气体辅助注塑成型资料
气辅注塑成型技术介绍
气辅注塑成型技术介绍一、前言气辅注塑工艺是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程。
由于气体具有高效的压力传递性,可使气道内部各处的压力保持一致,因而可消除内部应力,防止制品变形,同时可大幅度降低模腔内的压力,因此在成型过程中不需要很高的锁模力,除此之外,气辅注塑还具有减轻制品重量、消除缩痕、提高生产效率、提高制品设计自由度等优点。
近年来,在家电、汽车、家具等行业,气辅注塑得到越来越广泛的应用,前景看好。
科龙集团于98年引进一套气辅设备用于生产电冰箱、空调器的注塑件。
現應用比較廣泛的是英國Cinpres的气体輔助系統, 現在已經和香港气体輔助注塑有限公司(GIL)合并, 現公司名稱為CGI. 目前有TCL, 東江, 格力(珠海), 新加坡富裕,神龍汽車(武漢)應用此技術.二、气辅设备气辅设备包括气辅控制单元和氮气发生装置。
它是独立于注塑机外的另一套系统,其与注塑机的唯一接口是注射信号连接线。
注塑机将一个注射信号注射开始或螺杆位置传递给气辅控制单元之后,便开始一个注气过程,等下一个注射过程开始时给出另一个注射信号,开始另一个循环,如此反复进行。
气辅注塑所使用的气体必须是隋性气体(通常为氮气),气体最高压力为35MPa,特殊者可达70MPa,氮气纯度≥98%。
气辅控制单元是控制注气时间和注气压力的装置,它具有多组气路设计,可同时控制多台注塑机的气辅生产,气辅控制单元设有气体回收功能,尽可能降低气体耗用量。
今后气辅设备的发展趋势是将气辅控制单元内置于注塑机内,作为注塑机的一项新功能。
三、气辅工艺控制1.注气参数气辅控制单元是控制各阶段气体压力大小的装置,气辅参数只有两个值:注气时间(秒)和注气压力(MPa)。
2.气辅注塑过程是在模具内注入塑胶熔体的同时注入高压气体,熔体与气体之间存在着复杂的两相作用,因此工艺参数控制显得相当重要,下面就讨论一下各参数的控制方法:a.注射量气辅注塑是采用所谓的“短射”方法(short size),即先在模腔内注入一定量的料(通常为满射时的70-95%),然后再注入气体,实现全充满过程。
气体辅助成型中文资料
冷流道
l
热流道
l
影响气体渗透变化的因素
l 或许影响渗透量的最重要因素是气体注入时它前面聚合物的多少和状态。聚合物多少和状态 的变化的影响如下表所示: l 表 1-0-1 变化 (↑表示增加) 1 2 3 4 5 6 聚合物注射速度 模具温度 熔胶温度 气体延迟时间 初始气体压力 喷嘴关闭时间 ↑ ↑ ↑ ↑ ↑ ↑ 气体渗透量 ↓ ↓ – ↑↓ ↑ ↓ 冷却时间 ↑ ↑ ↑ ↓ ↓ ↑
7
gas analysis
第一单元:
能力测试
l 最大化气体渗透 目的: l 用等体积法,调整气体延迟时间,使之在无窜气,无穿吹的情况下达到渗透最大化(在这种情况 下,气体前锋离端点有一个或两个三角形的距离) 。 注 这个练习只处理气体渗透。所有分析条件都已提供,在后面的章节中将会介绍到如何去获得这些分析 条件。 确认你看到: l 项目管理树 MODEL:bar
注射时间:塑胶 100%充满型腔的时间。根据材料的模具温度和熔融温度,这个时间既可以人为决定, 也可以由软件自动计算。 射嘴关闭时间:射胶停止的时刻。该时刻既可以从开始注射做为起点计算,也可以通过注射到一定的 百分比来确定; 气体延迟时间:从射胶开始到气体注射开始所经历的时间。如果这个时间比喷嘴关闭时间短,那么喷 嘴会自动关闭。 气体持续时间:冷却时,气体压力施加在聚合物上进行充填和保压的时间。 冷却时间:气体撤除后,把产品冷却到顶出温度所用的时间。 打开溢流点: l 溢流点可以被用来模拟胶料进入机器的桶内或者进入溢流井的反向流道。这个时间可以 为料流前锋超过溢流井后的任意时刻。
FILL|FAST:bar FILL|GAS:bar1
然后做: l 在打开项目管理器的时候: l 1、读入气体充填的结果。 l a.点击项目管理树中的 FILL|GAS:bar1。 l b.点击 MFVIEW 按钮,使数据可用。 l c.点击 OK,把模型和结果读到 MFVIEW. l 2、显示三角形,充填和气体时间,的结果: l Results Contour Plots, Fill time, Solid, Apply. l Gas Time, Apply. l 右键,Display Mesh. l 就像你可以看到的,气体的渗透不超过模型的一半(大约 12 个单元) 。因为没有达到预定的目标, 你需要使用不同的气体延迟时间来运行另外一个分析。 l 图 1-0-2
气体辅助注射成型
他工业承载零件等方面。 /
6.10.2.RIM成型设备
是一组带有轴向活塞泵的计量装置. 主要组成:组分储存槽、过滤器、轴向柱塞泵、
电动机以及带有混合头的液压系统。 RIM成型设备要求有很高的灵活性和计量精度。 近年来,采用电脑对计量装置、工艺操作程序和
⑸.固化定型
制品的固化是通过化学交联反应等物理变化完 成.。
对化学交联反应固化,反应温度必须超过达到完 全转换成聚合物网络结构的玻璃化温度Tg。
模具应具有换热功能,起到散发热量的作用,以 控制模具的最高温度低于树脂热分解温度 。/
制品的脱模必须使其取得足够的强度才可进行, 这主要由材料的固化时间决定的,而固化时间受 制品的配方和制品尺寸影响。
其作用:是分别独立贮存两种原料,防止贮存时 发生化学反应,同时用惰性气体保护,防止空气 中的水分进入贮罐与原料发生反应。/
