平行,同位角相等).∵(对项角相等),∴(等量代换).师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手回答问题.教师根据学生叙述,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵(已知),∴(两直线平行,同位角相等).∵(邻补角定义),∴(等量代换).即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵(已知见图6),∴(两直线平行,同位角相等).∵(已知),∴(两直线平行,内错角相等).∵(已知),∴.(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)尝试反馈,巩固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):如图7,已知平行线、被直线所截:图7(1)从,可以知道是多少度?为什么?(2)从,可以知道是多少度?为什么?(3)从,可以知道是多少度,为什么?【教法说明】练习目的是巩固平行线的三条性质.变式训练,培养能力完成练习(出示投影片3).如图8是梯形有上底的一部分,已知量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵(梯形定义),∴,(两直线平行,同旁内角互补).∴.∴.变式练习(出示投影片4)1.如图9,已知直线经过点,,,.(1)等于多少度?为什么?(2)等于多少度?为什么?(3)、各等于多少度?2.如图10,、、、在一条直线上,.(1)时,、各等于多少度?为什么?(2)时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.(四)总结、扩展(出示投影片1第1题和投影片5)完成并比较.如图11,(1)∵(已知),∴().(2)∵(已知),∴().(3)∵(已知),∴().学生活动:学生回答上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.(出示投影6)学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.巩固练习(出示投影片7)1.如图12,已知是上的一点,是上的一点,,,.(1)和平行吗?为什么?图12(2)是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业(一)必做题课本第99~100页A组第11、12题.(二)选做题课本第101页B组第2、3题.作业答案A组11.(1)两直线平行,内错角相等.(2)同位角相等,两直线平行.两直线平行,同旁内角互补.(3)两直线平行,同位角相等.对顶角相等.12.(1)∵(已知),∴(内错角相等,两直线平行).(2)∵(已知),∴(两直线平行,同位角相等),(两直线平行,同位角相等).B组2.∵(已知),∴(两直线平行,同位角相等),(两直线平行,内错角相等).∵(已知),∴(两直线平行,同位角相等),(同上).又∵(已证),∴.∴.又∵(平角定义),∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.5.3.2 命题、定理、证明一、教学目标1.了解“证明”的必要性和推理过程中要步步有据.2.了解综合法证明的格式和步骤.3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.二、学法引导1.教师教法:尝试指导,引导发现与讨论相结合.2.学生学法:在教师的指导下,积极思维,主动发现.三、重点·难点及解决办法(-)重点证明的步骤和格式是本节重点.(二)难点理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.(三)解决办法通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.四、课时安排l课时五、教具学具准备投影仪、三角板、自制胶片.六、师生互动活动设计1.通过引例创设情境,点题,引入新课.2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.3.通过提问的形式完成小结.七、教学步骤(-)明确目标使学生严密推理过程,掌握推理格式,提高推理能力。

10.3平行线的性质数学教案

10.3平行线的性质数学教案

10.3平行线的性质数学教案
标题:第十章第三节平行线的性质
I. 教学目标
A. 学生能够理解并掌握平行线的定义及其基本性质。

B. 学生能够运用所学知识解决实际问题。

C. 通过实践操作,培养学生的空间想象能力和逻辑思维能力。

II. 教学内容
A. 平行线的定义
B. 平行线的基本性质
1. 同位角相等
2. 内错角相等
3. 同旁内角互补
C. 平行线的判定方法
III. 教学过程
A. 导入新课(5分钟)
1. 回顾上一节课的内容,引入平行线的概念。

B. 新课讲解(25分钟)
1. 讲解平行线的定义,让学生理解什么是平行线。

2. 通过实例和动画展示,讲解平行线的三个基本性质。

3. 引导学生归纳总结出平行线的判定方法。

C. 实践操作(15分钟)
1. 设计一些实际问题,让学生自己动手画图,运用所学知识解决问题。

D. 小结与作业(5分钟)
1. 对本节课的内容进行小结,强调重点和难点。

2. 布置作业,巩固所学知识。

IV. 教学评估
A. 观察学生在课堂上的表现,了解他们对知识的理解程度。

B. 分析学生的作业,检查他们是否掌握了平行线的性质和判定方法。

V. 教学反思
A. 反思教学过程中的成功之处和不足之处。

B. 思考如何改进教学方法,提高教学效果。

《平行线的性质》word教案 (公开课获奖)2022华师大版 (1)

