软件体系结构总结

合集下载

软件体系结构知识总结

软件体系结构知识总结

第一部分-------填空,选择,判断1.软件工程三个要素:方法、工具和过程2.软件元素:程序代码、测试用例、设计文档、设计过程、需求分析文档3.构件分类:关键字分类刻画分类法和超文本组织法4.软件体系结构技术反战经历四个阶段(1)无体系结构设计阶段----以汇编语言进行小规模应用程序开发(2)萌芽阶段-----以控制流图和数据流图构成软件结构为特征(3)初期阶段-----出现了从不同侧面描述系统的结构模型,UML(4)高级阶段-----描述系统的高层抽象结构,出现“4+1”模型5.软件体系结构模型:结构模型、框架模型、动态模型、过程模型和功能模型。

6.“4+1”视图模型从五个不同的视角,包括逻辑试图,进程试图,物理视图,开发视图和场景视图来描述软件体系结构。

逻辑视图主要支持系统的功能需求,是系统提供给最终用户的服务。

通过抽象,封装和继承,可以用对象模型来代表逻辑视图,用类图来描述逻辑视图;开发视图也称模块视图,主要侧重于软件模块的组织和管理,主要考虑软件内部的需求,如软件开发的容易性、软件的重用等,通过系统输入输出关系的模型图和子系统图来描述,提供给编程人员的;进程视图侧重于系统的运行特性,主要关注非功能性的需求,如系统的性能和可用性。

进程视图强调并发性、分布性、系统集成性和容错能力管道和过滤器风格、客户/服务器风格等适合进程视图,提供给系统集成人员的;物理视图主要考虑如何把软件映射到硬件上,它通常考虑系统性能、规模、可靠性等,解决系统拓扑结构、系统安装、通信问题,提供给系统工程人员的。

而场景是那些重要系统活动的抽象,它使四个视图有机联系起来,是最重要的需求抽象,它可以帮助设计者找到系统结构的构件和他们之间的作用关系。

总之,逻辑视图和开发视图描述系统的静态结构,而进程视图和物理视图描述系统的动态结构。

软件体系结构的核心模型由五中元素组成:构件、连接件、配置、端口和角色。

7. 软件体系结构的核心模型由五中元素组成:构件、连接件、配置、端口和角色。

软件体系结构知识点复习

软件体系结构知识点复习

一、什么是软件系统结构软件体系结构也称为软件构架(有时简称构架),是系统的一个或多个结构,它包括:软件的组成元素(组件),这些元素(组件)的外部可见特性,以及这些元素(组件)之间的相互关系。

含义:(1)系统由一个或多个结构组成,其中任何一个结构并不能与构架等同。

(2)每个系统都有一个体系结构。

(3)软件体系结构是系统的抽象。

(4) 构架定义了软件元素以及各元素间的交互关系。

(5) 以往作为体系结构传递的线框图,事实上并等同于体系结构。

二、构架商业周期(ABC)1.构架由什么决定?构架是否由系统需求决定?×软件构架是技术、商业和社会因素共同作用的结果。

2. 构架从哪里来?(影响构架的因素)影响构架的因素主要包括:❑系统涉众(stakeholder)、主要有:管理者:成本要低,人人都得干活营销人员:特性突出、投放市场快、成本低、可与同类产品相匹敌。终端用户:行为、性能、安全性、可靠性、易用性。维护人员:可修改性强。客户:成本低、及时交付、不要频繁修改。❑开发组织・组织内对现存构架的重用・对某个基础设施进行长期的商业投资以实现某些战略目标・开发组织本身的机构也会影响构架的形成❑构架师的素质和经验构架师先前的一些经验、教育、培训以及所接触到过的成功构架模式都会影响到他们对某种构架的选择。

❑技术环境当前技术发展水平代表了某个时代的构架师的普遍素质和经验,对架构有很大的影响力。

❑其它因素其它如社会、法律、人文环境等都会对构架产生影响。

3.构架的反影响力・构架会影响开发组织的结构・构架会影响开发组织的目标・构架会影响客户对下一个系统的要求・构建系统的过程丰富了整个开发团队的经验,从而将影响设计师对后继系统的设计・一些系统会影响并实际改变软件工程的环境,也就是系统开发人员学习或实践的技术环境。