②计量和输送系统(液压系统)由泵、阀及辅件组 成的控制液体物料的管路系统和控制分配缸工 作的油路系统所组成,
其作用:是使两组分物料能按准确的比例进行分 别输送。
③混合系统(即混合头),使两组分物料实现高速 均匀混合,并加速混合液从喷嘴流道注射到模 具中。/
1)需要供气装置和进气喷嘴,增加了设备的 投资。
2)在注入气体和不注入气体部分,制品表面 光泽有差异。
3)对注射机的注射量和注射压力的精度有更 高的要求。
4)制品质量对模具温度和保压时间等工艺参 数更加敏感。 /
根据产品结构的不同可分为两类:
一类是厚壁、偏壁、管状制件, 如手柄、方向盘、衣架、马桶、座垫等制件; 另一类是大型平板制件, 如仪表盘、踏板、保险杠及桌面等。/
浅谈气体辅助注塑成型
浅谈气体辅助注塑成型摘要气辅注(射模)塑又称气体注(射模)塑是一种新的注射成型工艺。
气辅注塑是对传统注射成型的延伸,有人甚至称它是注射成型技术的二次革命,它是在注射成型技术和结构泡沫注射成型的基础上发展起来的;也可认为是注射成型与中空成型的某种复合,从这个意义上,也可以为称为“中空注射成型”。
气辅注塑成型是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺水平,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程。
气辅注塑过程是在模具内注入塑料熔体的同时注入高压气体,熔体与气体之间存在着复杂的两相关系。
关键词:气辅注塑成型、注射速度、气体压力、注射量气辅注(射模)塑又称气体注(射模)塑是一种新的注射成型工艺。
气辅注塑是对传统注射成型的延伸,有人甚至称它是注射成型技术的二次革命,它是在注射成型技术和结构泡沫注射成型的基础上发展起来的;也可认为是注射成型与中空成型的某种复合,从这个意义上,也可以为称为“中空注射成型”。
气辅注塑成型是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺水平,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程。
1、气辅注塑成型概念及特点气辅成型(GIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体经,气体推动熔融塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术。
1.1气辅注塑成型与传统注塑成型相比具有以下特点:1、减少残余应力、降低翘曲问题。
传统注塑成型,需要足够的高压以推动塑料由主流道至最外围区域;此高压会造成高流动剪应力,残存应力则会造成产品变形。
气辅成型中形成中空气体流通管理(Gas Channel)则能有效传递压力,降低内应力,以便减少成品发生翘曲的问题。
2、消除凹陷痕迹。
传统注塑产品会在厚部区域如筋部(Rib&Boss)背后,形成凹陷痕迹(Sink Mark),这是由于物料产生收缩不均的结果。
气体辅助注塑成型技术
气体辅助注塑成型技术第一章: 气体辅助注塑成型简介1、气体辅助注塑成型的发明及发展概述: 多年来,人们一直在研究中空塑料制品的成型加工技术及对塑料产品的质量改善作出研究。
1944年,Opavsky将气体或液体通过注射器注入到树脂中以达到改善产品质量为目的,但未获成功,这是最早的气辅概念研究。
我们今天所知道的气体辅助注塑成型技术是从20世纪70年代中期发展起来的,德国人Ernst Friederich是第一个发明气体辅助注塑成型工艺的人(1975年)(他的原理是将已加压的气体通过喷嘴注射到熔融物料当中,使熔融物料与模具内壁表面充分接触)。
由于当时的技术存在相当的局限性,并没有得到一定的重视。
直到80年代中期,该项技术才开始得到真正的发展及运用。
后来在欧洲出现了包括: Cinpress, Battenfeld, Ferromatik, Stork, Engel 及Johnson Controls 一批设备生产商,并在不断地改良这种技术。
到了90年代后期,气体辅助注塑成型技术得到飞速的发展及运用。
2、气体辅助注塑成型制品的两个主要类型:●封闭式气道(SINGEL GAS CHANNEL) ●开放式气道(GAS CHANNEL) 封闭式气道制品主要由一个厚壁截面和气体穿行的通道组成,如门把手、扶手、管状把手等都属于这种结构。
因为气体的扩散有一条设定好的路线(即胶料较厚,温度较高,流动性较好的部分,亦即是气体流动的方向),制品能达到最佳的节省材料的目的,而且由于制品中空结构使刚性加强而不用增加质量。
开放式气道制品主要是薄壁制品(壁厚不能少于2MM),类似于传统的加强筋结构制品。
气体会从较厚的加强筋向前扩散(及气体流动的方向:胶料相对较厚的部分,形成气道GAS CHANNEL),但气体可能会穿透制品的薄壁部分(有时会出现指形扩散:指纹效应FINGERING),即高压气体往较厚胶料或密度较低的部分渗入。
3、气体辅助注塑成型方法的优点:●制品残余应力降低●翘曲变形较小●减少/消除缩痕●简化模具设计●制品综合性能提高●缩短成型周期●合模力吨位要求降低●射胶压力降低4、气体辅助注塑成型适用材料: ABS、ABS/PC、HIPS、PA、PBT、PC、PS、PVC、PET、PP、PPE等第二章: 气体辅助注塑成型的方法及原理 1、气体辅助注塑成型的原理:通过管道与模具连接,把高压气体(氮气)注入到模腔的塑料熔体中,形成局部的中空,加速产品冷却成型。
9气体辅助注塑成型
气体辅助注射成型
可能的问题-内部起泡
原因是气体进入了熔体里.