《平行线的性质》word教案 (公开课获奖)2022华师大版 (1)

平行线的性质课型:新授课一、学习目标确定的依据1、课程标准在学生会画平行线的基础上,会用平行线的基本性质做题。

2、教材分析本节课是初中数学华东师大版七年级上册第5章相交线与平行线5.2的第三课时,在前面的学习中,学生已认识了角、相交线及相交线所成的角、垂直,积累了初步的数学活动经验,按照先“认识平行线,再探索平行线的条件,最后探索平行线的特征”的顺序呈现。

利用平行线的识别方法进行计算或说明。

3、中招考点平行线的性质近七年中招考试中考查5次,4次在填空题中出现,1次在选择题中出现。

题目较简单,分值均为3分。

4、学情分析学生在做题时对平行线的判定和性质容易混淆,二、学习目标1、能说出平行线的性质。

四、教学过程2、能应用平行线的性质进行简单的计算和推理。

三、评价任务1、向同桌说出平行线的性质的概念,2、能运用平行线的性质进行简单的计算和推理。

有理数的乘法和除法教学目标:1、了解有理数除法的意义,理解有理数的除法法则,会进行有理数的除法运算,会求有理数的倒数。

2、通过实例,探究出有理数除法法则。

会把有理数除法转化为有理数乘法,培养学生的化归思想。

重点:有理数除法法则的运用及倒数的概念难点:怎样根据不同的情况来选取适当的方法求商,0不能作除数以及0没有倒数的理解。

教学过程:一、创设情景,导入新课 1、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.几个数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

有一个因数是0,积就为0. 2、有理数乘法运算律:a ×b = b ×a (a ×b )×c = a ×(b ×c ). a ×(b+c )=a × b + a ×c 3、计算(分组练习,然后交流)(见ppt ) 二、合作交流,解读探究 1、(1)6个同样大小的苹果平均分给3个小孩,每个小孩分到几个苹果?(2)怎样计算下列各式?(-6)÷3 6÷(-3) (-6)÷(-3) 学生:独立思考后,再将结果与同桌交流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线的性质定理》教案
学习目标
1、理解和总结证明的一般步骤、格式和方法.
2、探索平行线的性质定理的证明,培养学生的观察、分析和进行简单的逻辑推理能力.
3、结合图形用符号语言来表示平行线的三条性质的条件和结论.
教学重难点
平行线的性质公理及定理.
教学过程
【温故知新】
(一)、知识链接:(两条直线平行的判定定理)
1、同位角相等,两直线平行
2、内错角相等,两直线平行
3、同旁内角互补,两直线平行
4.下列不能使两直线平行的是( )
A.内错角相等
B.同旁内角互补
C.对顶角相等
D.同位角相等
(二)、导学释疑:
证明:已知:如图所示,直线a∥b,直线c和直线a、b相交.
求证:∠2=∠3.
平行线的性质1定理:两直线平行,同位角相等.
【合作探究】
探究一、已知:如图所示,直线a∥b,直线c和直线a、b相交.
求证:∠1=∠2.
平行线的性质2定理:两直线平行,内错角相等.
探究二、两直线平行,同旁内角互补
(1)根据这一定理的文字叙述,你能作出相关图形吗?
(2)你能根据所作的图形写出已知、求证吗?
(3)你能说说证明的思路吗?并试着写出证明过程.
平行线的性质3定理:两直线平行,同旁内角互补.
【做一做】
已知:如图所示,直线a∥b,a∥c,∠1,∠2,∠3是直线a,b,c被直线d截出的同位角.
求证:b∥c.
定理:平行于同一条直线的两条直线平行.
【总结提升】
总结规律:根据本节课的学习,你能说说命题证明的一般步骤吗?
(1)根据题意画出图形;(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;
(3)经过分析,找出已知退出求证的途径,写出证明过程;
(4)检查证明过程是否正确完善.
【当堂检测】
完成课本50页随堂练习.。

相关文档
最新文档