植物生理学重点知识整理

合集下载

植物生理学重点整理(最新、独家哦)

植物生理学重点整理(最新、独家哦)

植物的水分代谢1.水的生理作用:①水分是原生质的主要成分;②水分是代谢过程的反应物质;③水分是物质吸收和运输的溶剂;④水分能保持植物的固有姿态;⑤细胞的分裂和延伸生长都需要足够的水2.细胞的两种吸水方式:吸胀吸水——未形成液泡的细胞靠原生质等物质的亲水性作用进行的吸水;渗透性吸水——具中心液泡的成熟细胞按照渗透作用的原理进行的吸水3.质壁分离与质壁分离复原:质壁分离——植物细胞由于液泡失水,原生质收缩而使原生质和细胞壁分离的现象;质壁分离复原——发生质壁分离的细胞再度吸水恢复原状的现象。

4.根系吸水的动力包括根压和蒸腾拉力:根压——由于水势梯度引起水分进入中柱后产生的压力称为根压,其本质是水势差。

由根压产生的吸水称主动吸水;蒸腾拉力——叶肉细胞因蒸腾失水而水势下降,从旁边细胞取得水分。

同理旁边细胞又从另一个细胞取得水分,如此下去使得根部从环境吸收水分。

是被动吸水(主要方式)5.影响根系吸水的因素:(1)根系范围:根系密度越大,占土壤体积越大,吸收水分就越多;(2)根表面特性:根的透性随根龄和发育阶段及环境不同而有较大差异。

次生根透性很差,土壤严重干旱时根的透性下降;(3)根系生理活动:代谢越旺盛,吸水能力越强6. 影响根系吸水的土壤条件:(1)土壤中可用水分;(2)土壤通气状况;(3)土壤温度;(4)土壤溶液浓度7.蒸腾作用的生理意义:(1)蒸腾作用是植物对水分吸收和运输的主要动力;(2)蒸腾作用有助于植物对矿物质和有机物的吸收;(3)蒸腾作用能够降低叶片温度8.影响气孔开闭的因素:(1)光照:不同波长的光对气孔运动有着不同的影响,蓝光和红光最有效(与光合作用所需光的波长相一致);(2)CO2浓度:大气低CO2浓度促使气孔张开,高CO2浓度促使气孔关闭;(3)温度:在一定温度范围内,气孔开度一般随温度的升高而增大。

在30℃左右时气孔开度最大,高于30℃时开度会减小;(4)植物激素:细胞分裂素促进气孔开放,而ABA促进气孔关闭植物对矿质元素的利用1.植物必需元素的种类:大量元素9种(C H O N P S K Ca Mg)微量元素8种(Fe Mn B Zn Cu Mo Cl Ni)2.必须矿质元素的生理作用:(1)是细胞结构物质和生物大分子的组成成分;(2)是植物生命活动的调节者,参与酶的活动;(3)起电化学作用;(4)作为细胞内的信号分子3.根系吸收矿质元素的部位主要是:根毛区4. 影响根系吸收矿质营养的土壤因素:(1)土壤温度;(2)土壤通气状况;(3)土壤溶液浓度;(4)土壤PH值;(5)土壤微生物活动5.矿质元素在植物体内的分布和再利用:(1)矿质元素在植物体内的分布——部分被根利用,部分运往生长旺盛部位(生长点,发育的种子)(2)矿质元素发生再利用的情况——某元素缺乏时/种子(果实)发育期间/叶片脱落前(3)可再利用元素——N , P , K , Mg 等可以从某个器官转移到其它需要的器官去,即可再次参与循环的元素。

植物生理学重点知识

植物生理学重点知识

1.糖分解代谢的途径无氧酵解、有氧氧化和磷酸戊糖通路。

2.植物主动吸收矿质元素的主要特点植物主动吸收矿质元素的主要特点是对矿质元素和水分的相对吸收、对离子的选择吸收和单盐毒害和离子对抗。

3.束缚水/自由水的比值束缚水/自由水的比值越小,则代谢旺盛,比值越大,则植物抗逆性越强。

4.反应中心色素分子反应中心色素分子是一种特殊性质的叶绿素a分子,它不仅能捕获光能,还具有光化学活性,能将光能转换成电能。

5.使菊花提前开花使菊花提前开花可对菊花进行遮光短日照处理处理,要想使菊花延迟开花,可对菊花进行延长光照长日照处理。

6.糖酵解糖酵解是在细胞质中进行的,它是有氧呼吸和无氧呼吸的共同途径。

最后产物是丙酮酸。

7.种子萌发的外界条件种子萌发时必需的外界条件是合适的温度、充足的氧气和足够的水分。

8.有机物的长距离运输途径有机物的长距离运输途径通过韧皮部的筛管和伴胞。

9.韧皮部装载韧皮部装载过程有2条途径:共质体和质外体韧皮部装载时的特点是逆浓度梯度、需能、具选择性10.植物细胞的表面受体植物细胞的表面分布光受体和激素受体两类受体。

11.果实成熟后变甜果实成熟后变甜是由于淀粉转化为可溶性糖的缘故。

果实成熟后变甜是由于呼吸跃变的缘故。

12.激素的作用:生长素、赤霉素、细胞分裂素、脱落酸、乙烯生长素:生长素有调节茎的生长速率、抑制侧芽、促进生根等作用,在农业上用以促进插枝生根,效果显著。

赤霉素:赤霉素属于生长调节剂的一种,可以促进植物的生长发育,能够提高产量,促进果实提早成熟,具有保花保果、打破种子休眠,能够促进芽的萌发、并诱导无籽果实的形成。

细胞分裂素:细胞分裂素的主要生理作用是促进细胞分裂和防止叶子衰老。

细胞分裂素还可促进芽的分化。

脱落酸:脱落酸指能引起芽休眠、叶子脱落和抑制细胞生长等生理作用的植物激素。

乙烯:乙烯除了有催熟的作用外,还可以促进叶片和果实脱落,解除休眠,诱导某些植物两性花中的雌花的形成。

(诱导淀粉酶形成的植物激素是赤霉素,延缓叶片衰老的是细胞分裂素,促进休眠的是脱落酸,加速橡胶分泌乳汁的是乙烯,维持顶端优势的是生长素。

植物生理学重点知识整理(良心出品必属精品)

植物生理学重点知识整理(良心出品必属精品)

第一章:植物的水分生理1.水分的存在状态束缚水—被原生质胶体吸附不易流动的水特性:1.不能自由移动,含量变化小,不易散失2.冰点低,不起溶剂作用3.决定原生质胶体稳定性4.与植物抗逆性有关自由水—距离原生质胶粒较远、可自由流动的水。

特性:1.不被吸附或吸附很松,含量变化大2.冰点为零,起溶剂作用3.与代谢强度有关自由水/束缚水:比值大,代谢强、抗性弱;比值小,代谢弱、抗性强2.植物细胞对水的吸收方式:扩散、集流、渗透作用1)、扩散作用—由分子的热运动所造成的物质从浓度高处向浓度低处移动的过程。

特点:简单扩散是物质顺浓度梯度进行,适于短距离运输(胞内跨膜或胞间)2)、集流—指液体中成群的原子或分子在压力梯度下共同移动的现象。

特点:物质顺压力梯度进行,通过膜上的水孔蛋白形成的水通道3)、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

注:渗透作用是物质顺浓度梯度和压力梯度进行3.水势及组成1.Ψw = ψs + ψp + ψm + ψgΨs :渗透势Ψp :压力势Ψm :衬质势Ψg :重力势1)渗透势—在某系统中由于溶质颗粒的存在而使水势降低的值,又叫溶质势(ψπ)。

ψs大小取决于溶质颗粒总数:1 M蔗糖ψs > 1M NaCl ψs (电解质)测定方法:小液流法2)压力势—ψp 〉0,正常情况压力正向作用细胞,增加ψw;ψp〈 0,剧烈蒸腾压力负向作用细胞,降低ψw;ψp = 0,质壁分离时,壁对质无压力3)重力势—当水高1米时,重力势是0.01MP,考虑到水在细胞内的小范围水平移动,通常忽略不计。

4)衬质势—由于亲水性物质和毛细管对自由水的束缚而引起的水势降低值,ψm 〈 0,降低水势.2.注:亲水物质吸水力:蛋白质〉淀粉〉纤维素*有液泡细胞,原生质几乎已被水饱和,ψm = --0.01 MPa ,忽略不计;Ψg也忽略,水势公式简化为:ψw = ψs+ ψp*没有液泡的分生细胞、风干种子胚细胞:ψw = ψm *初始质壁分离细胞:ψw = ψs*水饱和细胞:ψw = 03.细胞水势与相对体积的关系◆细胞吸水,体积增大、ψsψpψw 增大◆细胞吸水饱和,体积、ψs ψp ψw = 0最大◆细胞失水,体积减小,ψs ψp ψw 减小◆细胞失水达初始质壁分离ψp = 0,ψw = ψs◆细胞继续失水,ψp 可能为负ψw《ψs4.蒸腾作用(气孔运动)小孔扩散律(边缘效应)——气体通过小孔表面的扩散速度不与小孔的面积呈正比,而与小孔的周长呈正比。

总结植物生理学的知识点

总结植物生理学的知识点

总结植物生理学的知识点植物生理学的主要研究内容包括:植物的体内环境和养分的吸收、运输和利用;植物生长和发育的调控机制;植物对环境的适应和生存策略;植物对逆境的应对和抗逆机制;植物的代谢活动和物质转运;植物的生理生态学特性和生态位等。