气体辅助注射成型
可能的问题-内部起泡
解决方案:
增加气体保压时间 缓慢地释放气体 增加延迟时间 降低气体压力 保持材料干燥 降低熔体温度 改变塑料材料
气体辅助注射成型
可能的问题-手指效应
气体辅助注射成型
可能的问题-手指效应
解决方案:
增加熔体注入量 增加气体注入时间 增加气体延迟时间 降低气体压力 增加气道高度尺寸
进气位臵
通过模具型腔进气
气体辅助注射成型
制品形状-加强筋
普通塑件加强筋的厚度应比塑件主体壁厚薄 ( 约为其一半 ) ,即使这样也免不了在加强筋所 在壁的对面产生凹陷,因此应尽量少采用。在 气辅注塑中加强筋可设计得比塑件主体壁厚大 得多,作为气体通路,不但可避免产生凹陷, 而且可大大地增加塑件的刚度,粗大的加强筋 通常不会增加制品总重,因为平板部分可减薄, 在筋中的大量气体也可减轻重量。
气体辅助注射成型
翘曲和变形
气辅成型能消除制品 的翘曲和变形吗?
气体辅助注射成型
翘曲和变形
气体辅助注射成型
剩余壁厚-注入树脂量
太少
太多
气体辅助注射成型
剩余壁厚-注入树脂量
气体辅助注射成型
剩余壁厚-模温
以PC(Makrolon® 2458)为例子,模温变化大于 30°C而 制品的壁厚基本上不变,平均壁厚的改变量仅 0.02mm.
气体辅助注射成型
适宜成型的制品
例子:电视机前框改为气辅注塑成型,制件经重新设 计后,重量减轻了26%,零件数减少了54%。
气体辅助注射成型
适宜成型的制品
例子:马自达汽车保险杠。用气辅成型克服了表面凹陷,
气体辅助注射成型【范本模板】
气体辅助注射成型2.1气体辅助注射成型概述气体辅助注塑成型技术是一项新兴的塑料注射成型技术,此技术最早可追溯到1971年,美国尝试用加气注射成型方法制造中空鞋跟,但未取得成功,1983年英国采用低发泡注射成型法制造建筑材料时衍生出控制塑料制品内部压力的成型方法,称之为气体辅助注射成型.该技术很快得到迅速的发展,推动各行业的进步。
1、气体辅助注射成型的适用范围气体辅助注射成型最大的优点是制品由于中空结构使刚性增加而不用增加质量,有时还能减轻.由气体辅助注射成型制品有两大类:1)封闭式气道封闭式气道制品主要是由一个厚壁截面和气体穿行的通道组成.如门把手、扶手、框架结构、中空管等.2)开放式气道开放式气道制品主要是薄壁元件,类似于传统的加强筋结构制品。
2、气体辅助注塑技术的优点主要有:1)制品残余应力降低2)翘曲变形较小3)减少/消除缩痕4)更大的设计自由度5)制品综合性能提高6)与结构发泡相比,制品外观质量的到改善7)中空制品有以下特点-—更加易于填充——物料流动距离更长-—刚度与质量之比更大8)与实心制品相比成型周期缩短9)合模力吨位要求降低10)注射压力降低11)气道取代热流道系统从而使模具成本降低3、气体辅助注塑技术的缺点主要有:1)专利使用权限制。
2)附加的成本,一方面是气体辅助注射成型的专用设备要求的一定的附加费用;另一方面是气体的使用。
3)气体喷嘴的设计及位置的选择相当的困难。
4、材料大多数热塑性塑料都可用于气体辅助注射成型加工,表1-1列出了一些常用的材料聚醚酰亚胺HDPE5、设计注意事项:气体辅助注射成型制品的优化设计需要注意以下三点:1)气道布局的优化2)气道尺寸与制品相关3)平衡物料填充方式气道在模腔内的布局既包括气体喷嘴的定位,也包括气道进入模具位置的选择,气体会沿着阻力最小的方向向前流动。
在物料进入模具之后,模腔中压力最小的地方必须靠近气道的末端,这个压力差会促使气流沿着预期流道前进,从而推动物料充满整个型腔。
气体辅助注塑成型技术简介.
