小学四年级倒推法

合集下载

四年级数学思维训练——倒推法

四年级数学思维训练——倒推法

倒推法知识导航倒推法是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题也称还原问题。

解答这一类问题时,要根据题意,从所给的结果出发,抓拄逆运算关系,由后向前一步步逆推,做相反的运算,逐步靠拢已知条件,直到问题得到解决。

精典例题例1:小明问李老师今年多大年纪,李老师说:“把我的年纪加上9,除以4,减去2,再乘3,恰好是30岁。

”你知道李老师今年多少岁吗?思路点拨从最后一个条件恰好是30岁向前推算,再乘3后才得30,那么没乘3之前应该是30÷3=10;减去2之后是10,那么没减之前应该是10+2=12;除以4之后是12,那么没除之前应该是:12×4=48;加上9之后是48,那么,没加之前应该是48-9=39;所以李老师今年39岁。

模仿练习1.在()里填上适当的数。

20×()÷8+16=26 ()÷5×2-8=102.一个数的3倍加上6,再减去9,最后乘2,结果得60,求这个数是多少?3.小神龙俱乐部成立的年份数加上2后,缩小100倍,再扩大4倍,最后减去25,正好是55。

那么小神龙俱乐部成立于哪一年?例2:大嶝粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨,问粮库原有大米多少吨?思路点拨从“第二次运出剩下的一半多5吨”和“还剩下4吨”向前推算,剩下的4吨和多运的5吨合起来9吨正好是第一次运出后剩下的一半。

那么9×2=18吨是第一次运出后剩下的。

而18和3合起来21吨又正好是总数的一半。

那么原来应该有大米:21×2=42吨。

模仿练习1.新店国美电器出售洗衣机,上午出售总数的一半多10台,下午出售剩下的一半多20台,还剩下95台,问新店国美电器原来有洗衣机多少台?2.妈妈买了一些苹果,全家人第一天吃了这些苹果的一半多1个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,还剩下1个苹果,问妈妈一开始买了多少个苹果?3.某水果店卖菠萝,第一次卖了总数的一半多2个,第二次卖了剩下的一半多1个,第三次卖了剩下的一半少一个,还剩下3个菠萝,问水果店原来有菠萝多少个?例3:有甲、乙、丙三个小朋友共有梨90个,如果甲给乙3个后,乙又送给丙5个,那么三个人拥有的梨数正好相等。

四年级奥数倒推法例题

四年级奥数倒推法例题

四年级奥数倒推法例题
下面是一个四年级奥数倒推法的例题。

一、例题
小明有一些零花钱,他先用零花钱的一半买了一本漫画书,然后又用剩下零花钱的一半买了一个冰淇淋,最后还剩下5元钱。

问小明原来有多少零花钱?
二、倒推法解题思路
1. 咱们从最后剩下的钱开始倒推哈。

最后剩下5元钱,这5元钱是他买完冰淇淋后剩下的。

- 因为他买冰淇淋用的是买完漫画书后剩下零花钱的一半,所以买冰淇淋之前剩下的钱就是5×2 = 10元。

这就好比你有一堆东西,你拿走一半后还剩下5个,那原来肯定是10个呀。

2. 那这10元呢,又是他用总零花钱的一半买了漫画书后剩下的。

- 所以原来小明有的零花钱就是10×2 = 20元。

就像刚刚的道理一样,你拿走一半东西后还剩下10个,那最开始就有20个啦。

所以呢,小明原来有20元零花钱。

这种倒推法就像是沿着你走过的路再倒着走回去,从最后的结果一步步找到最开始的情况。

小学四年级倒推法

小学四年级倒推法

小学四年级倒推法 Last revision date: 13 December 2020.倒推法(还原法)解题例1、甲、乙、丙三个组共有图书90本,如果乙组向甲组借来3本后,又送给丙组5本,那么三个组的图书数刚好相等。

问:甲、乙、丙三个组原来各有图书多少本?试一试,做一做1、甲、乙两个车站共停了75辆汽车,如果从甲站开往乙站12辆,又从乙站开往甲站45辆,这时甲站停的汽车辆数就是乙站的2倍。

原来甲、乙两个车站各停了多少辆汽车?2、五个小朋友共有铅笔120支,甲给乙10支,给丁5支;乙给丙6支;丙给丁11支,给戊3支;丁给乙4支;戊给甲2支,给乙7支,这时五人铅笔的支数相等。