植物生理学的知识点非常丰富,下面将对植物生理学的一些重要知识点进行总结。

1. 植物生长和发育的调控植物的生长和发育是受内源性和外源性因素共同调控的。

内源性因素主要包括植物激素、基因调控和代谢物质的积累,外源性因素包括光照、温度、水分、营养盐等。

植物的生长和发育过程中,植物激素起着非常重要的调节作用,主要包括赤霉素、生长素、脱落酸、细胞分裂素等。

这些激素通过调节细胞伸长、分裂、分化和器官发育等过程,影响植物的生长和发育特征。

2. 植物对环境的适应和生存策略植物在自然界中生长发育,要适应各种环境条件和周围生物的竞争,因此,植物在演化过程中形成了各种生存策略。

例如,植物在缺氧、干旱、高温、低温等逆境条件下,会产生一系列的生理生化反应,以应对逆境的影响;植物在光照、温度、水分、营养盐等环境因素的变化下,也会发生相应的生化调节和生理变化,以适应环境的变化。

3. 植物的代谢活动和物质转运植物的代谢活动包括有机物质的合成、分解、转运和利用等过程。

植物对光合作用、呼吸作用和养分的吸收、转运、利用等过程,需要多种酶和激素的参与。

植物的营养元素主要包括碳、氢、氧、氮、磷、钾、钙、镁、硫和微量元素等,它们通过根系和血管系统的吸收和转运,被植物利用于生长和发育。

4. 植物的生理生态学特性和生态位植物在自然环境中形成了各种生态位,它们根据不同的生态条件和生态因素,形成了不同的生理生态学特性。

例如,植物在森林、草原、荒漠、湿地、河流、海岸等不同生态环境中,会形成不同的植被类型和植物群落,它们适应相应的生态位和生态条件,表现出不同的生理生态学特性。

植物生理学的研究对于加强人们对植物生命活动规律的认识,提高植物的生产力和抗逆性,推动植物资源的利用和保护,具有重要的理论和应用价值。

植物生理学复习整理

植物生理学复习整理

一、名词解释1、水分代谢:指植物对水分的吸收、运输、丢失的过程。

2、细胞的全能性:是指植物体的每个细胞都携带着一套完整的基因组,并具有发育成完整植株的潜在能力。

3、代谢源:是指能够制造并输出同化物的组织、器官或部位。

如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年生或多年生植物的块根、块茎、种子等。

代谢库:参与代谢的物质在组织及体液中的总和。

如氨基酸代谢库。

4、日中性植物:植物开花对日照长度没有特殊的要求,在任何日照长度下均能开花。

5、平衡溶液:几种盐类按一定比例和浓度配制的不使植物发生单盐毒害的溶液。

6、光合磷酸化:是指在光合作用中由光驱动并贮存在跨类囊体膜的质子梯度的能量把ADP 和磷酸合成为ATP的过程。

7、碳同化:生物体利用二氧化碳固定到细胞内形成各种含碳化合物的同化过程。

8、光抑制:光能超过光合系统所能利用的数量时光合功能下降的现象。

9、光敏色素:存在于植物中并与光周期相了解的一种发色团-蛋白质复合物。

是一种可吸收红光-远红光可逆转换的光受体。

10、细胞信号转导:是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。

11、单盐毒害:如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,如钾离子,而且在培养液中的浓度很低,植物也不能正常生活,不久即受害而死。

12、离子拮抗:若在单盐溶液中加入少量其它盐类,单盐毒害现象就会消除,这种离子间能够互相消除毒害的现象,称离子拮抗。

13、幼年期:是指植物早期生长的阶段。

14、春化作用:低温诱导植物开花的过程。

15、光周期现象:在一天之中,白天和黑夜的相对长度称为光周期。

植物对白天和黑夜的相对长度的反应称为光周期现象。

16、单性结实:是指子房不经过受精作用而形成不含种子果实的现象。

17、植物激素:是指在植物体内合成并从产生之处运送到别处,对生长发育产生显著作用的微量有机物。

植物生理学知识梳理

植物生理学知识梳理

植物生理学知识梳理第一章1. 代谢是维持各种生命活动(如生长、繁殖、运动等)过程中化学变化(包括物质合成、转化和分解)的总称。

2. 水分生理包括:水分的吸收、水分在植物体内的运输和水分的排出。

3.水有两种状态:结合水和自由水。

束缚水含量与植物抗性密切相关。

4. 水分在生命活动中的作用:1,是细胞质的主要成分2,是代谢作用过程的反映物质3是植物对物质吸收和运输的溶剂4,能保持植物的固有姿态5.植物细胞吸收水分主要有三种方式:扩散、浓缩和渗透。

6.扩散是一个自发的过程,指的是分子的随机热运动引起的物质从高浓度区域向低浓度区域的运动。

物质沿着浓度梯度进行扩散。

适合短距离迁移。

7. 集流是指液体中成群的原子或分子在压力梯度下共同移动。

8. 水孔蛋白包括:质膜内在蛋白和液泡膜内在蛋白。

是一类具有选择性、高效转运水分的跨膜通道蛋白,只允许水通过,不允许离子和代谢物通过。

其活性受磷酸化和水孔蛋白合成速度调节。

9.系统中物质的总能量分为:结合能和自由能。

10. 1mol物质的自由能就是该物质的化学势。

水势就是每偏摩尔体积水的化学势。

纯水的自由能最大,水势也最高,纯水水势定为零。

11.质壁分离和质壁分离回收现象可以证明植物细胞是一个渗透系统。

12.压势是指原生质体吸水膨胀,与细胞壁产生力的相互作用,与弹性细胞壁产生限制原生质体膨胀的反作用力。

13.重力势是水由于重力向下运动时的力,与相反的力相等。

14.根吸收水分有三种途径:质外体途径、跨膜途径和共质体途径。

15.牙根压力;水进入中柱后水势梯度产生的压力。

16.出血:液体从受伤或破裂的植物组织中溢出的现象。

流出的汁液是渗出液。

17. 吐水:从未受伤叶片尖端或边缘向外溢出液滴的现象。

由根压引起。

18. 根系吸水的两种动力;根压和蒸腾拉力。

19. 影响根系吸水的土壤条件:土壤中可用水分,通气状况,温度,溶液浓度。

20. 蒸腾作用:水分以气体状态,通过植物体的表面(主要是叶子),从体内散失到体外的现象。

植物生理学重点

植物生理学重点

植物生理学重点植物生理学是研究植物的生命过程、功能和机制的学科。

在这篇文章中,我们将重点介绍植物生理学的几个重要主题,包括光合作用、呼吸作用、植物激素以及水和营养物质的吸收和传输等方面。

一、光合作用光合作用是植物体内发生的一系列化学反应,将太阳能转化为化学能,产生有机物质和氧气。

其中最关键的反应是光合作用的第一阶段——光反应和第二阶段——暗反应。

在光反应中,叶绿素吸收光能,通过光合色素复合体的电子传递系统将光能转化为化学能,生成ATP和NADPH。

在暗反应中,植物利用这些化学能将二氧化碳固定成有机物质。

二、呼吸作用呼吸作用是植物细胞中的一种能量释放过程,将有机物质氧化分解为二氧化碳和水,产生大量的能量。

呼吸作用在维持植物生长和发育过程中起着非常重要的作用。

植物的呼吸作用分为线粒体呼吸和胶质呼吸,线粒体呼吸主要发生在细胞器线粒体中,胶质呼吸发生在胶质体中。

呼吸作用产生的能量主要用于维持生命活动和光合作用所需。

三、植物激素植物激素是植物自身合成和调节的生物活性物质,对植物的生长和发育具有非常重要的调控作用。

常见的植物激素包括生长素、赤霉素、细胞分裂素、乙烯和植物内源性激素等。

这些激素能够影响植物的种子萌发、植株生长、形态发育、开花结果等过程。

通过调节植物激素的合成、分布和转运,可以促进或抑制植物不同器官的生长。

四、水和营养物质的吸收与传输水和营养物质的吸收和传输是植物生理学的重点研究内容之一。

植物通过根系吸收土壤中的水和养分,然后通过细胞间隙和细胞内的途径进行传输。

根系的吸收过程主要依靠渗透压差和根毛的吸收力。

利用根毛表面的各种细胞结构和激素调控,植物能够吸收到所需的水和养分。

传输过程中,植物借助维管束进行水分和养分的长距离输送,其中导管元素的功能是至关重要的。

总结:本文主要介绍了植物生理学的几个重要主题,包括光合作用、呼吸作用、植物激素以及水和营养物质的吸收和传输。

通过对这些重点内容的深入了解,我们能够更好地理解植物的生命过程、功能和机制。

植物生理学各章节复习重点

植物生理学各章节复习重点

在高温,强光,低CO2浓度,少水的条件下, 为什么C4植物的光合速率比C3植物的高?
1.C4途径的CO2固定中的PEPcase对CO2的亲和力比C3途径的CO2固定 中的Rubisco大,所以C4植物能够利用低浓度的CO2 ,而C3植物不 能; 2.C4植物叶片具有特殊的结构。其MC和VBSC具有不同类型叶绿体, 有不同的酶系。 MC中PEPcase 将空气中低浓度的 CO2 固定到C4 二羧酸中,再转运到VBSC中脱羧释放出 CO2 ,大大增加VBSC中的 CO2浓度,促进了催化的羧化反应,增加光合速率。而且C4植物的 光呼吸较弱,同时是在VBSC中进行,所释放的 CO2 又易于再被固 定。故低CO2浓度下, C4植物表现高的同化速率; 3.PEPcase对低温很敏感,活性明显下降,故需高温;
复 习 思 考 题 (一) 名词解释 (代谢)源;(代谢)库;共质体运输;质外体运输; 比质量转移率; 转移细胞 (二) 问答题 1 植物体内同化物分配的规律是什么? 2 简略压力流动假说。这些学说的实验依据是什么?有 什么优缺点? 3 代谢源与代谢库相互之间有什么关系?了解这种关系 对指导农业生产有什么意义? 4 如何理解蔗糖是高等植物韧皮部光合同化物运输的主 要形式?
1. 作物需水规律(水分临界期)
2. 合理灌溉的指标