一、气体辅助注塑原理:
气体辅助注塑原理是把高压氮气经气辅 主控制器(分段压力控制系统)直接注射入 模腔内塑化塑料里,使塑件内部膨胀而造成 真空,但仍然保持产品表面的外形完整无缺, 减小产品表面的收缩、产品变形和翘曲,从 而达到提高产品的质量,降低成本的目的。
二、采用气体辅助注塑技术的优点:
应用气辅技术的国内公司:康佳、长虹、创维、科龙、 美的、海信等等;上海延锋伟世通、浙江远翅、上海龙贤汽 配、余姚塑料四厂、宁波国雅汽车内饰件厂以及各类注塑厂 都应用了气辅技术。
四、气体辅助注塑整系统的原理图:
A、整套系统
氮气 发生 器
低压 贮气缸
电动 高压 增压机
高压 贮气缸
气辅 主控 制器
单相电源 压缩空气 三相电源
六、气道形式:
• C、全部中空
七、我厂第一副气辅产品-前门拉手 (LZ111-6402101)
八、前门拉手采用气辅方案:
八、前门拉手采用气辅方案:
谢谢!
——END——
B、简易系统
氮气 缸瓶
气动 高压 增压机
压缩空气
单相电源
高压 贮气缸
气辅 主控 制器
单相——以定量塑化塑料充填入模腔内。所需塑料 份量要通过试验找出来,以保证在充氮期间,气体不 会把成品表面冲破及能有一理想的充氮体积。
2、充气期——注塑期中或后,不同时间注入气体,气体 注入的压力必需大于注塑压力,以达至产品成中空状 态。
模具的工作寿命; 7、降低注塑机的锁模压力,可高达50%; 8、提高注塑机的工作寿命和降低耗电量。
三、气体辅助注塑技术的应用:
基本上所有用于注塑的热塑性塑料及一般的工程材料 (如PS、HIPS、PP、ABS…)都适用于气辅技术。
气体辅助注塑成型技术简介
气体辅助注塑成型技术简介气体辅助注塑成型技术简介类型:气体辅助注塑成型是欧美近期发展出来的一种先进的注塑工艺,它的工作流程是首先向模腔内进行树脂的欠料注射,然后利用精确的自动化控制系统,把经过高压压缩的氮气导入熔融物料当中,使塑件内部膨胀而造成中空,气体沿着阻力{TodayHot}最小方向流向制品的低压和高温区域。
当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面,这些置换出来的物料充填制品的其余部分。
当填充过程完成以后,由气体继续提供保压压力,解决物料冷却过程中体积收缩的问题。
气体辅助注塑成型优点为什么人们对于气体辅助注射成型的兴趣如此之大呢?其主要的原因在于这种方法出现时所许诺的种种优点。
成型者希望以低制造成本生产高质量的产品。
在不降低质量的前提下用现代注塑机和成型技术可以缩短生产周期。
通过使用气体辅助注射成型的方法,制品质量得到提高,而且降低了模具的成本。
使用气体辅助注射成型技术时,它的优点和费用的节约是非常显着的。
1、减少产品变形:低的注射压力使内应力降低,使翘曲变形降到最低;2、减少锁模压力:低的注射压力使合模力降低,可以使用小吨位机台;3、提高产品精度:低的残余应力同样提高了尺寸公差和产品的稳定性;4、减少塑胶原料:成品的肉厚部分是中空的,减少塑料最多可达40%;5、缩短成型周期:与实心制品相比成型周期缩短,不到发泡成型一半;6、提高设计自由:气体辅助注射成型使结构完整性和设计自由度提高;7、厚薄一次成型:对一些壁厚差异大的制品通过气辅技术可一次成型;8、提高模具寿命:降低模腔内压力,使模具损耗减少,提高工作寿命;9、降低模具成本:减少射入点,气道取代热流道从而使模具成本降低;10、消除凹陷缩水:沿筋板和根部气道增加了刚度,不必考虑缩痕问题。
第一阶段:按照一般的注塑成型工艺把一定量的熔融塑胶注射入模穴;第二阶段:在熔融塑胶尚未充满模腔之前,将高压氮气射入模穴的中央;第三阶段:高压气体推动制品中央尚未冷却的熔融塑胶,一直到模穴末端,最后{HotTag}填满模腔;第四阶段:塑胶件的中空部分继续保持高压,压力迫使塑料向外紧贴模具,直到冷却下来;第五阶段:塑料制品冷却定型后,排除制品内部的高压气体,然后开模取出制品。
气辅注塑工艺介绍L&L
© Yanfeng Visteon Proprietary / All Rights Reserved
© Yanfeng Visteon Proprietary / All Rights Reserved
气辅注塑成型有三种方式:溢料注射工艺,缺料注塑工艺,满料 注射工艺,
我们金桥现在是使用的溢料注射工艺:将模腔全部注满,然后通 过注射气体挤压一些熔体到溢流腔。溢流腔用来控制芯部材料的 流动,从而实现芯部材料的均匀分布。
储料 Screw back
普通注塑
取件 Taking off
顶出 Ejecting
开模 Mold opening
© Yanfeng Visteon Proprietary / All Rights Reserved