4.构架的商业周期软件构架是技术、商业和社会等诸多因素作用的结果,而软件构架的存在反过来又会影响技术、商业和社会环境,从而影响未来的软件构架。

软件体系结构概述

软件体系结构概述

软件体系结构概述软件体系结构是指软件系统的组织方式和结构框架,包括系统的组件、模块、连接方式以及它们之间的关系。

软件体系结构定义了系统的主要构成和交互方式,以及系统的整体特性和行为。

软件体系结构的设计和选择对于系统的可维护性、可扩展性、可靠性和性能等方面都有重要影响。

软件体系结构可以理解为一个软件系统的蓝图或者设计模板,它指导和限制了系统在开发和维护过程中的各个方面,并对系统的演化和重用性提供支持。

常见的软件体系结构包括客户端-服务器体系结构、分层体系结构、面向对象体系结构、面向服务体系结构等。

客户端-服务器体系结构是最常见的软件体系结构之一,它将软件系统划分为客户端和服务器两部分。

客户端负责用户界面和用户交互,服务器负责处理业务逻辑和数据存储。

这种体系结构可以提高系统的可伸缩性和可靠性,同时也增加了系统的复杂性和通信开销。

分层体系结构将软件系统划分为多个层次,每个层次具有特定的功能。

常见的层次包括表示层、业务逻辑层和数据访问层。

表示层负责用户界面的展示和交互,业务逻辑层负责系统的业务逻辑处理,数据访问层负责数据的存储和访问。

分层体系结构可以提高系统的可重用性和可维护性,同时也增加了系统的复杂性和通信开销。

面向对象体系结构利用面向对象的思想和技术进行软件系统的设计和实现。

它将软件系统划分为多个对象,每个对象具有特定的属性和方法,并通过消息传递进行交互。

面向对象体系结构可以提高系统的可重用性和可维护性,同时也增加了系统的复杂性和内存开销。

面向服务体系结构将软件系统划分为多个服务,每个服务具有特定的功能和接口。

这些服务通过网络进行通信和交互,从而实现系统的功能需求。

面向服务体系结构可以提高系统的可扩展性和跨平台性,同时也增加了系统的通信开销和服务管理的复杂性。

除了以上常见的软件体系结构外,还有其他一些特定领域的体系结构,如实时系统体系结构、并行系统体系结构等。

实时系统体系结构适用于对响应时间有严格要求的系统,它需要快速的响应和高可靠性。

软件体系结构课程总结报告

软件体系结构课程总结报告

一、引言1.1 课程背景软件体系结构是软件工程的一个重要分支,它涉及软件系统的整体结构设计和组织管理。

本课程旨在帮助学生了解软件体系结构的基本概念、原则、方法和工具,提高他们分析和设计复杂软件系统的能力。

1.2 课程目标通过本课程的学习,学生应掌握软件体系结构的基本概念、原则和常见的体系结构风格;了解软件体系结构的设计方法和工具;学会分析现有软件体系结构,评估其优劣;能够运用所学知识设计适用于不同场景的软件体系结构。

二、课程内容2.1 软件体系结构基本概念软件体系结构的定义软件体系结构与软件设计的关系软件体系结构的组成元素软件体系结构的基本原则2.2 常见软件体系结构风格组件级体系结构面向对象体系结构面向过程体系结构事件驱动体系结构数据流体系结构三、软件体系结构设计方法3.1 设计方法概述软件体系结构设计方法的目标和任务设计方法的基本步骤3.2 设计方法和工具面向对象设计方法设计模式架构描述语言(ADL)软件体系结构评估方法四、软件体系结构评估4.1 评估方法概述评估的目的和意义评估方法分类4.2 评估方法和工具定性评估方法定量评估方法评估工具介绍五、实例分析与实践5.1 实例分析分析现有软件体系结构实例评估现有软件体系结构的优劣5.2 实践项目设计一个简单的软件体系结构使用评估方法对设计出的软件体系结构进行评估本课程的教学方式包括课堂讲解、案例分析、实践项目和小组讨论。

通过这些教学方式,学生可以更好地理解和掌握软件体系结构的知识,提高分析和设计软件系统的能力。

六、软件体系结构的设计模式6.1 设计模式的概念设计模式的定义设计模式与软件体系结构的关系6.2 常见的设计模式创建型设计模式结构型设计模式行为型设计模式6.3 设计模式的应用与实践设计模式的选用原则设计模式的应用案例分析七、软件体系结构的演化7.1 软件体系结构演化的概念软件体系结构演化的原因软件体系结构演化的过程7.2 软件体系结构演化的方法与策略软件体系结构演化的方法软件体系结构演化的策略软件体系结构演化的案例分析软件体系结构演化的工具与技术八、软件体系结构的开源框架8.1 开源框架的概念开源框架的定义开源框架与软件体系结构的关系8.2 常见软件体系结构开源框架常用开源框架介绍开源框架的选择与使用8.3 开源框架的实践与应用开源框架的案例分析开源框架的整合与定制九、软件体系结构的评估与优化9.1 软件体系结构评估的概念软件体系结构评估的目的软件体系结构评估的方法9.2 软件体系结构优化的概念软件体系结构优化的目标软件体系结构优化的方法9.3 软件体系结构评估与优化的实践与应用软件体系结构评估与优化的案例分析10.1 课程回顾课程主要内容的回顾10.2 软件体系结构的发展趋势软件体系结构在未来的发展软件体系结构面临的挑战与机遇10.3 课程建议与展望学生对课程的建议与反馈课程未来的改进方向通过本课程的学习,学生不仅能够掌握软件体系结构的基本概念、方法和工具,还能够了解软件体系结构的设计模式、演化、开源框架以及评估与优化等方面的知识。