考题ຫໍສະໝຸດ ⒈ 试述水在植物生活中的重要作用。 ⒉ 植物细胞的水势由哪几部分组成?说明成熟植物细胞从 萎蔫到充分膨胀的过程中,各个组分的变化情况。 ⒊ 被动吸水和主动吸水有何区别?它们各自在植物吸水过程 中的地位怎样? ⒋ 蒸腾作用有何生理意义?气孔蒸腾的主要路径是什么?气 孔蒸腾的主要特点是什么? ⒌ 简述气孔运动的机理。 ⒍ 水分在植物体内的运输动力是什么? ⒎ 什么是自由能、化学势和水势?为什么将这些概念引入 植物的水分生理中? 8.名词解释: 水势、束缚水、伤流、蒸腾作用、需水临界期、蒸腾系数、 自由水、根压、渗透作用、 吐水、压力势、渗透势、衬质势 、蒸腾效率、蒸腾拉力、吸胀作用、小孔扩散规律

植物生理学重点知识整理

植物生理学重点知识整理

第一章:植物的水分生理1.水分的存在状态束缚水—被原生质胶体吸附不易流动的水特性:1.不能自由移动,含量变化小,不易散失2.冰点低,不起溶剂作用3.决定原生质胶体稳定性4.与植物抗逆性有关自由水—距离原生质胶粒较远、可自由流动的水。

特性:1.不被吸附或吸附很松,含量变化大2.冰点为零,起溶剂作用3.与代谢强度有关自由水/束缚水:比值大,代谢强、抗性弱;比值小,代谢弱、抗性强2.植物细胞对水的吸收方式:扩散、集流、渗透作用1)、扩散作用—由分子的热运动所造成的物质从浓度高处向浓度低处移动的过程。

特点:简单扩散是物质顺浓度梯度进行,适于短距离运输(胞内跨膜或胞间)2)、集流—指液体中成群的原子或分子在压力梯度下共同移动的现象。

特点:物质顺压力梯度进行,通过膜上的水孔蛋白形成的水通道3)、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

注:渗透作用是物质顺浓度梯度和压力梯度进行3.水势及组成1.Ψw = ψs + ψp + ψm + ψgΨs :渗透势Ψp :压力势Ψm :衬质势Ψg :重力势1)渗透势—在某系统中由于溶质颗粒的存在而使水势降低的值,又叫溶质势(ψπ)。

ψs大小取决于溶质颗粒总数:1 M蔗糖ψs > 1M NaCl ψs (电解质)测定方法:小液流法2)压力势—ψp 〉0,正常情况压力正向作用细胞,增加ψw;ψp〈0,剧烈蒸腾压力负向作用细胞,降低ψw;ψp = 0,质壁分离时,壁对质无压力3)重力势—当水高1米时,重力势是0.01MP,考虑到水在细胞内的小范围水平移动,通常忽略不计。

4)衬质势—由于亲水性物质和毛细管对自由水的束缚而引起的水势降低值,ψm 〈0,降低水势.2.注:亲水物质吸水力:蛋白质〉淀粉〉纤维素*有液泡细胞,原生质几乎已被水饱和,ψm = --0.01 MPa ,忽略不计;Ψg也忽略,水势公式简化为:ψw = ψs+ ψp*没有液泡的分生细胞、风干种子胚细胞:ψw = ψm*初始质壁分离细胞:ψw = ψs*水饱和细胞:ψw = 03.细胞水势与相对体积的关系◆细胞吸水,体积增大、ψsψpψw 增大◆细胞吸水饱和,体积、ψs ψp ψw = 0最大◆细胞失水,体积减小,ψs ψp ψw 减小◆细胞失水达初始质壁分离ψp = 0,ψw = ψs◆细胞继续失水,ψp 可能为负ψw《ψs4.蒸腾作用(气孔运动)小孔扩散律(边缘效应)——气体通过小孔表面的扩散速度不与小孔的面积呈正比,而与小孔的周长呈正比。

植物生理学知识重点

植物生理学知识重点

第一章植物的水分代谢水分代谢(water metabolism)植物对水分的吸收,水分在植物体内的运输利用以及水分的散失是构成植物水分代谢的不可分割的三个方面。

水分代谢的作用是维持植物体内水分平衡第一节水在植物生命活动中的重要性一、水的理化性质水的很多性质都是由其分子结构决定的。

水分子的结构具有如下特点:1. 水分子有很强的极性.2. 水分子之间通过氢键形成很强的内聚力3.水极容易与其它极性分子结合.一、水的理化性质(一)在生理温度下是液体由于水分子有很强的分子间力(氢键的作用), 所以, 虽然分子很小(分子量18), 但在生理温度下是液体. 这对于生命非常重要.(二)高比热因为需要很高的能量来破坏氢键,所以,水的比热很高。

由于植物体含有大量的水分,所以当环境温度变化较大,植物体吸收或散失较多热能时,植物仍能维持相当恒定的体温(三)高气化热这同样是由于水分之间的氢键造成的,破坏氢键需要很高的能量。

在炎热的夏天植物通过蒸腾作用散失水分,可以降低体温。

(四)高内聚力、粘附力和表面张力由于水分子间有很强的内聚力可以使木质部导管的水柱在受到很大张力的条件下不致于断裂,保证水分能运到很高的植株顶部。

水分子间的亲和力还导致水有很高的表面张力。

(五)水是很好的溶剂由于水分子的极性,它是电解质和极性分子如糖、蛋白质和氨基酸等强有力的溶剂水分子在细胞壁和细胞膜表面形成水膜,保护分子的结构。

水是代谢反应的参与者(水解、光合等)。

水作为许多反应的介质和溶剂,同时由于水的惰性不会轻易干扰其它代谢反应(二)水分在植物体内的存在状态1. 束缚水与自由水束缚水(bound water):靠近胶粒并被紧密吸附而不易流动的水分,叫做束缚水自由水(free water):距胶粒较远,能自由移动的水分叫自由水。