气体辅助注塑成型技术 (Gas Assistant Injection Molding, GIM) 是指在注塑 工艺中,熔融塑料充填到型腔 适当的时候(90%~100%)注 入高压气体,推动融熔塑料继 续充填满型腔,使塑件内部膨 胀而形成中空,保持产品完整 表面,用气体保压来代替塑料 保压过程的一种新兴的注塑成 型技术。由于气体具有高效的 压力传递性,可使气道内部各 处的压力保持一致,因而可消 除内部应力,防止制品变形。
图1.9 气辅控制器参数画面
© Yanfeng Visteon Proprietary / All Rights Reserved
气辅注塑工艺介绍 及问题改善
© Yanfeng Visteon Proprietary / All Rights Reserved
一.气辅成型工艺的简单介绍气辅注塑
合模 Mold closing
注射 Injecting
保压 Holding
气体辅助注塑工艺简介
气体辅助注塑工艺简介1.气体辅助注塑目前所指的气体辅助注塑:是指将氮气注射入产品内,使产品内部形成中空。
模具打开前,控制器会将塑胶工件内的氮气释放回大气中。
2.气辅注塑成形工艺的优势1)低射胶、低锁模力;2)压力分布均匀、收缩均匀、残余应力低、不易翘曲,尺寸稳定;3)消除凹陷,型面再现性高;4)省塑料,可用强度及价格更低的塑料;5)可用强度和价格更低的模具金属;6)厚薄件一体成型,减少模具及装配线数目;7)可用较厚的筋,角板等补强件,提高制品刚性,使得制件公称厚度得以变薄。
8)增强设计自由度。
3.气辅射胶控制工艺1)短射工艺,即胶料未完全充满型腔时,继之以氮气注射;2)满射工艺,塑胶熔体充满型腔之后,停止注射,继之以氮气注射。
短射工艺的特点:在气辅注塑中,塑胶注射取决于胶件形状及胶料性能,在以下条件才可进行短射。
1)胶件必须有独立完整的气体通道,即气流在穿透胶件时,无分支气道可走。
2)气体通道中多余胶料有足够的溢流空间。
3)胶料流动性优良,粘度不可太低,尽量避免使用含破坏高分子键的填充物的胶料。
4)胶料导热度较低,有可较长时间保持熔融状态的能力。
满射工艺特点:胶件射胶完成,通过气体代替啤机,防止胶件收缩。
其优点在于,啤机保压是以射胶量及压力来防止胶件收缩,气辅保压,则以气体穿透塑胶收缩后的空间,防止胶件表层埸陷。
4.气辅压力分析:现我们看以下气辅压力与啤机压力的对比:1)气辅压力a)低气压800psi=56.34kg/cm2b)中气压1500psi=105.63 kg/cm2c)高气压2500psi=176.06kg/cm22)啤机压力a)100 TON注塑最大压力188Mpa=1917 kg/cm2b)280 TON注塑最大压力150Mpa=1530 kg/cm2c)650TON注塑最大压力153Mpa=1560 kg/cm2从以上压力对比可知,氮气压力只相当于普通啤机注塑压力的十分之一,甚至更少。
气辅注塑
1)封闭式气体注射(SEALED INJECTION GAS)方法: * 是把气体直接注入模腔内,使塑料成品中空的方法。无需采用活阀,只是 通过简单模具加工,把气辅气嘴装在模具中。 * 在同一模具上,可有单一或多个注入气体的地方,这视乎同产品的需要, 慕求令产品有良好效果和提供产品设计有较大的灵活性。
太小会使气体流动失去控制 7.冷却要尽量均匀,内外壁温差要尽量小
8.在流道上放置合理流道半径的截流块,辅助注塑设备按工艺需求大致应有以下几类: 1、氮气机:主要用于氮气的制造 2、氮气增压器:主要是将氮气的气压加大,以便于氮气的注入 3、气辅控制器:主要用于控制氮气注入量、气压、时间及排气的控制,是
• 降低生产成本
– 由于减少了壁厚,因此降低了零件成品的总重量. – 由于壁厚较小,因此缩短了冷却时间和循环时间. – 由于降低了锁模力和注塑保压压力,能源消耗成本降低. – 由于零件的集成化,从而降低了装配成本.
• 降低投资成本
– 由于注射压力较低,因此可以降低注塑机的锁模压力,可使用吨位较小的注塑 机.
整个气辅设备的控制中心 4、气辅配件:主要有气针、气管及各种接头等,用于气辅设备与模具的连
接
因各种设备加在一起,占用的空间较大,现有很大一部分已采用一体化的气 辅系统。
END
同传统注射成型工艺相比.应用气体辅助注塑技术,有以下优点:
• 自由设计
– 综合功能较为复杂的塑胶零件可以整装为单一的组件. – 可以在同一零件上结合厚壁和薄壁部分. – 使用空心的"加强筋"部分可以提高其强度.
• 提高零件质量
– 由于减小了微收缩,因此扭曲和变形就减少了. – 消除缩痕. – 由于注射点的数量减少,所以波纹和熔接线也相应减少.