五个小朋友原来各有多少支铅笔?例3某村修一条公路,第一次修了它的一半多5米,第二次修了剩下公路的一半多4米,最后还剩下6米没修。

这条公路长多少米?试一试,做一做1、食堂有一袋大米,第一天吃去它的一半多4千克,第二天吃去的比剩下的一半少1千克,这时袋里还有大米19千克。

这袋大米原来有多少千克?2、明明用去他所带钱的一半买了一支铅笔,又用去余下钱的一半买了一块橡皮,最后剩下2角钱。

明明原来有多少钱一支铅笔多少钱3、有一筐苹果,把它们三等分后还剩2个苹果,取出其中的两份,将它们再三等分后还剩2个,然后又取出其中的两份,将它们又三等分之后还剩2个。

问:这筐苹果至少有多少个?试一试,做一做1、有一堆糖,把它们五等分后剩下1块,取出其中的四份,将其五等分后也剩1块,再取出其中三份,将其五等分后还是剩下1块。

这堆糖最少有多少块?2、有一筐篮球,每次拿出其中的一半,然后再放回1个,这样连续拿了3次,筐里的篮球还剩下4个。

原来筐里有多少个篮球?3、有砖26块,兄弟两人争着去挑,哥哥看弟弟挑得太多,就抢下弟弟的一半,弟弟不服,又从哥哥那儿抢走哥哥现有的一半,哥哥不肯,弟弟还给哥哥5块,这时哥哥比弟弟多挑2块。

问:弟弟最初挑了多少块?试一试,做一做两棵树上一共有小鸟35只,从第一棵树上飞到第二棵树上8只,又从第二棵树上飞走7只,这时第一棵树上的小鸟是第二棵树上的3倍。

倒推法四年级

倒推法四年级

倒推法:用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1: 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?1、 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.把上面的6,改成其它的数字,结果是多少?你发现了什么:( )例2 :小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.2、 某数除以4,乘以5,再除以6,结果是615,求某数.例3:马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?3、在计算一道减法题时,小马虎把减数个位上的3看做8,把减数十位上的6看做9,结果得出的差是60.正确的结果是多少?例4:树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?4、A 、B 、C 三个小朋友共有玩具48个。

A 给B 8个玩具,而B 又将6个玩具给C ,这时三人的玩具数相等。

三人原来的玩具各有多少个?例5:篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?5、一桶油倒去一半后,再倒去剩下的一半,这时连桶还有16千克。

已知桶重5.5千克,那么原来这桶油连桶共重多少?6.王大爷去粮站买米,粮站的陈叔叔因粗心,错把一袋米少算了20千克,把另一袋米多算了3千克,合计卖给王大爷60千克米。

王大爷实际购买了多少千克米?7.一捆电线,第一次用去全长了一半多3米,第二次用去余下的一半多5米,还剩下7米。

倒推法(四年级)

倒推法(四年级)

倒推法
例1、一个数的4倍,加上2减去10,乘以2得48,求这个数。

例2、小明问妈妈:“奶奶今年多少岁?”妈妈想了想对小明说:“把奶奶的年龄加上17用4除,再减去15后用10乘,恰好是100岁”。

请你帮小明算一算,奶奶今年多少岁?
例3、甲、乙、丙三筐水果共192个,现在从甲筐拿出与乙筐同样多的个数到乙筐,再从乙筐拿出与丙筐同样多的个数到丙筐,最后,从丙筐拿出与甲筐剩下的个数到甲筐,这时三筐水果的个数一样多。

这三筐水果原来各有多少个?
例4、某仓库存有化肥若干吨,第一天上午运出总数的一半多5吨,下午运出6吨,第二天上午运出剩下化肥的一半少2吨,此时,仓库还存有化肥24吨。

这个仓库原有化肥多少吨?
练习:
1、某数加上7乘以7,再减去7,除以7商7,求某数。

2、某数减去60,用所得的差的2倍再减去60,所得差的2倍再减去60,最后得零,这个数是多少?
3、有甲、乙、丙三个数,从甲数中拿出15加到乙数,再从乙数中拿出18加到丙数,最后从丙数拿出12加到甲数,这时三个数都是180。