自由水、束缚水与代谢的关系:自由水参与各种代谢活动,其数量的多少直接影响植物代谢强度,自由水含量越高,植物的代谢越旺盛。

束缚水不参与代谢活动,束缚水含量越高,植物代谢活动越弱,越冬植物的休眠芽和干燥种子里所含的水基本上是束缚水,这时植物以微弱的代谢活动渡过不良的环境条件。

植物生理学知识点重点

植物生理学知识点重点

植物生理学知识点重点植物生理学是研究植物的生物学功能和生理过程的科学学科。

通过对植物的生长、发育、代谢、适应性和反应等方面的研究,揭示了植物的生理特性和机制。

本文将逐步介绍植物生理学的一些关键知识点。

一、光合作用光合作用是植物生命活动的基础,它是通过植物叶绿素和其他色素吸收太阳光能,并将其转化为化学能的过程。

光合作用发生在叶绿体中,光合作用的主要反应是光反应和暗反应。

光反应发生在叶绿体的膜中,通过光能将一部分水分解为氧气和氢离子,释放的氧气排出体外,而氢离子则用于生成ATP和NADPH。

暗反应发生在叶绿体的基质中,利用上述产物将二氧化碳转化为葡萄糖。

二、植物激素植物激素是调节植物生长和发育的化学物质,主要包括生长素、赤霉素、细胞分裂素、脱落酸和乙烯等。

植物激素能够影响植物的生长速度、器官发育、开花和果实成熟等过程。

例如,生长素可以促进细胞伸长和分裂,从而促进植物的生长;乙烯可以促使果实成熟和叶片脱落。

三、水分运输植物通过根系吸收土壤中的水分,并通过茎和叶子的导管系统将水分输送到植物各个部分。

水分运输主要依靠蒸腾作用和根压。

蒸腾作用是指植物叶片中水分蒸发产生的负压,从而使水分能够从根部向上运输;根压是指根部细胞对水分的主动吸收和推动,可以使水分向上输送。

四、养分吸收与转运植物通过根系吸收土壤中的养分,并将其转运到植物的各个组织和器官中。

养分的吸收过程主要依靠根毛的存在,根毛可以增加根表面积,提高养分吸收效率。

吸收的养分通过根的吸力和转运蛋白在细胞间隙和细胞膜上进行转运。

五、环境适应性植物能够通过一系列的生理反应来适应环境的变化。

植物对光、温度、水分和盐度等环境因素的变化都会产生相应的生理反应。

例如,植物在光照不足的情况下,会增加叶片的叶绿素含量和光合酶的表达,以提高光能的吸收和利用效率。

六、生物钟植物具有一定的生物钟机制,能够根据时间的变化调整自身的生理和生长状态。

生物钟可以让植物在适宜的时间进行种子萌发、生长和开花等过程。

植物生理知识点总结

植物生理知识点总结

植物生理知识点总结一、光合作用光合作用是植物生理学中最重要的过程之一。

光合作用是指植物利用阳光能量将二氧化碳和水转化为有机物质和氧气的过程。

光合作用可以分为光反应和暗反应两个阶段。

1. 光反应光反应发生在叶绿体的类囊体中,需要光能的输入。

光合作用的光能主要来自于太阳光,通过光反应将光能转化为化学能。

在光反应中,光能被叶绿素吸收,激发电子从光系统Ⅱ向光系统Ⅰ传递。

这个过程中产生了氧气和ATP/NADPH。

通过这一过程,光能被转化为化学能,供给植物进行暗反应过程。

2. 暗反应暗反应发生在叶绿体的基质中,不依赖于光能的输入。

暗反应将光合细胞中的二氧化碳和水转化为葡萄糖和氧气,是光合作用最终产物的合成过程。

暗反应的关键酶是Rubisco,它参与了卡尔文循环过程。

在这一过程中,二氧化碳和水通过多步骤反应,最终产生了葡萄糖和氧气。

光合作用是植物生长和发育的基础,是维持地球生态平衡的重要过程之一。

二、生长激素生长激素是植物生长和发育的重要调节因子。

植物生长激素主要包括赤霉素、生长素、脱落酸、激动素和细胞分化素等。

1. 赤霉素赤霉素是一种重要的植物生长激素,能够促进植物的细胞伸长和生长。

赤霉素还能影响植物的开花、果实生长和根系发育等过程。

2. 生长素生长素也是一种重要的植物生长激素,能够促进细胞分裂和伸长。

生长素对植物的茎、根、叶、花、果实等器官的生长发育均有调节作用。

3. 脱落酸脱落酸是一种植物生长激素,主要调节植物的落叶过程。

脱落酸能够促使植物在适当的时候脱落叶片,防止水分蒸腾过多。

生长激素在植物生长和发育中起着重要作用,对植物的形态建成和生理功能具有重要调节作用。

三、水分运输水分是植物生长和发育的重要物质,也是植物细胞内外的主要成分之一。

水分可以通过根系吸收进入植物体内,然后通过导管组织在植物体内进行输运。

1. 根系吸收根系是植物吸收水分和营养物质的主要器官。

植物根系通过毛细管作用和渗透压来吸收土壤中的水分和无机盐。

植物生理学重点归纳

植物生理学重点归纳

第一章之杨若古兰创作1.代谢是保持各种生命活动(如生长、繁殖、活动等)过程中化学变更(包含物资合成、转化和分解)的总称.2.水分生理包含:水分的接收、水分在植物体内的运输和水分的排出.3.水分存在的两种形态:束缚水和自在水.束缚水含量与植物抗性大小有密切关系.4.水分在生命活动中的感化:1,是细胞质的次要成分2,是代谢感化过程的反映物资3是植物对物资接收和运输的溶剂4,能坚持植物的固有姿势5.植物细胞吸水次要有三种方式:扩散,集流和渗透感化.6.扩散是一种自觉过程,指分子的随机热活动所形成的物资从浓度高的区域向浓度低的区域挪动,扩散是物资顺着浓度梯度进行的.适合于短距离迁徙.7.集流是指液体中成群的原子或分子在压力梯度下共同挪动.8.水孔蛋白包含:质膜内在蛋白和液泡膜内在蛋白.是一类具有选择性、高效转运水分的跨膜通道蛋白,只答应水通过,不答应离子和代谢物通过.其活性受磷酸化和水孔蛋白合成速度调节.9.零碎中物资的总能量分为;束缚能和自在能.10.1mol物资的自在能就是该物资的化学势.水势就是每偏摩尔体积水的化学势.纯水的自在能最大,水势也最高,纯水水势定为零.11.质壁分离和质壁分离复原景象可证实植物细胞是一个渗透零碎.12.压力势是指原生质体吸水膨胀,对细胞壁发生一种感化力彼此感化的结果,与惹起富有弹性的细胞壁发生一种限制原生质体膨胀的反感化力.13.重力势是水分因重力下移与相反力量相等时的力量.14.根吸水的途径有三条:质外体途径、跨膜途径和共质体途径.15.根压;水势梯度惹起水分进入中柱后发生的压力.16.伤流:从受伤或折断的植物组织溢出液体的景象.流出的汁液是伤流液.17.吐水:从未受伤叶片尖端或边沿向外溢出液滴的景象.由根压惹起.18.根系吸水的两种动力;根压和蒸腾拉力.19.影响根系吸水的土壤条件:土壤中可用水分,通气情况,温度,溶液浓度.20.蒸腾感化:水分以气体形态,通过植物体的概况(主如果叶子),从体内散失到体外的景象.21.蒸腾感化的生理意义:1,是植物对水分接收和运输的次要动力2,是植物接收矿质盐类和在体内运转的动力3,能降低叶片的温度22.叶片蒸腾感化分为两种方式:角质蒸腾和气孔蒸腾.23.气孔活动有三种方式:淀粉-糖互变,钾离子接收和苹果酸生成.24.影响气孔活动的身分;光照,温度,二氧化碳,零落酸.25.影响蒸腾感化的内在条件:光照,空气绝对湿度,温度和风.内部身分:气孔和气孔下腔,叶片内部面积大小.26.蒸腾速率取决于水蒸气向外的扩散力和扩散途径的阻力.27.水分在茎叶细胞内的运输有两条途径:经过活细胞和经过死细胞.28.根压能使水分沿导管上升,高大乔木水分上升的次要动力为蒸腾拉力.29.这类以水分具有较大的内聚力足以抵抗张力,包管由叶至根水柱不竭来解释水分上升缘由的学说,称为内聚力学说亦称蒸腾-内聚力-张力学说.第三章1. 为何说碳素是植物的生命基础?第一,植物体的干物资中90%以上是无机物资,而无机化合物都含有碳素(约占无机化合物分量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是构成所有无机物的次要骨架.碳原子与其他元素有各种分歧方式的结合,由此决定了这些化合物的多样性.2. 按照碳素养分方式的分歧分为自养植物和异养植物3. 自养植物接收二氧化碳,将其转酿成无机物资的过程称为植物的碳素同化感化.植物碳素同化感化包含细菌光合感化、绿色植物光合感化和化能合成感化.4. 光合感化:绿色植物接收阳光的能量,同化二氧化碳和水,建造无机物资并释放氧气的过程.5. 光合感化的次要性:(1)把无机物酿成无机物(2)蓄积太阳能量(3)环境呵护.6. 叶绿体由两层膜构成,分别称为内膜和外膜,内膜具有控制代谢物资进出叶绿体的功能,具选择性.基质成分主如果可溶性蛋白质(酶)和其他代谢活跃物资,呈高度流动性形态,具有固定二氧化碳的能力,淀粉在基质里构成和储藏.7. 光合感化的能量转换功能是在类囊体膜上进行的,所以类囊体膜又称为光合膜.8. 