气辅注塑成型
气辅技术的适用材料
大部分热塑性塑料(增强或不增强的)可以使用气体辅助注射 成型技术, 在某种情况下也可用于热固性塑料, 如下表 所示。
适用于气体辅助注塑成型的材料
为控制气道的形成和避免气体“吹破”, 塑料应有一定的熔体强度, 像聚 氨脂等非常柔软的塑料就不适用。PA 和PBT 类型的易结晶塑料尤其适 用于气辅注塑。气辅注塑最常用的塑料是PA6、PA66 及PP(通常是玻璃 纤维增强的)。
(1)能对端点加压; (2)预防凹痕; (3)代替机械保压; (4)减低锁模力; (5)无须采用较厚部份; (6)减少应力变形:外气注塑可以减少塑料内部用以补偿体 积收缩的运动,使物料承受的模塑应力减少,减少塑件成型 后变形的机会; (7)减少模塑件重量和周期时间; (8)扩大设计的范围:由于可以对肋条和辐板加压,使得这 些设计更易加入,提高了模塑件的坚固度,也扩大了设计的 范围; (9)使质量控制更加容易:对表面加压,使表面的任何变形 都可以见到 而在有需要时还可作质量控制。
( 1) 管状和棒状零件, 如门把手、吊环、吊钩、扶手、导轨、衣架等。这 是因为管状设计使现存的厚截面适于产生气体管道,利用气体的穿透作用 形成中空, 消除表面成型缺陷。节省材料和缩短成型周期。 ( 2) 大型平板类零件, 如桌面、车门板、仪表盘等。利用加强筋作为气体 穿透的气道, 消除了加强筋和零件内部残余应力带来的翘曲变形、熔体 堆积处塌陷等表面缺陷, 增加了强度/ 刚度对质量的比值, 同时可因大幅 度降低锁模力而降低注射机的吨位要求。 ( 3) 形状复杂、薄厚不均、采用传统注射技术会产生缩痕和污点等缺陷 的复杂零件, 如汽车车身、保险杠、家电外壳等。复杂件可看作是棒状 件板类件的有机组合。
冷却气体形成的过程是:常温气体通过一个腔室,在其 中被液氮冷却。 这种冷却气体辅助成型技术的主要优势在于: •当冷却气体穿透熔体时,在模腔内会产生塞流效应,塞流 产生的残余壁厚比传统气体辅助成型要小; •冷却气体也防止了制件内部起泡,并能产生较光滑的内表 面。
气辅注塑专业知识课件
– 因为降低了壁厚,所以降低了零件成品旳总重量. – 因为壁厚较小,所以缩短了冷却时间和循环时间. – 因为降低了锁模力和注塑保压压力,能源消耗成本降低. – 因为零件旳集成化,从而降低了装配成本.
• 降低投资成本
– 因为注射压力较低,所以能够降低注塑机旳锁模压力,可使用吨位较小旳注塑 机.辅注塑原理简介 • 二、气辅注塑应用范围 • 三、气辅注塑优点 • 四、气辅注塑模具设计注意事项 • 五、气辅注塑设备简介
一、气辅注塑原理简介
• 原理:气体辅助注塑系统,这个先进旳系统和技术,是把惰性气体(一般
用氮气)经由分段压力控制系统直接注射入模腔内旳塑化塑料里,使塑件 内部膨胀而造成中空,但依然保持产品表面旳外形完整无缺。
同老式注射成型工艺相比.应用气体辅助注塑技术,有下列优点:
• 自由设计
– 综合功能较为复杂旳塑胶零件能够整装为单一旳组件. – 能够在同一零件上结合厚壁和薄壁部分. – 使用空心旳"加强筋"部分能够提升其强度.
• 提升零件质量
– 因为减小了微收缩,所以扭曲和变形就降低了. – 消除缩痕. – 因为注射点旳数量降低,所以波纹和熔接线也相应降低.
– 因为注射压力较低,从而降低模式具制造成本.
– 因为注射压力较低使模具旳损耗降低,从而降低了维修成本.
四、气辅注塑模具简介
• 气体辅助注塑模具与一般旳塑胶模在构造上没太多差
别,就只是增长了一种气针,但设计气辅模具旳几种
基本要点需尤其注意
1.首先考虑哪些壁厚处需要注气掏空,然后再决定怎样用气道将它们连接 起来
• 氣輔注塑成型可被認爲是中空吹塑成型旳變型,其過程是先向模具腔中注
入經過準確計量旳占模腔一定百分比旳塑膠熔體,這一過程稱爲“欠料注 塑”,再直接往熔融塑膠中注入一定體積和壓力旳高壓氮氣,氣體在塑膠 熔體旳包圍下沿著阻力最小旳方向擴散前進。由於靠模壁部分旳塑膠溫度 低,表面粘度高,而製作較厚部分中心塑膠熔體旳溫度高,粘度低,所以 氣體轻易對中心塑膠熔體進行穿透和排空,在製件旳厚部形成中空氣道, 而被氣體所排空旳熔融塑膠又被氣體壓力推向模具末端直至充滿模具型腔, 在冷卻階段壓縮氣體對塑膠熔體進行保壓補縮。待製品冷卻凝固後再卸氣, 然後開模頂出。
气体辅助技术介绍