甲、乙、丙三个数原来各是多少?
4、某文具店卖跳绳,第一次卖掉总数的一半多2根,第二次卖出剩下的一半多1根,第三次卖出第二次卖后剩下的一半多1根,这时只剩下1根跳绳。

三次共卖得48元,每根跳绳多少元?
5、一个数增加100,然后缩小5倍,再减去20得30,这个数是多少?
6、一个数的2倍加1,再乘以3,再减去3得9,这个数是多少?。

2023-2024学年四年级下学期数学五、解决问题的策略《解决问题的策略——倒推》(教案)

2023-2024学年四年级下学期数学五、解决问题的策略《解决问题的策略——倒推》(教案)

教案标题:2023-2024学年四年级下学期数学五、解决问题的策略《解决问题的策略——倒推》一、教学目标1. 知识与技能:使学生理解倒推的含义,学会运用倒推的方法解决实际问题。

2. 过程与方法:通过观察、分析、讨论等环节,培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:培养学生对数学的兴趣,激发学生探索问题、解决问题的积极性。

二、教学内容1. 倒推的定义:倒推是指从问题的结果出发,逆向思考,逐步推导出问题的初始状态。

2. 倒推方法的运用:通过实例讲解,让学生掌握倒推方法在解决实际问题中的应用。

3. 实际问题举例:给出一些实际问题,让学生运用倒推方法进行解决。

三、教学重点与难点1. 教学重点:倒推方法的含义及其在实际问题中的应用。

2. 教学难点:如何引导学生从问题的结果出发,逆向思考,找到问题的初始状态。

四、教学过程1. 导入:通过一个有趣的实际问题,引导学生思考解决问题的方法,引出倒推的概念。

2. 新课导入:讲解倒推的定义,让学生了解倒推的含义。

3. 实例讲解:通过讲解实例,让学生掌握倒推方法在解决实际问题中的应用。

4. 练习环节:给出一些实际问题,让学生运用倒推方法进行解决,巩固所学知识。

5. 总结与反思:对本节课所学内容进行总结,引导学生反思自己在解决问题时的思考过程。

五、教学评价1. 课后作业:布置一些实际问题,让学生运用倒推方法进行解决,检验学生的学习效果。

2. 课堂表现:观察学生在课堂上的参与程度、思维活跃度等方面,评价学生的学习状态。

3. 定期检测:通过定期检测,了解学生对倒推方法的理解程度和运用能力。

六、教学策略1. 启发式教学:通过提问、讨论等方式,引导学生主动思考,培养学生的逻辑思维能力。

2. 情境教学:创设有趣的实际问题情境,激发学生的学习兴趣,提高学生的学习积极性。

3. 合作学习:鼓励学生互相交流、合作解决问题,培养学生的团队协作能力。

七、教学资源1. 教学课件:制作生动形象的教学课件,辅助讲解倒推方法的应用。

人教版四年级上册数学精品教学基本方法复习 倒推法

人教版四年级上册数学精品教学基本方法复习 倒推法

倒推法
倒推法也称还原法,思考的途径是从题目的最后结果除法,利用已知条件一步步倒着推理,逐步靠拢所求,知道解决问题。

【典型例题】
小亮在计算一道除法算式时,把除数37看成了73,得到的结果是25,请你帮他算一算正确的结果是多少。

【方法指导】
可以运用倒推法先用错误的结果25乘错误的除数73求出正确的被除数,再利用正确的被除数和正确的除数求出正确的结果。

【正确解答】
73×25=1825
1825÷37=49 (12)
答:正确的结果是商49,余12。

【同步练习】
1.一个数乘72,再除以24,结果是39,这个数是多少?
2.晴晴在做一道除法题时,把除数63错写成36,结果得到的商是15,余数是8,正确的结果是多少?。

四年级奥数-教师版-第五讲倒推法的应用题

四年级奥数-教师版-第五讲倒推法的应用题

第五讲倒推法的应用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98□-8=98-10=88□=88+8=96答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.解析:{[(□ + 6)×6]- 6}=6解:运用倒推法知这个数为(6×6+6)÷6-6=1【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。