高等植物的光合色素有两类;叶绿素和胡萝卜素,排列在类囊体膜上.9. 叶绿素分子含有四个吡咯环,和四个甲烯基连接成一个大环,叫做卟啉环.镁原子居于卟啉环的地方.10. 叶绿素的四个特点?11. 类胡萝卜素分为胡萝卜素(橙黄色)和叶黄素(黄色).12. 叶绿素最大接收区:波长为640~660nm的红光部分和波长为430~450nm 的蓝紫光部分.13. 叶绿素溶液在透射光下呈绿色,而在反射光下呈红色(叶绿素a为血红光,叶绿素b为棕红光),这类景象称为荧光景象.14. 从第一单线态回到基态所发射的光称为荧光.15. 第一三线态回到基态时所发生的光称为磷光.16. 叶绿素a由叶绿素b演化过来,植物叶子呈现的色彩是叶子各种色素的综合表示,其中主如果绿色的叶绿素和黄色的类胡萝卜素两大类色素之间的比例.矿质元素、温度、光是影响叶绿素构成的次要身分.17.这类缺乏任何一个条件而禁止叶绿素构成使叶子发黄的景象称为黄化景象.1.光合感化根据需光与否分为光反应(类囊体膜)和暗反应(叶绿体基质)2.全部光合感化分为3大步调:原初反应(光能的接收、传递和转换过程);电子传递和光合磷酸化(电能转化为活跃的化学能);碳同化(活跃的化学能转化为波动的化学能过程).前两个过程为光反应,最初一个为暗反应.3.光合单位=聚光色素零碎+反应中间.4.叶绿体类囊体上的色素分为反应中间色素(少数特殊的叶绿素a,具光化学活性)和聚光色素(无光化学活性,有收集光能的感化,传到反应中间色素,绝大多数色素,又称为天线色素).5.光合反应中间是指在类囊体中进行光合感化原初反应的最基本的色素蛋白结构.光合反应中间至多包含光能转换色素分子、原初电子受体和原初电子供体.原初电子受体是指直接接受反应中间色素分子传来电子的物体.高等植物的最初电子供体是水,终极电子受体是NADP+.6.当光波大于685nm(远红光)时,虽然光子仍被叶绿素大量接收,但量子产额急剧降低.这类景象被称为红降.7.两种波长的光协同感化而添加光合效力的景象称为增益效应或爱默生效应.8.各种电子传递体具有分歧的氧化还原电位,根据氧化还原电势高低排列,呈“Z”形,电子定向转移,这就是光合感化中非轮回电子传递的方案.这一系列互相跟尾的电子传递称为光合链.9.PSⅡ次要由核心复合体、PSⅡ捕光复合体、放氧复合体等亚基构成.10.利用储存在跨类囊体膜的质子梯度的光能把ADP和无机磷合成为ATP的过程称为光合磷酸化.有两种方式:非轮回光合磷酸化和轮回光合磷酸化.11.化学渗透假说12.因为ATP和NADPH用于暗反应中二氧化碳的同化,两者合称为同化能力.13.碳同化是将ATP和NADPH中活跃的化学能,转换为储藏在糖类中波动的化学能,在较长时间内供给生命活动的须要.占植物体干重90﹪以上的无机物资都是通过碳同化并转化而成的.碳同化在叶绿体的基质中进行.14.高等植物固定二氧化碳的生化途径有3条:卡尔文轮回,C4途径和景天科酸代谢途径.15.因为卡尔文轮回中二氧化碳受体是一种戊糖,故又称还原戊糖磷酸途径.分3个阶段:羧化阶段、还原阶段和更新阶段.16.要发生一个PGAld(磷酸丙糖)分子须要3个二氧化碳分子,6个NADPH分子和9个ATP分子作为能量来源.17.卡尔文轮回的调节:①本身催化②光的调节(离子的挪动;通过铁氧还蛋白-硫氧还蛋白零碎;光添加Rubisco活性)③光合产品转运18.C4途径:初产品:OAA,CO2受体:PEP,羧化酶:PEPC.包含4个步调:羧化,转移,脱羧与还原,再生.19.C4植物比C3植物具有较强的光合感化?P7920.景天科酸代谢(CAM)的调节有两种:短期调节和持久调节.21.蛋白质、脂类和无机酸都是光合感化的直接产品.22.Pi和TP控制着蔗糖和淀粉合成途径中的几种酶.23.景天科植物特殊的CO2固定方式:早晨气孔开放,吸进CO2,在PEP羧化酶感化下,与PEP结合,构成OAA,进一步还原为苹果酸,积累于液泡中.白日气孔关闭,液泡中的苹果酸便运到胞质溶胶,在依附NADP苹果酸酶感化下,氧化脱羧,放出CO2,介入卡尔文轮回,构成淀粉等.24.81页的表25.植物的绿色细胞依附光照,接收氧气和放出二氧化碳的过程被称为光呼吸.26.光呼吸是一个氧化过程,被氧化的底物是乙醇酸,又称为乙醇酸氧化途径.27.因为光呼吸的底物乙醇酸是C2化合物,其氧化产品乙醛酸和其转氨构成的甘氨酸都是C2化合物,故也称这条途径为二碳光呼吸碳氧化环,简称C2环.28.为何说光呼吸的调节与外界条件密切相干?首先是氧气及二氧化碳的浓度,二氧化碳按捺光呼吸而促进光合感化,氧气则按捺光合感化而促进光呼吸.随着光强、温度、和pH的增高,光呼吸也加强,其实质是CO2和O2对RubP的竞争.29.光呼吸的生理功能;一种观点是,在干旱和高辐射期间,气孔关闭,CO2不克不及进入,会导致光按捺.此时光呼吸释放CO2,耗费多余能量,对光合器官起呵护感化,防止发生光按捺.另一种观点是,Rubisco同时具有羧化和加氧的功能,在有氧条件下,光呼吸虽然损失一些无机碳,但通过C2轮回还可回收75%的碳,防止损失过多.30.光合感化的目标是光合速率.真正光合速率=表观光合速率+呼吸速率31.影响光合感化的身分:光照、二氧化碳、温度、矿质元素、水分、光合速率的日变更.32.光按捺:光能超出光合零碎所能利用的数量时,光合功能降低的景象.第四章1.呼吸感化包含有氧呼吸和无氧呼吸.2.有氧呼吸指生活细胞在氧的介入下,把某些无机物资完好氧化分解,放出二氧化碳并构成水,同时释放能量的过程.3.无氧呼吸普通指在无氧条件下,细胞把某些无机物分解成为不完好的氧化产品,同时释放能量的过程.这个过程用于高等植物,习气上称为无氧呼吸,如利用于微生物,则称为发酵.4.呼吸感化的生理意义:①呼吸感化提供植物生命活动所须要的大部分能量②呼吸过程为其他化合物合成提供原料.5.呼吸感化糖的分解代谢途径有三条:糖酵解(EMP胞质溶胶)、戊糖磷酸途径(PPP胞质溶胶)和三羧酸轮回(TCA线粒体).6.无机物资在生物体细胞内进行氧化分解,生成二氧化碳、水和释放能量的过程,称为生物氧化.7.电子传递链亦称呼吸链,就是呼吸代谢两头产品的电子和质子,沿着一系列有顺序的电子传递体构成的电子传递途径,传递到分子氧的总过程.构成电子传递链的传递体分为氢传递体和电子传递体8.氢传递体传递氢(包含质子和电子),作为脱氢酶的辅助因子有:NAD、NADP、FMN、FAD9.电子传递体是指细胞色素体系和铁硫蛋白(Fe-S),它们只传递电子.细胞色素是一类以铁卟啉为辅基的蛋白质.10.植物线粒体的电子传递链位于线粒体的内膜上,由5种蛋白复合体构成:复合体Ⅰ(NADH脱氢酶),复合体Ⅱ(琥珀酸脱氢酶),复合体Ⅲ(细胞色素bc1)复合物,复合体Ⅳ(细胞色素氧化酶),复合体Ⅴ(ATP合酶,催化ADP和Pi改变成ATP)11.在生物氧化中,电子经过线粒体的电子传递链传递到氧,陪伴ATP合酶催化,使ADP和磷酸合成ATP的过程,称为氧化磷酸化感化.(化学渗透假说)12.磷/氧比(P/O ratio)线粒体氧化磷酸化的一个次要目标,指氧化磷酸化中每耗费1mol氧时所耗费的无机磷酸摩尔数之比.(解耦联剂)13.末端氧化酶是把底物的电子传递到分子氧并构成水或过氧化氢的酶.包含:细胞色素氧化酶和交替氧化酶.14.抗氰呼吸有什么生理意义?利用授粉②能量溢流③加强抗逆性15.植物呼吸代谢具有多样性,表示在哪?它表示在呼吸途径的多样性(EMP、TCA、PPP等)、呼吸链电子传递零碎的多样性(电子传递主路、几条歧路和抗氰途径)、末端氧化零碎的多样性(细胞色素氧化酶、酚氧化酶、抗坏血酸氧化酶、乙醇酸氧化酶、交替氧化酶).这些多样性,是植物在持久进化过程中对不竭变更的环境的适应表示.16.氧可以降低糖类的分解代谢和减少糖酵解产品的积累,这类景象称为巴斯德效应.(比较爱默生效应)17.一个细胞中ATP+ADP+AMP的腺苷酸库是恒定的.能荷就是ATP-ADP-AMP零碎中可利用的高能磷酸键的度量.能荷=[ATP]+1/2[ADP]/[ATP]+[ADP]+[AMP]18.呼吸感化的目标有呼吸速率和呼吸商.19.呼吸速率:用植物的单位鲜重、干重或原生质(以含氮量)暗示,或者在必定时间内所放出的二氧化碳的体积或所接收的氧气的体积来暗示.20.RQ(呼吸商)=放出的二氧化碳的物资的量/接收的氧气的量21.内部身分对呼吸速率的影响:分歧植物;同一植株分歧器官;同一器官的分歧组织;同一器官在分歧的生长过程中.内部身分:温度,氧,二氧化碳,机械损伤.22.因为温度升高10℃而惹起的反应速度的添加称为温度系数Q10=(t+10)℃时的速度/t℃时的速度23.