气体辅助技术介绍1. 气体辅助注塑成型技术简介气体辅助注塑成型技术是一项新兴的塑料注射成型技术,其原理是利用高压气体在塑件内部产生中空截面,利用气体保压代替塑料注射保压,消除制品缩痕,完成注射成型过程。
气体辅助注塑成型的工艺过程主要包括塑料熔体注射、气体注射、气体保压三个阶段。
根据熔体注射量的不同,又分为短射和满射两种方式,在短射方式中,气体首先推动熔体充满型腔,然后保压;在满射方式中,气体只起保压作用。
气体辅助注塑技术的优点主要有:1)解决制件表面缩痕问题,能够大大提高制件的表面质量。
2)局部加气道增厚可增加制件的强度和尺寸稳定性,并降低制品内应力,减少翘曲变形。
3)节约原材料,最大可达40%~50%。
4)简化制品和模具设计,降低模具加工难度。
5)降低模腔压力,减小锁模力,延长模具寿命。
6)冷却加快,生产周期缩短。
气体辅助注塑成型技术与普通注塑成型工艺相比,有着无可比拟的优势,被誉为注塑成型工艺的一次革命,在家电、汽车、家具、日常用品等几乎所有塑料制件领域得到广泛应用。
在家电领域,电视机壳特别是大屏幕彩电前壳是最早也是最广泛采用气辅注塑成型技术的制品之一。
3.气辅制品和模具设计基本原则(1)设计时先考虑哪些壁厚处需要掏空,哪些表面的缩痕需要消除,再考虑如何连接这些部位成为气道。
(2)大的结构件:全面打薄,局部加厚为气道。
(3)气道应依循主要的料流方向均衡地配置到整个模腔上,同时应避免闭路式气道。
(4)气道的截面形状应接近圆形以使气体流动顺畅;气道的截面大小要合适,气道太小可能引起气体渗透,气道太大则会引起熔接痕或者气穴。
(5)气道应延伸到最后充填区域(一般在非外观面上),但不需延伸到型腔边缘。
(6)主气道应尽量简单,分支气道长度尽量相等,支气道末端可逐步缩小,以阻止气体加速。
(7)气道能直则不弯(弯越少越好),气道转角处应采用较大的圆角半径。
(8)对于多腔模具,每个型腔都需由独立的气嘴供气。
(9)若有可能,不让气体的推进有第二种选择。
气辅成型
气辅成型(GIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术.要点:1、计量管理。
2、利用气辅控制器把高压氮气直接压入到模腔内熔胶里。
3、使塑件内部膨胀而造成中空。
编辑本段气辅成型的优点1、降低产品的残余应力,使产品不变形。
2、解决和消除产品表面缩痕问题,应用于厚度变化大的产品。
3、降低注塑机的锁模力,减少成型机的损耗。
4、提高注塑机的工作寿命。
5、节省塑胶原材料,节省率可达百分之三十。
6、缩短产品生产成型周期时间,提高生产效率。
7、降低模腔内的压力,使模具的损耗减少和提高模具的使用寿命。
8、对某些塑胶产品,模具可采用铝合金属材料。
9、简化产品的繁复设计。
编辑本段气辅成型过程• 合模• 射座前进• 熔胶充填• 气体注入• 预塑计量(气体保压)• 射座后退(排气卸压)• 冷却定型• 开模• 顶出制件编辑本段气体辅助注塑周期1、注塑期以定量的塑化塑料充填到模腔内。
(保证在充气期间,气体不会把产品表面冲破及能有一理想的充气体。
)2、充气期可以注塑期中或后,不同时间注入气体。
气体注入的压力必需大于注塑压力,以致使产品成中空状态。
3、气体保压期当产品内部被气体充填后,气体作用于产品中空部分的压力就是保压压力,可大大减低产品的缩水及变形率4、脱模期随着冷却周期的完成,模具的气体压力降至大气压力,产品由模腔内顶出。
编辑本段气辅成型所需的条件• 注塑成型机• 气体的来源(氮气发生器)• 输送气体的管道• 控制氮气有效流动的设备(氮气控制台)• 带有气道设置的成型模具(气辅模具)编辑本段成型条件的设定1、注塑机的设定o 原材料的烘干温度与传统成型一致o 料筒的塑化温度比传统注塑偏高o 模温要求较严,冷却水路布置要使冷却效果均衡o 注塑压力与传统注塑基本一致o 注塑速度一般采用高速填充2、氮气设备的设定a、氮气发生器的压力一般设定在30MPA左右b、氮气控制台要素的设定(延迟时间、气体压入时间、气体保持时间、气体放气时间、压力的设定、气体速率)气辅注塑成型技术 2009-6-22 中国设备网文字选择:大中小气辅注塑工艺是国外八十年代研究成功,九十年代才得到实际应用的一项实用型注塑新工艺,其原理是利用高压隋性气体注射到熔融的塑料中形成真空截面并推动熔料前进,实现注射、保压、冷却等过程,使产品形成真空。
气体辅助注塑成型技术简介.