软件体系结构知识点完整

软件体系结构知识点完整

软件体系结构知识点完整首先,软件体系结构的设计目标是确保软件系统具有良好的可维护性、可扩展性、可重用性和可演化性。

为了达到这些目标,需要考虑以下几个重要的知识点:1.架构风格和模式:软件体系结构可以采用不同的架构风格和模式,如客户/服务器架构、分层架构、微服务架构等。

每种架构风格和模式都有其适用的场景和优缺点,开发人员需要根据具体需求选择适合的架构。

2.组件和接口:软件系统通常由多个组件构成,每个组件负责特定的功能。

组件之间通过接口进行通信和交互。

设计良好的组件和接口可以提高系统的模块化程度,便于测试、维护和重用。

3.数据管理:软件系统通常需要对一定量的数据进行管理和存储。

在软件体系结构设计中,需要考虑数据的组织方式、访问方式和持久化方式。

常见的数据管理技术包括关系型数据库、非关系型数据库和缓存等。

4.并发和分布式处理:现代软件系统通常需要处理大量的并发请求,并且可能分布在不同的机器上。

软件体系结构设计需要考虑如何有效地处理并发请求和如何进行分布式部署,以提高系统的性能和可扩展性。

5.安全和可靠性:软件系统面临各种安全和可靠性风险,如数据丢失、数据泄露和系统故障等。

软件体系结构设计需要考虑如何采取措施保障系统的安全和可靠性,如进行数据备份、访问控制和错误处理等。

6.软件系统的分层:软件体系结构通常采用分层的结构,将系统划分为不同的层次,每个层次负责不同的功能。

常见的分层结构有表示层、业务逻辑层和数据访问层等。

分层结构可以提高系统的可维护性和可扩展性。

7.影响因素和约束:软件体系结构设计还需要考虑相关的影响因素和约束,如成本、时间、技术限制等。

这些因素和约束将直接影响软件体系结构的设计和实施。

总结起来,软件体系结构是软件设计的重要组成部分,它涉及到架构风格和模式的选择、组件和接口的设计、数据管理、并发和分布式处理、安全和可靠性等多个方面。

了解这些知识点对于设计出高质量、可维护和可扩展的软件系统至关重要。

软件体系结构知识点完整

软件体系结构知识点完整

1、构件就是核心与基础,重用就是必需得手段。

2、软件重用就是指在两次或多次不同得软件软件开发过程中重复使用相同或相近软件元素得过程。

3、软件元素包括程序代码、设计文档、设计过程、需求分析文档甚至领域知识。

4、把可重用得元素称作软构件,简称为软构件。

5、可重用软件元素越大,就说重用得粒度越大。

6、构件就是指语义完整、语法正确与有可重用价值得单位软件,就是软件重用过程中可以明确辨识得系统;结构上,它就是语义描述、通信接口与代码实现得复合体。

7、面向对象技术达到类级重用,以类为封装得单位。

8、构件模型就是对构件本质特征得抽象描述。

三个主要流派,分别就是OMG(对象管理组织)得CORBA(通用对象请求代理结构)、Sun得EJB与Microsoft得DOM(分布式构件对象模型)。

9、获取构件得四个途径:(1)从现有构件中获得符合要求得构件,直接使用或作适应性修改,得到可重用构件。

(2)通过遗留工程,将具有潜在重用价值得构件提取出来,得到可重用构件。

(3)从市场上购买现成得商业构件,即COTS构件。

(4)开发符合要求得构件。

10、构件分类方法三大类:关键字分类、刻面分类法、超文本组织方法11、构件检索方法:基于关键字得检索、刻面检索法、超文本检索法与其她检索方法。

12、减少构件修改得工作量,要求工作人员尽量使构件得功能、行为与接口设计更为抽象画、通用化与参数化。

13、构件组装技术:基于功能得组装技术、基于数据得组装技术与面向对象得组装技术。

14、软件体系结构得定义:软件体系结构为软件系统提供了一个结构、行为与属性得高级抽象,由构成系统得元素得描述、这些元素得相互作用、指导元素集成得模式以及这些模式得约束组成。

软件体系结构不仅指定了系统得组织结构与拓扑结构,并且显示了系统需求与构成系统得元素之间得对应关系,提供了一些设计决策得基本原理。

软件体系结构得意义:(1)体系结构就是风险承担者进行交流得手段;(2)体系结构就是早期设计决策得体现--①软件体系结构明确了对系统实现得约束条件②软件体系结构决定了开发与维护组织得组织结构③软件体系结构制约着系统得质量属性④通过研究软件体系结构可能预测软件得质量⑤软件体系结构使推理与控制更改更简单⑥软件体系结构有助于循序渐进得原型设计⑦软件体系结构可以作为培训得基础;(3)软件体系结构就是可传递与可重用得模型。

软件体系结构

软件体系结构
3、软件体系结构的定义 软件体系结构为软件系统提供了一个结构、行为和属性的高级抽象,由构成系统的元素的描 述、这些元素的相互作用、指导元素集成的模式以及这些模式的约束组成。软件体系结构不 仅指定了系统的组织结构和拓扑结构,并且显示系统需求和构成系统元素之间的对应关系, 提供了一些设计决策的基本原理。
1、MVC(模型-视图-控制):针对用户界面 模型:核心数据封装、逻辑和功能的计算,它独立于具体的界面表达和输入/输出操作。 视图:把模型数据等信息以特定形式展示给用户。 控制:处理用户与软件的交互操作。它接受用户的输入,将输入反馈给模型,进而实现对模 型的计算控制,是使模型和视图协调工作的部件。
2、软件重用的定义 软件重用是指在两次或多次不同的软件开发过程中重复使用相同或相近软件元素的过程。 可重用软件元素越大,重用粒度越大。
7、基于事件的隐式调用的定义 基于事件的隐式调用风格的思想是构件不直接调用一个过程,而是触发或广播一个或多个事 件。系统中的其它构件中的过程在一个或多个事件中注册,当一个事件被触发,系统自动调 用在这个事件中注册的所有过程,这样,一个事件的触发就导致了另一个模块中过程的调用。
8、基于事件的隐式调用的优缺点 优点: (1)为软件重用提供了强大的支持。 (2)为系统带来了方便。
end Attendห้องสมุดไป่ตู้e;
16、C2 对体系结构的描述 architecture MeetingScheduler is
conceptual_components Attendee;ImportantAttendee;MeetingInitiator;
connector connector MainConn is message_filter no_filtering; connector AttConn is message_filter no filtering; connector ImportantAttConn is message_filter no filtering;

软件体系结构

软件体系结构

软件体系结构软件体系结构是指软件系统中各个组件之间的关系和结构的抽象描述。

它是构建软件系统的基础,对软件系统的设计和开发起着重要的指导作用。

本文将从软件体系结构的定义、目标和应用领域等方面对其进行详细的介绍。

一、软件体系结构的定义软件体系结构是指软件系统中各个组件之间的关系和结构的抽象描述,它包括软件系统的静态结构和动态行为。

静态结构是指软件系统中组件的组织方式和相互之间的关系,动态行为是指软件系统中组件的交互方式和相互之间的通信方式。

二、软件体系结构的目标软件体系结构的目标是实现软件系统的可重用性、可维护性、可扩展性和可伸缩性。

可重用性是指软件系统中的组件能够被多次使用,可维护性是指软件系统中的组件能够被轻松地修改和维护,可扩展性是指软件系统能够根据需求进行功能的扩展,可伸缩性是指软件系统能够根据需求进行性能的扩展。