为何无氧呼吸时间一久植物就会受伤死亡?①无氧呼吸发生酒精,酒精使细胞质的蛋白量变性②无氧呼吸利用葡萄糖发生的能量很少,植物要保持正常生理须要,就要耗费更多的无机物③没有丙酮酸氧化过程,很多由这个过程的两头产品构成的物资就没法继续合成.24.为何机械损伤会明显加快组织的呼吸速率?①氧化酶与其底物在结构上是隔开的,机械损伤使本来的间隔破坏,酚类化合物就会敏捷地被氧化②机械损伤使某些细胞改变成分生组织形态,构成愈伤组织去修补伤处,这些生长兴旺的生长细胞的呼吸速率,当然比本来休眠或成熟组织的呼吸速率快得多.第六章1.通过环割实验,证实无机物运输是由韧皮部担任,通过示踪法实验知次要运输组织是韧皮部里的筛管和伴胞.韧皮部内的运输是双向运输.运输的物资主如果水,其中溶解很多糖类,糖类中主如果非还原性糖,以蔗糖最多.利用蚜虫的吻刺法结合放射性核素示踪测定无机物运输品种.2.韧皮部装载是指光合产品从叶肉细胞到筛分子-伴胞复合体的全部过程.3.同化产品在细胞间的运输为短距离运输,经过维管零碎从源到库的运输为长距离运输.4.韧皮部装载的两条途径:质外体途径和共质体途径,即糖从某些点进入质外体(细胞壁)到达韧皮部或糖从共质体(细胞质)经胞间连丝到达韧皮部.5.韧皮部装载特点:沿浓度梯度进行;需能过程;具有选择性.6.韧皮部卸出是指装载在韧皮部的同化产品输出到库的接受细胞的过程7.同化产品卸出的两条途径:共质体途径(养分器官)和质外体途径(延存、生殖、储藏器官)8.筛管中溶液流(集流)运输是由源和库端之间渗透发生的压力梯度推动的学说称为压力流动学说.另两种无机物运输学说:胞质泵动学说和收缩蛋白学说.9.同化产品在植物体中的分布有两个水平:配置和分配.10.配置是指源叶中新构成同化产品的代谢转化.源叶的同化产品有三个方向:代谢利用;合成临时储藏化合物;从叶输出到植株其他部分.11.分配:新构成同化物在各种库之间的分布.12.分配方向的3个准绳:有生长中间;就近供应,同侧运输;分歧叶龄感化分歧.13.库强度=库容量×库活力.库容量指库的总分量(普通指干重),库活力指单位时间单位干重接收同化产品的速率.改变其中一个都会改变运输方式.14.库强度次要受膨压和植物激素调节.第七章1.生长发育是基因在必定时间、空间上顺序表达的过程.2.植物细胞旌旗灯号转导是指细胞藕联各种刺激旌旗灯号(包含各种内外源刺激旌旗灯号)与其惹起的特定生理效应之间的一系列分子反应机制.旌旗灯号转导可以分为4个步调:一是旌旗灯号分子与细胞概况受体的结合;二是跨膜旌旗灯号转换;3是在细胞内通过旌旗灯号转导收集进行旌旗灯号传递、放大与整合;4是导致生理生化变更(图7-1)3.对植物体来讲,环境变更就是刺激,就是旌旗灯号.旌旗灯号分为物理旌旗灯号和化学旌旗灯号.化学旌旗灯号也称为配体.旌旗灯号进入细胞后,终极惹起生理生化变更和形状反应.4.受体是指能够特导地识别并结合旌旗灯号、在细胞内放大和传递旌旗灯号的物资.细胞受体的特征是有特导性,高亲和力和可逆性.至今发现的受体大都为蛋白质.位于细胞概况的受体称为细胞概况受体.位于亚细胞组分如细胞核、液泡膜上的受体叫做细胞内受体.5.植物细胞概况受体次要有两品种型:G蛋白连接受体和类受体蛋白激酶6.类受体蛋白激酶本人是一种酶蛋白,具有胞外感受旌旗灯号的区域、跨膜区域和胞内的激酶区域.7.受体-配体结合的特点:①受体-配体结合具有较高亲和力②是可逆的③具有特异性④在必定的配体浓度下,配体与其受体的结合具有饱和性.8.旌旗灯号与细胞概况的受体结合以后,通过受体经过旌旗灯号转导进入细胞内,这个过程称为跨膜旌旗灯号转换.9.G蛋白也称为GTP结合调节蛋白,这类蛋鹤发挥调节感化时须要和GTP结合也就具有GTP酶的活性.G蛋白有两品种型,一是异源三聚体GTP结合蛋白,由α、β和γ三种亚基构成;二是小G蛋白.10.G蛋白介导的跨膜旌旗灯号转换是依附于本身的活化和非活化形态轮回来实现的.(P160图)11.通常将胞外旌旗灯号视为初级旌旗灯号,经过跨膜转换以后,进入细胞,还要通过细胞内的旌旗灯号分子或第二信使进一步传递和放大,终极惹起细胞反应.12.CaM(钙调蛋白)呈哑铃形,在其分子里有4个钙离子结合区.13.胞外刺激使PIP2(磷脂酰肌醇-4,5-二磷酸)转化成IP3(三磷酸肌醇)和DAG,激发IP3/Ca2+和DAG/PKC两条旌旗灯号转导途径,在细胞内沿两个方向传递如许的旌旗灯号零碎称为双旌旗灯号零碎.14.DAG(二酯酰甘油)激活PKC(蛋白激酶C),再使其他蛋白激酶磷酸化的过程称为DAG/PKC旌旗灯号传递途径.15. 蛋白质磷酸化与脱磷酸化分别由蛋白激酶(PK)和蛋白磷酸酶(PP)催化完成.这两种酶的协同感化调节细胞中“活性酶的含量”,使细胞对外界的刺激作出敏捷的反应.第八章1.植物生长物资是一些调节植物生长发育的物资.植物生长物资可分为两类;(1)植物激素(2)植物生长调节剂.植物激素是指一些在植物体内合成,并从发生的地方输送到别处,对生长发育发生明显感化的微量无机物;而植物生长调节剂是指一些具有植物激素活性的人工合成的物资.2. 植物激素有5类,既生长素类、赤霉素类、细胞分裂素类、乙烯和零落酸.3. 生长素在植物组织内呈分歧化学形态.从各种溶剂中提取的生长素称为自在生长素,而把通过酶解、水解或自溶感化从束缚物释放出来的那部分生长素,称为束缚生长素.自在生长素具有活性,而束缚生长素则没有活性.自在生长素和束缚生长素可彼此改变.4. 束缚生长素在植物体内的感化有几个方面;(1)作为储藏方式.(2)作为运输方式.(3)解毒感化(4)调节自在生长素含量.5. 生长素运输方式:一种和其他同化产品一样,通过韧皮部运输,运输速度约为1~/h,运输方向决定于两端无机物浓度差等身分的自在运输;另一种是仅局限于胚芽鞘、幼茎、幼根的薄壁细胞之间短距离单方向的极性运输.6. 生长素极性运输是指生长素只能从植物体的形状学上端向下端运输.生长素极性运输是一种主动的运输过程,缺氧会严重地障碍生长素的运输;生长素可以逆浓度梯度运输.生长素生物合成的前体主如果色氨酸.合成途径有4条:吲哚丙酮酸途径;色胺途径;吲哚乙腈途径;吲哚乙酰胺途径(存在于细菌里面).7. 生长素的降解有两方面:酶促降解和光氧化.8. 激素受体是指那些特异的识别激素并能与激素高度结合,进一步惹起生理生化变更的物资.生长素受体为位于内质网上的生长素结合蛋白1.9. 生长素引诱基因分两类:初期基因或初级反应基因;初期基因或次级反应基因.10. 生长素的生理感化:促进感化:P175按捺感化:按捺花朵零落,侧枝生长,块根构成,叶片衰老.11. 赤霉素是一种双萜,由4个异戊二烯构成.根据碳原子数分歧分为:C19和C20两类,前者包含的生长素品种大大多于后者,前者生理活性高,后者低.赤霉素都含羧酸,呈酸性,是调节植株高度的激素.也有自在赤霉素和结合赤霉素之分.12. 赤霉素在高等植物中生物合成的地位至多有3处:发育着的果实或种子;伸长着的茎端和根部.在细胞中的合成部位:质体,内质网,细胞质溶胶等处.合成前体为甲瓦龙酸.改变的分支点为GA12-醛13. 赤霉素的旌旗灯号转导途径:GA引发糊粉层发生α-淀粉酶;GA受体定位于糊粉层细胞质膜的外概况;cGMP,Ca2+和蛋白激酶可能是旌旗灯号两头体.Ca2+促进α-淀粉酶的释放.14. 赤霉素的利用:促进麦芽糖化,促进营摄生长,打破休眠,防止零落.15. 细胞分裂素类则是一类调节细胞分裂的激素,最早发现的是激动素.把具有和激动素不异活性的天然的和人工合成的化合物,都称为细胞分裂素(CK)16. 天然存在的细胞分裂素又分为游离的细胞分裂素和在tRNA中的细胞分裂素.17. 细胞分裂素在植物体内的运输次要从根部合成处通过木质部运到地上部,少数在叶片合成的细胞分裂素也可能从韧皮部运走.CK在根尖合成,前体为甲瓦龙酸和AMP,生物合成是在细胞的微粒体中进行.CK在细胞内的降解主如果由细胞分裂素氧化酶催化的.18. 乙烯合成部位为液泡膜内概况,前体为蛋氨酸,直接前体为ACC,途径为蛋氨酸轮回.19. 乙烯生物合成的酶调节:ACC合酶;ACC氧化酶;ACC丙二酰基转移酶.20. 乙烯代谢的功能是除去乙烯或使乙烯钝化,使植物体内的含量达到植物体生长发育须要的水平.按捺乙烯感化:Ag2+,EDTA,CO2..21. 乙烯受体的共同特征:N端跨膜3次,并具有乙烯结合位点;都具有与细菌二元组分类似的组氨酸激酶催化区域.22. 三重反应:按捺伸永生长(矮化),促进横向生长(加粗),地上部失去负向重力性生长(偏上生长).是植物对乙烯的特殊反应.23. S-ABA和R-ABA都具有生物活性,但后者不克不及促进气孔关闭.ABA运。