四、气体辅助注塑整系统的原理图:
A、整套系统
氮气 发生 器
低压 贮气缸
电动 高压 增压机
高压 贮气缸
气辅 主控 制器
单相电源 压缩空气 三相电源
模具的工作寿命; 7、降低注塑机的锁模压力,可高达50%; 8、提高注塑机的工作寿命和降低耗电量。
三、气体辅助注塑技术的应用:
基本上所有用于注塑的热塑性塑料及一般的工程材料 (如PS、HIPS、PP、ABS…)都适用于气辅技术。
目前气辅技术广泛应用于各类塑胶产品上,例如:电视 机、电冰箱、空调或音响外壳、汽车塑料产品、家电、日用 品、玩具等。
B、简易系统
氮气 缸瓶
气动 高压 增压机
压缩空气
单相电源
高压 贮气缸
气辅 主控 制器
单相电源
模具 模具
五、气体辅助注塑周期简介:
1、注塑期——以定量塑化塑料充填入模腔内。所需塑料 份量要通过试验找出来,以保证在充氮期间,气体不 会把成品表面冲破及能有一理想的充氮体积。
2、充气期——注塑期中或后,不同时间注入气体,气体 注入的压力必需大于注塑压力,以达至产品成中空状 态。
气体辅助注塑成型技术简介
一、气体辅助注塑原理:
气体辅助注塑原理是把高压氮气经气辅 主控制器(分段压力控制系统)直接注射入 模腔内塑化塑料里,使塑件内部膨胀而造成 真空,但仍然保持产品表面的外形完整无缺, 减小产品表面的收缩、产品变形和翘曲,从 而达到提高产品的质量,降低成本的目的。
二、采用气体辅助注塑技术的优点:
气体_助注塑成型技__介
气体辅助注塑成型技术简介1. 气体辅助注塑成型技术简介气体辅助注塑成型技术是一项新兴的塑料注射成型技术,其原理是利用高压气体在塑件内部产生中空截面,利用气体保压代替塑料注射保压,消除制品缩痕,完成注射成型过程。
气体辅助注塑成型的工艺过程主要包括塑料熔体注射、气体注射、气体保压三个阶段。
根据熔体注射量的不同,又分为短射和满射两种方式,在短射方式中,气体首先推动熔体充满型腔,然后保压;在满射方式中,气体只起保压作用。
气体辅助注塑技术的优点主要有:1)解决制件表面缩痕问题,能够大大提高制件的表面质量。
2)局部加气道增厚可增加制件的强度和尺寸稳定性,并降低制品内应力,减少翘曲变形。
3)节约原材料,最大可达40%~50%。
4)简化制品和模具设计,降低模具加工难度。
5)降低模腔压力,减小锁模力,延长模具寿命。
6)冷却加快,生产周期缩短。
气体辅助注塑成型技术与普通注塑成型工艺相比,有着无可比拟的优势,被誉为注塑成型工艺的一次革命,在家电、汽车、家具、日常用品等几乎所有塑料制件领域得到广泛应用。
在家电领域,电视机壳特别是大屏幕彩电前壳是最早也是最广泛采用气辅注塑成型技术的制品之一。
3.气辅制品和模具设计基本原则(1)设计时先考虑哪些壁厚处需要掏空,哪些表面的缩痕需要消除,再考虑如何连接这些部位成为气道。
(2)大的结构件:全面打薄,局部加厚为气道。
(3)气道应依循主要的料流方向均衡地配置到整个模腔上,同时应避免闭路式气道。
(4)气道的截面形状应接近圆形以使气体流动顺畅;气道的截面大小要合适,气道太小可能引起气体渗透,气道太大则会引起熔接痕或者气穴。
(5)气道应延伸到最后充填区域(一般在非外观面上),但不需延伸到型腔边缘。
(6)主气道应尽量简单,分支气道长度尽量相等,支气道末端可逐步缩小,以阻止气体加速。
(7)气道能直则不弯(弯越少越好),气道转角处应采用较大的圆角半径。
(8)对于多腔模具,每个型腔都需由独立的气嘴供气。
5.6气体辅助注塑
尚未充满的型腔 气体 (4) 保压冷却阶段:成品内部被气体充填后,气体作用 于成品中空部分的压力就成为保压压力,可大大减低成品 的收缩和变形率。 气熔边界 熔体凝固层
3、气辅注塑成型工艺过程
(5)气体释放阶段:在模具开摸前,气体从制件内部排 出,气压降至到常压下。 气腔 气体排出 (6)开模阶段:开模取出产品 熔体凝固层
为控制气道的形成和避免气体“吹破”, 塑料应有一定的熔体强度, 像 聚氨脂等非常柔软的塑料就不适用。PA 和PBT 类型的易结晶塑料尤 其适用于气辅注塑。气辅注塑最常用的塑料是PA6、PA66 及PP(通常 是玻璃纤维增强的)。
9、气辅注塑成型应用
1)管状或杆状制件:如衣架、钳柄、椅子扶手、喷射头 和水龙头开关等;——节省物料、缩短周期、实现制品 的功能。
活动型芯法成型示意图
7、气辅注塑成型特点
优点
(1) 可成型传统注射成型工艺难以加工的壁厚差异较大制件。 (2) 可消除厚壁处的缩痕,提高表面质量。 (3) 降低产品出模后残余内应力,减轻翘曲变形,提高产品 强度。(克服30%凹陷翘曲) (4) 缩短成型周期,提高生产效率(缩短20%成型周期) (5) 可减轻制品重量,节省材料,在保证产品质量的前提下 大幅度降低成本。(降低30%成本) (6) 所需注射压力和锁模力小,可大幅度降低对注塑机和模 具的要求。 (7) 改善材料在制品断面上的分布,改善制品的刚性。
5.6 气体辅助注塑成型工程
主讲:魏雅丽
1、气体注塑辅助工艺产生背景
最初:改善模具设计;提高注射机质量;调整工艺参数; 结果:成本提高,制品质量仍较差; 解决方法:气体辅助注射成型 。 气体辅助注塑成型GAIM(Gas Assist Injection Molding) 自20世纪80年代出现,20世纪90年代进入实用阶段。 气辅成型应用:欧、美、日等发达国家应用广泛;我国 家电、汽车等行业也积极采用。