三、软件体系结构的应用领域软件体系结构广泛应用于各个领域的软件系统开发,特别是大型跨平台和分布式系统的开发。

在金融领域,软件体系结构被应用于交易系统和风险管理系统的开发;在电子商务领域,软件体系结构被应用于在线购物系统和支付系统的开发;在物流领域,软件体系结构被应用于供应链管理系统和运输管理系统的开发。

四、软件体系结构的基本原则软件体系结构的设计应遵循以下基本原则:1. 模块化:将软件系统分为独立的模块,每个模块只负责特定的功能,通过接口进行通信和交互。

2. 松耦合:各个模块之间的依赖应尽量降低,避免模块之间的紧密耦合,以提高系统的灵活性和可维护性。

3. 高内聚:模块内部的各个元素之间应紧密关联,功能相关的元素应放在同一个模块中,以提高系统的内聚性。

4. 分层:将软件系统分为多个层次,每个层次负责不同的功能,上层层次通过接口调用下层层次的功能。

5. 可伸缩性:系统的设计应考虑未来的扩展需求,能够根据需求进行功能和性能的扩展。

六、软件体系结构的设计方法软件体系结构的设计方法有很多种,常用的有面向对象的体系结构设计方法、服务导向的体系结构设计方法和领域驱动设计方法。

软件体系结构研究报告

软件体系结构研究报告

软件体系结构研究报告软件体系结构是指软件系统中各个组件之间的关系和交互方式,它是软件开发过程中的重要环节。

本文将对软件体系结构的研究进行分析和总结。

软件体系结构的研究旨在设计一个符合系统需求的结构框架,以便于软件系统的开发和维护。

软件体系结构研究的主要内容包括:系统需求分析、软件架构设计、模块划分和数据流程等。

首先,系统需求分析是软件体系结构研究的基础。

通过对系统需求的分析,可以确定系统的功能、性能、安全等要求,从而为软件架构设计提供指导。

其次,软件架构设计是软件体系结构研究的核心。

软件架构设计是指在系统需求的基础上,根据系统性能、可靠性等因素,设计出系统的组件、接口和关系。

常见的软件架构设计模式有层次结构、管道-过滤器、客户端-服务器等。

接着,模块划分是软件体系结构研究的关键。

模块划分是将系统拆解成多个模块,每个模块负责特定的功能。

模块划分可以按照功能划分、数据划分等多种方式进行。

合理的模块划分可以提高系统的可维护性和可复用性。

最后,数据流程是软件体系结构研究的重要内容。

数据流程是指系统中数据的流动方式和路径。

合理的数据流程可以提高系统的效率和响应速度。

在软件体系结构的研究中,还需要考虑系统的可扩展性、可移植性和安全性等因素。

可扩展性是指系统的容量和性能可以随着需求的增加而增加。

可移植性是指系统可以在不同的平台和环境下运行。

安全性是指系统能够保护用户的隐私信息,防止数据泄露和攻击。

综上所述,软件体系结构研究是软件开发过程中的重要环节,它可以帮助系统设计者设计出符合需求的软件系统。

通过对系统需求的分析、软件架构的设计、模块的划分和数据流程的设计,可以提高软件系统的可维护性、可复用性和可靠性。

软件体系结构研究还需要关注系统的可扩展性、可移植性和安全性等因素,以提高软件系统的性能和安全性。

总之,软件体系结构研究对于软件开发和系统维护都具有重要意义。

软件设计与体系结构知识点

软件设计与体系结构知识点

软件设计与体系结构知识点软件设计与体系结构是软件开发过程中非常重要的两个环节。

设计是指通过分析需求,确定软件系统所需的各个组成部分及其相互关系,以及确定各个组成部分的详细设计方案的过程。

体系结构是指软件系统的整体架构,包括各个组件之间的关系,以及软件系统与外部环境的交互方式。

软件设计的主要知识点包括:1.需求分析:分析用户需求,明确软件系统的功能、性能、可靠性等方面的要求。

2.设计原则:包括开放封闭原则、单一职责原则、里氏替换原则、接口分离原则等。

3.设计模式:是一套被反复使用的、经过验证的、用来解决在软件设计过程中常见问题的解决方案。

常见的设计模式有工厂模式、单例模式、观察者模式、策略模式等。

4.UML(统一建模语言):是一种用于软件系统建模的标准化语言。

包括用例图、类图、时序图、状态图等。

5.架构模式:是一种包含一组满足特定需求的技术决策,指导解决软件系统中基本设计问题的模式。

常见的架构模式有分层架构、客户端-服务器架构、发布-订阅架构等。

软件体系结构的主要知识点包括:1.分层架构:将软件系统分为若干层,每一层负责处理特定的功能或任务,层与层之间通过接口进行通信。

2.客户端-服务器架构:将软件系统分为客户端和服务器两部分,客户端向用户提供界面和交互功能,服务器处理客户端发送的请求并返回相应结果。

3.分布式架构:将软件系统的各个组件分布在不同的物理节点上,通过网络进行通信。

4.微服务架构:将软件系统拆分为若干个小型服务,每个服务负责一个特定的功能,通过接口和消息进行通信。

5.事件驱动架构:系统中的各个组件通过发布-订阅模式进行通信,一个组件发生变化时通知其他相关组件。

在实际应用中,软件设计与体系结构的知识点通常会结合起来使用,以满足软件系统的需求。