植物生理学必考知识点

植物生理学必考知识点

第一章植物的水分代谢一、名词解释1.自由水:距离胶粒较远而可以自由流动的水分。

2.束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。

3.渗透作用: 水分从水势高的系统通过半透膜向水势低的系统移动的现象。

4.水势(w):每偏摩尔体积水的化学势差。

符号:w。

5.渗透势():由于溶液中溶质颗粒的存在而引起的水势降低值,符号。

用负值表示。

亦称溶质势(s)。

6.压力势(p):由于细胞壁压力的存在而增加的水势值。

一般为正值。

符号p。

初始质壁分离时,p为0,剧烈蒸腾时,p会呈负值。

7.衬质势(m):细胞胶体物质亲水性和毛细管对自由水束缚而引起的水势降低值,以负值表示。

符号m 。

8.吸涨作用:亲水胶体吸水膨胀的现象。

9.代谢性吸水:利用细胞呼吸释放出的能量,使水分经过质膜进入细胞的过程。

10.蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。

11.根压:植物根部的生理活动使液流从根部上升的压力。

12.蒸腾拉力:由于蒸腾作用产主的一系列水势梯度使导管中水分上升的力量。

13.蒸腾速率:又称蒸腾强度,指植物在单位时间内,单位面积通过蒸腾作用而散失的水分量。

(g/2·h)14.蒸腾比率:植物每消耗l公斤水时所形成的干物质重量(克)。

15.蒸腾系数:植物制造 1克干物质所需的水分量(克),又称为需水量。

它是蒸腾比率的倒致。

16.内聚力学说:又称蒸腾流-内聚力-张力学说。

即以水分的内聚力解释水分沿导管上升原因的学说。

二、填空题1.植物细胞吸水有、和三种方式。

2.植物散失水分的方式有和。

3.植物细胞内水分存在的状态有和。

4.植物细胞原生质的胶体状态有两种,即和。

5.一个典型的细胞的水势等于;具有液泡的细胞的水势等于;形成液泡后,细胞主要靠吸水;干种子细胞的水势等于。

6.植物根系吸水方式有:和。

7.根系吸收水的动力有两种:和。

8.证明根压存在的证据有和。

9.叶片的蒸腾作用有两种方式:和。

10.某植物制造1克干物质需消耗水400克,则其蒸腾系数为;蒸腾效率为。

植物生理学知识要点

植物生理学知识要点

一、基本概念水势、束缚水、自由水、渗透作用、集流、水通道蛋白、根压、伤流、吐水、暂时萎蔫、永久萎蔫、蒸腾作用、小孔扩散律、蒸腾速率、蒸腾效率、蒸腾系数。

二、基本内容1、水分在植物生命活动中的作用。

2、植物体内水分存在的形式与植物的代谢、抗逆性的关系。

3、植物细胞水势的构成。

4、根系吸水的动力。

5、气孔运动机制的假说。

6、影响气孔运动的因素。

7、高达乔木把水分运输到顶端的机制。

8、蒸腾作用的意义。

9、影响根系吸水的因素。

植物的矿质营养一、基本概念矿质营养、必需元素、胞饮作用、初级主动运输、次级主动运输、生理酸性盐、生理碱性盐、生理中性盐、单盐毒害、离子拮抗、平衡溶液、生物固氮。

二、基本内容1、细胞吸收溶质的方式。

2、根系吸收矿质营养和吸收水分的关系。

3、影响根部吸收矿质元素的因素。

4、植物缺氮的病症首先表现在老叶上,缺硫的病症首先表现在新叶上。

植物的光合作用一、英文符号所代表的中文名称Chla、Chlb、PSⅠ、PSⅡ、Cytb6、Cytf、PC、Rubisco、RuBP、NADP+、NADPH、NAD+、NADH、PEP、PEPC、PQ、Fd。

二、基本概念光合作用、荧光现象、原初反应、光呼吸、红降现象、双光增益效应、光合磷酸化、光补偿点、CO2补偿点。

三、基本内容1、高等植物叶绿体色素的种类和作用。

2、叶绿素a和叶绿素b吸收光谱的异同。

3、光合磷酸化的类型和特点。

4、C3、C4和CAM植物的光合特征和生理特征。

5、C4植物净光合速率高于C3植物的原因。

6、光呼吸的生理功能。

7、光照、温度、水分、气体对光合作用的影响。

一、英文符号所代表的中文名称EMP、TCA、PPP、UQ。

二、基本概念有氧呼吸、无氧呼吸、呼吸链、氧化磷酸化、P/O比、抗氰呼吸、呼吸速率、呼吸商、温度系数。

三、基本内容1、长时间无氧呼吸使陆生植物受伤甚至死亡的原因。

2、呼吸作用糖的分解代谢途径及其发生的部位。

3、EMP、TCA、PPP途径的生理意义。

植物生理学重点整理

植物生理学重点整理

植物⽣理学重点整理第⼀章:植物的⽔分⽣理⽔分在⽣命活动中的作⽤:1,是细胞质的主要成分2,是代谢作⽤过程的反应物质3,是植物对物质吸收和运输的溶剂4,能保持植物的固有姿态根吸⽔主要在根尖进⾏,根⽑区吸⽔能⼒最⼤1.根⽑区有许多根⽑,增⼤了吸收⾯积2.同时根⽑细胞壁的外部由果胶质组成,粘性强,亲⽔性也强,有利于与⼟壤颗粒黏着和吸⽔3.根⽑区的输导组织发达,对⽔分移动的阻⼒⼩这种以⽔分具有较⼤的内聚⼒⾜以抵抗张⼒,保证由叶⾄根⽔柱不断来解释⽔分上升原因的学说,称为内聚⼒学说亦称蒸腾-内聚⼒-张⼒学说随着蒸腾的进⾏,叶⾁细胞不断失⽔,同时⼜不断向邻近细胞吸⽔,依次传递下去,便从导管中吸收⽔分直到根部。

由于⽔分⼦的特殊结构,使它们之间能够形成氢键,产⽣很⼤的内聚⼒,同时⽔分⼦与导管和管胞细胞壁的纤维素分⼦之间还有很强附着⼒,此外,由于导管和管胞的孔径很⼩,⽽且细胞壁很厚,有很强的坚韧程度,所以导管在很⾼的张⼒下,也不会向内凹陷,⽽阻⽌⽔分的运输。

导管中产⽣的这种张⼒⼀直传递到与根尖靠近的下端,甚⾄有时还能穿越过根组织传递出去第⼆章:植物的矿质营养必需元素判断标准(Anron和Stout)1.完成植物整个⽣长周期不可缺少的,缺少则植物不能完成其⽣命周期2.在植物体内的功能是不能被其他元素代替的,植物缺乏该元素时会表现专⼀的症状,并且只有补充这种元素症状拜会消失3.这种元素必须直接参与植物体内的新陈代谢,对植物起直接的营养作⽤,⽽不是通过改变⼟壤理化性质、微⽣物⽣长条件等原因所产⽣的间接作⽤⼤量元素:指植物需要量较⼤,在植物体内含量较⾼(≥0.1%DW)的元素,10种。

碳氢氧氮钾钙镁磷硫硅微量元素:指植物需要量较少, 在植物体中含量较低(<0.01%)的元素氯铁硼锰锌铜镍钼确定⽅法:不供给该元素后,观察植物的反应,是否会有缺素症发⽣溶液培养法或⽔培法:将植物根系浸泡在⽆⼟营养液中培养的⽅法(在含有全部或部分营养元素的溶液中栽培植物的⽅法)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:植物的水分生理1.水分的存在状态束缚水—被原生质胶体吸附不易流动的水特性:1.不能自由移动,含量变化小,不易散失2.冰点低,不起溶剂作用3.决定原生质胶体稳定性4.与植物抗逆性有关自由水—距离原生质胶粒较远、可自由流动的水。

特性:1.不被吸附或吸附很松,含量变化大2.冰点为零,起溶剂作用3.与代谢强度有关自由水/束缚水:比值大,代谢强、抗性弱;比值小,代谢弱、抗性强2.植物细胞对水的吸收方式:扩散、集流、渗透作用1)、扩散作用—由分子的热运动所造成的物质从浓度高处向浓度低处移动的过程。

特点: 简单扩散是物质顺浓度梯度进行,适于短距离运输(胞内跨膜或胞间)2)、集流—指液体中成群的原子或分子在压力梯度下共同移动的现象。

特点:物质顺压力梯度进行,通过膜上的水孔蛋白形成的水通道3)、渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。

注:渗透作用是物质顺浓度梯度和压力梯度进行3.水势及组成1.Ψw =ψs +ψp+ ψm+ψgΨs:渗透势Ψp:压力势Ψm:衬质势Ψg:重力势1)渗透势—在某系统中由于溶质颗粒的存在而使水势降低的值,又叫溶质势(ψπ)。

ψs大小取决于溶质颗粒总数:1M蔗糖ψs> 1M NaClψs (电解质)测定方法:小液流法2)压力势—ψp〉0,正常情况压力正向作用细胞,增加ψw;ψp〈0,剧烈蒸腾压力负向作用细胞,降低ψw;ψp =0,质壁分离时,壁对质无压力3)重力势—当水高1米时,重力势是0.01MP,考虑到水在细胞内的小范围水平移动,通常忽略不计。

4)衬质势—由于亲水性物质和毛细管对自由水的束缚而引起的水势降低值,ψm〈0,降低水势.2.注:亲水物质吸水力:蛋白质〉淀粉〉纤维素*有液泡细胞,原生质几乎已被水饱和,ψm =--0.01 MPa ,忽略不计; Ψg也忽略,水势公式简化为:ψw=ψs+ ψp*没有液泡的分生细胞、风干种子胚细胞:ψw=ψm*初始质壁分离细胞:ψw = ψs*水饱和细胞: ψw = 03.细胞水势与相对体积的关系◆细胞吸水,体积增大、ψsψpψw 增大◆细胞吸水饱和,体积、ψsψp ψw = 0最大◆细胞失水,体积减小,ψsψp ψw减小◆细胞失水达初始质壁分离ψp= 0,ψw= ψs◆细胞继续失水,ψp 可能为负ψw《ψs4.蒸腾作用(气孔运动)小孔扩散律(边缘效应)——气体通过小孔表面的扩散速度不与小孔的面积呈正比,而与小孔的周长呈正比。

1、组成气孔保卫细胞的特点✓胞壁厚薄不均匀✓体积小,调节灵敏✓含叶绿体,能进行光合作用✓保卫细胞间及其与表皮细胞间有许多胞间连丝✓有淀粉磷酸化酶和PEP羧化酶2 气孔的结构及其开闭气孔张开原因:保卫细胞吸水⑴双子叶植物气孔运动:保卫细胞肾形,内壁厚,内有横向微纤丝,细胞吸水,外壁伸长向外移动,将内壁向外拉开,气孔张开。