同时,不同的项目可能有不同的设计与体系结构要求,开发人员需要根据具体项目的需求来选择适合的设计和架构模式。

软件体系结构范文

软件体系结构范文

软件体系结构范文1.分层结构:将软件系统分成多个层次,每个层次都有自己的功能和责任。

每一层都建立在下一层的基础上,并提供给上一层一种简单的接口。

这种分层结构使软件系统的各个模块之间的依赖关系变得清晰明了,易于管理和维护。

2.模块化设计:将软件系统划分为多个独立的模块,每个模块有明确的功能和职责。

每个模块可以独立开发和测试,可以通过定义清晰的接口实现模块之间的通信和协作。

3.数据流控制:确定数据在软件系统中的流向和控制方式。

通过合理地组织数据流,可以提高系统的效率和响应速度。

4.容错处理:考虑系统可能出现的各种错误和异常情况,设计相应的容错机制。

例如,通过添加冗余系统来提高系统的可靠性和可用性。

5.并发控制:考虑软件系统中可能存在的并发操作,设计相应的并发控制机制。

例如,通过加锁和事务处理来保证数据的一致性和正确性。

6.性能优化:通过合理地组织软件系统的组件和模块,优化系统的性能和资源利用率。

例如,通过缓存、异步处理和并行计算来提高系统的运行速度和吞吐量。

7.可扩展性设计:考虑软件系统在未来可能的扩展需求,设计具有良好的扩展性。

例如,通过使用插件式架构和松耦合设计来支持系统的功能扩展和组件替换。

8.可重用性设计:将软件系统的一些组件设计成可重用的模块,方便在其他系统中进行复用。

例如,通过使用设计模式和软件工程方法来提高组件的可重用性。

软件体系结构设计的目标是提供一个模块化、可维护、可扩展、高性能和可重用的软件系统。

它在软件系统的开发过程中起着重要的作用,决定了软件系统的质量和成功与否。

一个好的软件体系结构可以使软件系统更加容易理解、开发、测试和维护,提高软件开发的效率和质量。

谈谈对软件体系结构的认识_范文模板及概述

谈谈对软件体系结构的认识_范文模板及概述

谈谈对软件体系结构的认识范文模板及概述1. 引言概述:在当今信息技术飞速发展的时代,软件已经成为我们生活和工作中不可或缺的一部分。

而软件体系结构作为软件开发过程中的一个重要概念,对于确保软件系统的稳定、高效运行起着至关重要的作用。

本文将对软件体系结构进行深入探讨,旨在帮助读者更好地理解和应用软件体系结构的相关概念。

文章结构:本文分为五个主要部分。

首先,引言部分将对文章内容进行简单介绍。

接下来,第二部分将介绍软件体系结构的基本概念,包括其定义、作用、组成要素以及设计原则和模式。

第三部分会详细探讨常见的软件体系结构类型,如分层架构、客户-服务器架构和面向服务架构(SOA)。

然后,在第四部分中,我们将强调软件体系结构的重要性和优势,包括提供可扩展性和灵活性、改善可维护性和可测试性以及促进团队合作和开发效率提高等方面。

最后,在总结与展望部分,我们将回顾软件体系结构的重要性,并展望未来的发展趋势。

目的:本文旨在深入探讨软件体系结构的相关概念和应用价值,帮助读者加深对软件体系结构的认识,并提供一些实践经验和指导原则供读者参考。

通过阅读本文,读者可以更好地理解软件体系结构,并在软件开发过程中应用合适的架构类型,从而提高软件系统的质量和性能。

注意事项:文章中将结合具体案例和实践经验,对每个部分进行更详细的说明和阐述。

为了使文章内容更加清晰易懂,将尽量避免使用过多技术术语或专业名词,并以通俗易懂的方式呈现给读者。

同时,在引言部分结束后,将逐步深入介绍软件体系结构的各个方面,使读者能够系统全面地了解和掌握该主题。

2. 软件体系结构的基本概念2.1 定义与作用软件体系结构指的是一个软件系统在高层次上的组织方式和结构布局。

它描述了软件系统中各个组成部分之间的关系,以及这些部分如何协同工作来实现系统的功能和属性。

软件体系结构主要通过定义元素、组件、连接和约束等来描述系统的架构。

软件体系结构有助于对复杂系统进行抽象和理解,并提供了一种高级别视角来管理软件开发过程。

软件体系结构

软件体系结构

软件体系结构软件体系结构是软件系统的一种高级结构,它涉及到软件系统的主要构成部分以及这些部分之间的相互作用。

它提供了一个框架,用于指导系统的设计和开发,以确保系统能够满足其需求。

软件体系结构由三个主要元素组成:构件、连接件和约束。

1.构件:这是软件体系结构的基础元素,包括处理构件、数据构件和连接构件。

处理构件负责执行数据的操作或计算,数据构件是操作或计算所处理的信息,而连接构件则负责将这些不同的部分组合在一起。

2.连接件:连接件是负责将体系结构的不同部分组合连接起来的元素。

它们定义了构件之间的交互方式和关系,包括数据流、控制流和消息传递等。

3.约束:约束是软件体系结构中的规则和限制,它们定义了系统的行为和属性。

约束可以包括性能要求、可靠性要求、可维护性要求等。

此外,软件体系结构还涉及到一些重要的问题,如全局组织和全局控制结构、通信、同步与数据存取的协议、设计构件的功能定义、物理分布与合成、设计方案的选择、评估与实现等。

这些问题都是软件体系结构在设计和开发过程中需要考虑的重要因素。

Kruchten提出了软件体系结构的四个角度,这些角度从不同方面对系统进行描述:1.概念角度:描述系统的主要构件及它们之间的关系。

2.模块角度:包含功能分解与层次结构,描述了系统的静态结构。

3.运行角度:描述了一个系统的动态结构,包括系统的行为、交互和并发性等方面。

4.代码角度:描述了各种代码和库函数在开发环境中的组织,涉及到系统的实现细节。

总的来说,软件体系结构是软件系统的核心组成部分,它为软件的设计和开发提供了一个高层次的结构和指导。

通过对软件体系结构的设计和分析,可以更好地理解系统的需求和功能,提高系统的质量和可维护性。

软件架构设计中的五层体系结构

软件架构设计中的五层体系结构

软件架构设计中的五层体系结构随着计算机技术的不断发展,软件系统的规模越来越大,复杂度也越来越高,因此在软件系统的开发过程中,软件架构的设计显得尤为重要。

软件架构定义了软件系统的组织结构,包括软件系统的组件、模块、接口、数据流等等,是指导软件系统设计和开发的基石。

软件架构设计中的五层体系结构是一种基于分层思想的软件架构设计模式,被广泛应用于大型软件系统。

该体系结构分为五个层次,每个层次负责处理不同的任务和功能,各层之间协同工作,形成一个完整的软件系统。

下面将详细解释五个层次及其功能。

第一层:用户界面层用户界面层是软件系统与用户之间的接口,负责接收用户的输入请求,并向用户展示软件系统的输出信息。

用户界面层通常包括下面两个部分:1.1 用户界面管理器用户界面管理器是负责响应用户界面的请求,生成和显示用户界面的用户界面组件,如按钮、文本框等。

用户界面管理器还可以帮助用户进行数据输入验证,保证数据的完整性和正确性。

1.2 应用程序编程接口应用程序编程接口(API)是用户界面层与下一层——业务逻辑层之间的桥梁,将用户界面的请求传递给业务逻辑层。

API还可以将业务逻辑层返回的数据展示给用户界面层。

第二层:业务逻辑层业务逻辑层是软件系统的核心,负责处理软件系统的业务逻辑,即实现软件系统的功能。

业务逻辑层通常包括下面两个部分:2.1 业务逻辑模型业务逻辑模型是软件系统中实现业务逻辑的代码和算法集合,是业务逻辑层的核心。

业务逻辑模型需要和其他模块进行交互,因此需要和数据库模型进行配合。

2.2 数据访问模型数据访问模型负责与数据库进行通信,将业务逻辑层操作的数据存储到数据库中,并从数据库中读取数据。

数据访问模型还需要对数据库进行管理和维护,保证数据库的稳定性和安全性。

第三层:数据访问层数据访问层是负责管理和维护数据库的模块,其功能是通过数据访问接口向上层提供一定的数据访问功能,同时向下层提供对数据库的操作。

数据访问层通常包括下面两个部分:3.1 数据库访问接口数据库访问接口提供对外的数据访问API,向上层提供数据库的访问功能。

现代计算机软件系统的层次结构

现代计算机软件系统的层次结构

现代计算机软件系统的层次结构
现代计算机软件系统的层次结构主要分为四个层次:应用层、服务层、操作系统层和硬件层。

应用层是软件系统的最顶层,它包括了各种应用软件,如办公软件、娱乐软件和数据库软件等。

应用层的主要功能是为用户提供各种实用的功能。

应用层的开发需要了解用户需求,并将其转化为具体的软件功能,以满足用户的需求。

服务层位于应用层之下,它提供了一系列的服务和功能给应用层使用。

其中最重要的服务是网络服务,通过网络服务,应用层可以与其他计算机进行通信,实现各种功能。

此外,服务层还包括数据存储、安全性、身份验证和事务管理等功能。

服务层的开发需要管理各种服务和实现服务与应用层的接口。

操作系统层位于服务层之下,它是计算机系统的核心。

操作系统层负责管理计算机的硬件资源和提供基本的服务,如进程管理、内存管理、文件系统和设备驱动程序等。

操作系统层的开发需要深入了解计算机体系结构和硬件资源的管理方式,以保证系统的性能和稳定性。

硬件层是计算机软件系统的最底层,它包括了计算机的物理硬件,如中央处理器、内存、硬盘和输入输出设备等。

硬件层提供了计算和存储的基本能力,为上层软件提供必要的支持。

总结来说,现代计算机软件系统的层次结构包括应用层、服务层、操作系统层和硬件层。

这种层次结构的设计能够使不同层次的软件模块分开开发和维护,提高了系统的可扩展性和可维护性。

不同层次之间的协作和交互也使得软件系统能够高效地运行和提供各种功能。

软件体系结构汇总

软件体系结构汇总

软件体系结构汇总软件体系结构是指在软件开发过程中,通过分析和设计将软件系统拆分成不同的模块,确定各个模块之间的关系和通信方式的过程。

软件体系结构的设计对于软件系统的可维护性、可扩展性等方面有着至关重要的影响。

本文将对几种常见的软件体系结构进行汇总介绍。

1. 分层体系结构(Layered Architecture)分层体系结构是将软件系统划分为若干层,每一层都具有特定的功能和对上下层的依赖关系。

常见的分层包括用户界面层、业务逻辑层、数据访问层等。

分层体系结构的优点是模块化、可维护性和可重用性较好,不同层之间的耦合度较低,但也存在性能问题和复杂度较高的缺点。

2. 客户端-服务器体系结构(Client-Server Architecture)客户端-服务器体系结构将软件系统划分为客户端和服务器两部分,客户端负责与用户交互,服务器负责处理和存储数据。

客户端-服务器体系结构的优点是系统的可伸缩性和灵活性较好,但也存在服务器压力过大、网络延迟等问题。

3. MVC体系结构(Model-View-Controller Architecture)MVC体系结构将软件系统划分为模型、视图和控制器三个部分,模型负责业务逻辑和数据存储,视图负责用户界面显示,控制器负责协调模型和视图之间的交互。

MVC体系结构的优点是模块化和分工明确,可以提高系统的可维护性和可扩展性。

4. Pipe and Filter体系结构Pipe and Filter体系结构将软件系统划分为一系列的处理器(Filter)和数据通道(Pipe),每个处理器负责执行一些特定的功能,通过数据通道进行输入和输出。

Pipe and Filter体系结构的优点是模块化和可重用性较好,但也存在处理器之间的依赖性和性能问题。

5. Blackboard体系结构Blackboard体系结构将软件系统划分为一个共享数据结构(Blackboard)和一组独立的处理器(Knowledge Sources),数据结构用于共享问题描述和部分解决方案,处理器根据问题描述和解决方案进行并行计算和协作。