⑵单子叶植物的气孔运动:保卫细胞哑铃形,中间部分壁厚,两头薄,有辐射状微纤丝。

细胞吸水,两头膨大,气孔张开。

3、气孔运动机理1)淀粉—糖相互转化学说白天(光)CO2↓PH↑6.1~7.3淀粉+ 磷酸淀粉磷酸化酶G1P →G + P夜晚(暗)CO2↑PH ↓2.9~6.1左:水势↑,细胞失水,气孔关闭右:水势↓,细胞吸水,气孔开放2)无机离子学说受重视光→保卫细胞光合磷酸化产生ATP →活化质膜上H+-ATP酶→H+泵至膜外→胞外K+进入胞内(同时Cl-进入) →水势下降→吸水→气孔张开苹果酸生成学说总图:5.植物根系对水分的吸收1.部位:根毛区2.途径:共质体途径(经过胞间连丝从一个细胞质到另一个细胞质)、跨膜途径(两次经过质膜)、质外体途径(细胞壁、细胞间隙等原生质以外的部分)3.吸水动力:根压(主动吸水,伤流+吐水)+ 蒸腾拉力(被动吸水,动力为水势梯度。

高大树木吸水主要靠蒸腾拉力;只有春季叶片未展开时,根压才成为主要吸水动力。

)4.影响根系吸水的土壤因素(1) 土壤中可利用的水分:重力水(因重力作用而下降的水分,有害无益)毛细管水(主要吸收的水) 吸湿水(束缚水,植物不易吸收)(2)土壤温度(3)土壤通气状况(4)土壤溶液浓度:“烧苗”现象第二章:植物的矿质营养1.植物矿质元素的种类1、根据含量划分•大量元素(>0.1%干重)C、H、O、N、K 、Ca﹑Mg﹑P、S、Si•微量元素(<0.1%干重)Fe﹑Cl、Mn﹑B﹑Na、Zn﹑Cu﹑Mo﹑Ni、2、按必需性划分➢必需元素(19种)(第一步划分的元素)➢非必需元素3.根据必需矿质元素的生理功能分组第一组:作为碳水化合物部分的营养:N、S第二组:能量贮存及结构完整性的营养:P、Si、B第三组:保留离子状态的营养:K、Ca、Mg、Mn、Cl、Na第四组:参与氧化还原的营养:Fe、Zn、Cu 、Mo、Ni2.矿质元素的功能及缺乏症功能:•体内不可移动元素:Ca,B,Cu,S, Fe,Mn 缺乏症从幼叶开始•体内可移动元素:N, P,K,Mg,Zn缺乏症从老叶开始•缺乏时缺绿:Fe(叶绿素合成),Mg(组分),Mn(合成), Cu(质体蓝素组分),S、N (蛋白质合成→叶绿素)例子:K:外叶缘失绿Ca:葱头发生心腐,番茄脐腐病Mg:下位叶失绿Si:倒伏Fe:幼叶叶脉间缺绿,华北果树的“黄叶病”(碱性土或石灰质土易缺乏)B:湖北甘蓝型油菜“花而不实”,华北棉花“蕾而不花,黑龙江小麦不结实,甜菜干腐病,花菜褐腐病,马铃薯卷叶病。

Cu:柑桔果面产生很多褐斑点Zn:华北苹果、桃等果树“小叶症”、“丛枝症”,禾谷类“白苗症”,云南省玉米“花白叶病”。

P:水稻赤褐色斑点,生育期延长3.植物细胞对矿质元素的吸收方式和机理方式:❖简单扩散:被动➢离子通道:被动➢载体运输:被动、主动协助扩散➢离子泵:主动➢胞饮作用机理:1.简单扩散:溶质从浓度高的区域跨膜移动到浓度低的邻近区域(被动运输).2.离子通道:离子通道(Ion Channel):是一类内在蛋白,横跨膜两侧,由化学方式及电化学方式激活,顺着电化学势梯度单向被动地跨质膜运输离子。

属于协助扩散(被动运输)、速度快。

如K+、Cl-、Ca2+、NO3-离子通道3.载体运输:质膜上的载体蛋白(内在蛋白)有选择地与质膜一侧的分子或离子结合,形成载体-物质复合物,通过载体蛋白构象变化,透过质膜,把分子或离子释放到质膜的另一侧。

1)单向运输载体(被动):❖催化分子或离子单方向跨膜运输,顺电化学势差进行。

❖质膜上有Fe2+、Zn2+、Mn2+、Cu2+等单向载体。

❖顺电化学势梯度跨膜转运,不需要细胞提供能量。

2)同向运输载体(主动)载体蛋白与H+结合同时又与另一分子或离子(如:Cl-、NO3-、NH4+、PO43-、SO42-、氨基酸、肽、蔗糖、己糖)结合,向同一方向运输3)反向运输载体(主动)载体蛋白与H+结合同时又与其它分子或离子(如:Na+)结合,两者向相反方向运输4.离子泵运输:质膜上存在A TP酶催化ATP水解释放能量,驱动离子的转运。

植物细胞膜上的离子泵主要有离子泵和钙泵。

1)质子泵:质膜上H+ -ATP酶水解A TP作功,将膜内侧H+泵向膜外侧,膜外[H+]升高,产生电化学势差,它是离子或分子进出细胞的原动力,又称生电质子泵。

a)阳离子可通过通道顺电化学势差进入细胞b)伴随H+回流发生协同运输*共向运输*反向运输:离子泵运输(分类:H+-ATP酶、Ca2+-ATP酶、H+-焦磷酸酶) 2)钙泵:Ca2+ - ATP酶、(Ca2+, Mg2 +) – ATP酶5.胞饮作用物质吸附在质膜上,通过膜的内折形成囊泡,转移到细胞内摄取物质及液体的过程,是非选择性吸收,吸收大分子的可能途径。

分为内吞作用、外排作用、出胞现象4.根部吸收矿质元素的特点⒈植物吸收矿质元素与吸收水分的关系•A、相关性•矿质必须溶解在水中才能被吸收•矿质随水分运输而被运送到植物体的各个部分•矿质的吸收导致水势下降促进水分的吸收•水分上升把导管中的无机盐带到茎叶中,降低导管中盐的浓度,从而促进无机盐的吸收•B、相对独立性•二者从吸收比例上无定量关系•矿质的吸收多为主动吸收,是植物的选择吸收,而水分的吸收主要是因蒸腾而引起的被动吸收2 、植物吸收矿质元素的选择性❖对同一溶液中的不同离子的选择性吸收❖对同一盐分中阴阳离子的选择性吸收•生理酸性盐—(NH4)2SO4,植物吸收NH4+比SO42-多,土壤酸性加大。

•生理碱性盐—NaNO3,植物吸收NO3-比Na+多,土壤碱性加大。

•生理中性盐—NH4NO3,植物吸收阴离子和阳离子量相近,而不改变土壤酸碱性。

3、单盐毒害和离子拮抗•单盐毒害(Toxicity of Single Salt):溶液中只含有一种金属离子对植物起有害作用的现象。

•离子拮抗作用(Ion Antagonism):在发生单盐毒害的溶液中,如加人少量其他金属离子,即能减弱或消除这种单盐毒害,离子之间的这种作用称为~~。

•平衡溶液(Balanced Solution):将必需的矿质元素按一定浓度与比例配制成混合溶液,这种对植物生长有良好作用而无毒害的溶液,称为~~。

5.氮的同化❖生物固氮—某些微生物把空气中的游离氮固定转化为含氮化合物的过程。

1..固氮微生物的类型:原核生物共生固氮微生物:豆科植物的根瘤菌、非豆科植物的放线菌自生固氮微生物:好气细菌、嫌气细菌、蓝藻(自生、共生兼备)2.生物固N的条件:•固N生物: 原核生物•固N酶系统:•电子供体(NADH、NADPH)•电子载体:铁氧还蛋白Fd、黄素氧还蛋白Fld•ATP及Mg+2 (1:1)•氧的防护机构:呼吸保护、构象保护、膜的分隔保护(豆血红蛋白)•氨的合成机构•温度: 30℃,PH7.2第三章:植物的光合作用1.光合色素的种类及特征1.种类:叶绿素类:chla、chlb、chlc、chld类胡萝卜素类:胡萝卜素、叶黄素;藻胆素类:藻红素、藻蓝素(与蛋白质(藻胆蛋白:藻红蛋白、藻蓝蛋白)结合紧密)2.特征:1).光合色素的化学性质:叶绿素a:CH3 叶绿素b:CHO置换反应:镁可被H+置换形成去镁叶绿素,溶液褐色,被Cu置换为铜代叶绿素,溶液翠绿。

2.)光学性质:(1)叶绿素吸收光谱最大吸收区:红光区640~ 660nm(特有)蓝紫光区430 ~ 450nm。

chla在红光区吸收带偏向长波光,吸收带宽,吸收峰高。

chlb在蓝紫光区的吸收带比chla宽、吸收峰高,更利于吸收短波蓝紫光。

故阴生植物比阳生植物chlb含量高。

(2)类胡萝卜素吸收光谱最大吸收区域:蓝紫光区(3)藻胆素吸收光谱:藻蓝素吸收峰:橙红区藻红素吸收峰:绿光区、黄光区(4)荧光现象:叶绿素在投射光下为绿色,反射光红色。

3.功能:1)叶绿素:大部分叶绿素a和全部叶绿素b有收集和传递光能的作用。

相关文档
最新文档