软件设计与体系结构总结

软件设计与体系结构总结

软件设计与体系结构总结体系结构概要1.软件开发知识的半衰期为3年2.⽀持软件⼯程的根基在于质量关注点• 软件⼯程过程和实践的通⽤原则主要是:– ①为最终⽤户提供价值,– ②保持简洁,– ③维护可见的东西(产品和计划),– ④认识(必须理解别⼈将消费你所⽣产的产品),– ⑤⾯向未来,– ⑥计划复⽤,以及⑦认真思考3. 关于软件⼯程原则指导实践的核⼼原则:(1)指导过程的原则、(2)指导实践的原则指导框架活动的原则:沟通原则、策划原则、建模原则、构造原则、部署原则建模原则:1.敏捷模型建模原则、2. 需求建模原则、3. 设计建模原则4. 软件的三个设计层次:体系结构级,代码级,执⾏级\5. 软件体系结构的定义(1)Dewayne Perry和A1ex Wolf这样定义:软件体系结构是具有⼀定形式的结构化元素,即构件的集合,包括处理构件、数据构件和连接构件。

处理构件负责对数据进⾏加⼯,数据构件是被加⼯的信息,连接构件把体系结构的不同部分组合连接起来。

这⼀定义注重区分构件,这⼀⽅法在其他的定义和⽅法中基本上得到保持。

\6. 在体系结构的层次上,相关的系统级别的问题包括了容量、吞吐量、⼀致性、构件的兼容性等。

7.体系结构的设计原则: 1.抽象原则 2.分⽽治之 3.封装和信息隐蔽原则 4.模块化原则 5.⾼内聚低耦合 5.关注点分离 6.策略和实现分离策略 7.接⼝和实现分离原则\8. 请解释需求⼯程需求⼯程(Requirement Engineering,RE)是指致⼒于不断理解需求的⼤量任务和技术。

从软件过程的⾓度来看,需求⼯程发⽣在与客户沟通活动和为⼀般的软件过程定义的建模活动过程中,其任务是为设计和构建活动建⽴⼀个可靠坚固的基础,它必须适应过程、项⽬、产品和⼈员⼯作的需要。

需求⼯程在设计和构造之间建⽴起联系的桥梁。

9.需求⼯程过程通过执⾏七个不同的活动来实现:起始、导出、精化、协商、规格说明,确认和管理,其中起始、导出和精化属于项⽬的起始阶段下⾯这组问题有助于理解为什么导出需求这么困难:范围问题:理解问题:易变问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●什么是“软件体系结构”:
架构是以组件、组件之间的关系、组件与环境之间的关系为内容的某一系统的基本组织结构,以及指导上述内容设计与演化的原理。

●SA概念两大流派:
决策派是在一些重要方面所作出的决策集合
组合派将系统描述为组件及组件之间的交互
●软件体系结构核心模型:
●构件的定义:
构件是指语义完整、语法正确和有可重用价值的单位软件,是软件重用过程中可以明确辨识的系统;结构上,它是语义描述、通讯接口和实现代码的复合体。

●RUP 4+1视图:
逻辑视图(Logical View):逻辑试图主要是用来描述系统的功能需求,即系统提供给最终用户的服务. 在逻辑视图中,系统分解成一系列的功能抽象、功能分解与功能分析,这些主要来自问题领域(Problem Definition)。

在面向对象技术中,通过抽象、封装、继承,可以用对象模型来代表逻辑视图,可以用类图(Class Diagram)来描述逻辑视图。

过程视图(Process View):进程试图侧重系统的运行特性,关注非功能性的需求(性能,可用性)。

服务于系统集成人员,方便后续性能测试。

强调并发性、分布性、集成性、鲁棒性(容错)、可扩充性、吞吐量等。

定义逻辑视图中的各个类的具体操作是在哪一个线程(Thread)中被执行。

物理视图(Physical View):物理试图主要描述硬件配置。

服务于系统工程人员,解决系统的拓扑结构、系统安装、通信等问题。

主要考虑如何把软件映射到硬件上,也要考虑系统性能、规模、可靠性等。

可以与进程视图一起映射。

开发视图(Development View):开发视图主要用来描述软件模块的组织与管理(通过程序库或子系统)。

服务于软件编程人员,方便后续的设计与实现。

它通过系统输入输出关系的模型图和子系统图来描述。

要考虑软件的内部需求:开发的难易程度、重用的可能性,通用性,局限性等等。

开发视图的风格通常是层次结构,层次越低,通用性越好(底层库:Java SDK,图像处理软件包)。

场景(Scenarios):场景用于刻画构件之间的相互关系,将四个视图有机地联系起来。

可以描述一个特定的视图内的构件关系,也可以描述不同视图间的构件关系。

文本、图形表示皆可。

(小结:逻辑视图、开发视图,都主要是用来描述系统的静态结构。

进程视图、物理视图,主要是用来描述系统的动态结构。

并非每个系统都必须把5个视图都画出来,而是各有侧重。

例如MIS系统侧重于逻辑视图、开发视图,而实时控制系统则侧重于进程视图、物理视图。

)
●体系结构描述语言:
专门的语言,用于支持严格的体系结构描述,形式的、(半)自动的分析和代码生成。

例如ACME(Component, Connector, Port, Role, System)
●软件体系结构风格:是描述某一特定应用领域中系统组织方式的惯用模式。

●软件体系结构风格分类:
数据流系统(批处理系统,管道/过滤器系统)
调用/返回系统(主程序/子程序系统,面向对象系统,层次风格)独立构件(进程通信,事件系统)
虚拟机(解释器,基于规则的系统)
数据为中心的系统(数据库,超文本系统,黑板系统)
●客户/服务器风格:
优点:(1)C/S 体系结构具有强大的数据操作和事务处理能力,模型思想简单,易于人们理解和接受。

(2)系统的客户应用程序和服务器构件分别运行在不同的计算机上,系统中每台服务器都可以适合各构件的要求,这对于硬件和软件的变化显示出极大的适应性和灵活性,而且易于对系统进行扩充和缩小。

(3)在C/S 体系结构中,系统中的功能构件充分隔离,客户应用程序的开发集中于数据的显示和分析,而数据库服务器的开发则集中于数据的管理,不必在每一个新的应用程序中都要对一个DBMS进行编码。

将大的应用处理任务分布到许多通过网络连接的低成本计算机上,以节约大量费用。

缺点:(1)开发成本较高(2)客户端程序设计复杂(3)信息内容和形式单一(4)用户界面风格不一,使用繁杂,不利于推广使用(5)软件移植困难(6)软件维护和升级困难(7)新技术不能轻易应用。

●三层客户/服务器风格:
表示层:应用的用户接口部分,担负着用户与应用间的对话功能功能层:应用的本体,将具体的业务逻辑编入程序
数据层:负责管理对数据库数据的读写
优点:(1)允许合理地划分三层结构的功能,使之在逻辑上保持相对独立性,能提高系统和软件的可维护性和可扩展性。

(2)允许更灵活有效地选用相应的平台和硬件系统,使之在处理负荷能力上与处理特性上分别适应于结构清晰的三层;并且这些平台和各个组成部分可以具有良好的可升级性和开放性。

(3)应用的各层可以并行开发,可以选择各自最适合的开发语言。

(4)利用功能层有效地隔离开表示层与数据层,未授权的用户难以绕过功能层而利用数据库工具或黑客手段去非法地访问数据层,为严格的安全管理奠定了坚实的基础。

注意点:(1)三层C/S结构各层间的通信效率若不高,即使分配给各层的硬件能力很强,其作为整体来说也达不到所要求的性能。

(2)设计时必须慎重考虑三层间的通信方法、通信频度及数据量。

这和提高各层的独立性一样是三层C/S结构的关键问题。

●C/S与B/S混合之内外有别模型:
C/S与B/S混合之查改有别模型:
●场景:
场景就是对某个实体与系统的一次交互的简要描述,质量属性场景是一个有关质量属性的特定需求,它由六部分组成:刺激源,刺激,环境,制品,反应,反应度量。

●如何实现质量属性:
1.可用性战术:
(1)错误检测:用于识别错误的3个战术是:命令/响应、心跳和异常。

命令/响应和心跳战术用来检测另一个进程的错误,异常是进程本身的错误处理。

(2)错误恢复:错误恢复由准备恢复和修复系统两部分组成。

1>表决2>主动冗余(热重启)3>被动冗余(暖重启/双冗余/三冗余)4>备件5>Shadow操作6>状态再同步7>检查点/回滚。

(3)错误预防:1>从服务中删除2>事务3>进程监视器。

2.可修改性战术:
(1)局部化修改:维持语义的一致性、预期期望的变更、泛化该模块、限制可能的选择。

(2)防止连锁反应:1>信息隐藏2>维持现有的接口。

(添加接口,添加适配器,提供一个占位程序A)
(3)推迟绑定时间:1>运行时注册—支持即插即用2>配置文件—启动时设置参数3>多态—允许方法调用的后期绑定4>组件更换–允许载入时间绑定5>遵守已定义的协议—允许独立进程的运行时绑定。

3.性能战术: (1)控制对资源的需求:1>减少处理一个事件所需要的资源(提高计算效率,减少计算开销)2>减少需要同时处理事件的数量(管理事件率,控制采样频率)3>控制资源的使用(限制执行时间,限制队列的大小)。

(2)资源管理:1>引入并发2>维持数据或计算的多个副本3>增加可用资源。

(3)资源仲裁:常见的调度策略有:1>先进/先出2>固定优先级3>动态优先级调度4>静态调度。

4. 安全性战术
(1)抵抗攻击:1>对用户进行身份验证2>对用户进行授权3>维护数据的机密性4>维护完整性5>限制暴露的信息6>限制访问7>在外部用户和提供服务的系统之间设置认证服务器。

(2)检测攻击。

(3)从攻击中恢复。

5.可测试性战术:
(1)输入/输出:记录回放;将接口与实现分离; 特化访问路线/接口。

(2)内部监视。

6.易用性战术:第一类是运行时,包括那些在系统运行期间支持用户的战术。

第二类基于用户接口设计的迭代特性,它在设计时支持接口开发人员。

●面向服务的体系架构:
一种应用程序体系结构,在这种体系结构中,所有功能都定义为独立的服务,这些服务带有定义明确的可调用接口,可以以定义好的顺序调用这些服务来形成业务流程”。

●软件体系结构的发展:
面向过程的体系结构;面向对象的体系结构;面向组件的体系结构;面向服务的体系结构。

(能力越来越强,耦合性越来越松散)
●ATAM评估的阶段:
1>ATAM方法的表述2>商业动机的表述3>体系结构的表述4>对体系结构方法进行分类5>生成质量属性效用树6>分析体系结构方法7>集体讨论并确定场景优先级8>再次分析体系结构方法9>结果的表述
●云计算:
云计算是一种商业计算模型。

它将计算任务分布在大量计算机构成的资源池上,使各种应用系统能够根据需要获取计算力、存储空间和信息服务。

云计算是一种能够在短时间内迅速按需提供资源的服务,可以避免资源过度和过低使用。

●云计算的类别:
1>将软件作为服务2>将平台作为服务3.将基础设施作为服务。

相关文档
最新文档