小学四年级奥数第5课《倒推法的妙用》试题附答案

小学四年级奥数第5课《倒推法的妙用》试题附答案

小学四年级上册数学奥数知识点讲解第5课《倒推法的妙用》试题附答案第五讲倒推法的妙用在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用己知条件一步一步倒着分析、推理,直到解决问题. 例1一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是I11问正确答案应是几?例3树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树±;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?例4篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?例5甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?例6菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少干克?第五讲倒推法的妙用在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题.例1一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用口来表示,根据题目己知条件可得到这样的等式:{[(□-8)+101+7}×4=56.如何求出口中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56+4=14.14是除以7后得到的,除以7之前是14X7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(口-8)+10]+7}×4=56[(□-8)+10)+7=56+4答:于昆这次数学考试成绩是96分.通过以上例题说明,用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例2马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是II1问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:I11-(70—10)+(7—1)=57答:正确的答案是57.例3树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48+3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48+3=16(只)②第一棵树上原有鸟只数.16+8=24(只)③第二棵树上原有鸟只数.16+6—8=14(只)④第三棵树上原有鸟只数.16—6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.例4篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.篮子里梨的一半多1劭的二半''J ----------------- --多I个再余一半* --- √多1个乘Ih个篮子里原有梨多少个?解:列综合算式:{[(1+1)×2+U×2+1}×2=22(个)答:篮子里原有梨22个.例5甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”,可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍',就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶住乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16+(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:甲桶油乙桶油④从甲桶卖出油多少千克?15T1=4(千克)⑤从乙桶卖出油多少千克?15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.例6菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少千克?分析解题时用倒推法进行分析.根据题目的已知条件画线段图(见下图),使数量关系清晰的展现出来.原有冬贮来若干千克簟禹劈第二天运金OO千克有白菜一半第二天一一半3⅛⅛第三天曼出的~1 3,1800千克解:①剩余的白菜是多少千克?1800÷3=600(千克)②第二天运进200千克后的一半是多少千克?600+30=630(千克)③第二天运进200千克后有白菜多少千克?630×2=1260(千克)④原来的一半是多少千克?1260—200=1060(千克)⑤原有贮存多少千克?1060×2=2120(千克)答:菜站原来贮存大白菜2120千克.综合算式:[(1800+3+30)×2—2001×2=2120(千克)答:菜站原有冬贮大白菜2120千克.习题五1.某数除以4,乘以5,再除以6,结果是615,求某数.2.生产一批零件共560个,师徒二人合作用4天做完.已知师傅每天生产零件的个数是徒弟的3倍.师徒二人每天各生产零件多少个?3.有转26块,兄弟二人争着挑.弟弟抢在前,刚刚摆好移,哥哥赶到了.哥哥看弟弟挑的太多,就抢过一半.弟弟不肯,又从哥哥那儿抢走一半.哥哥不服,弟弟只好给哥哥5块.这时哥哥比弟弟多2块.问:最初弟弟准备挑几块砖?4.阿凡提去赶集,他用钱的一半买肉,再用余下钱的一半买鱼,又用剩下钱买菜.别人问他带多少钱,他说:“买菜的钱是1、2、3;3、2、1;1、2、3、4、5、6、7的和;加7加8,加8加7、加9加10加11。

小学四年级奥数题:倒推法及答案解析

小学四年级奥数题:倒推法及答案解析

小学四年级奥数题:倒推法及答案解析
1.甲、乙、丙三只盘子里分别盛着6个苹果。

小明按下面的方法
搬动5次:
第1次,把1个苹果从一只盘子里搬到另一只盘子里去;
第2次,把2个苹果从一只盘子里搬到另一只盘子里去;
第3次,甲盘不动,把3个苹果从一只盘子里搬到另一只盘子里去;
第4次,乙盘不动,把4个苹果从一只盘子里搬到另一只盘子里去;
第5次,丙盘不动,把5个苹果从一只盘子里搬到另一只盘子里去。

最后发现,甲、乙、丙三只盘子里依次盛有4,6,8个苹果。


知道小明是怎样搬动的吗?
2.小明共有贰分和伍分硬币208枚。

小明从中取出两枚硬币放在
手中作为标准,剩余硬币两枚一组分成103组,每组得到一个币值和。

他发现有67组的币值和比他手中币值和大,有12组的币值和比他手
中币值和小,有24组的币值和与他手中币值和相等,那么208枚硬币
的币值总和是多少分?
1.解答
利用倒推的思想,第2次结束后,每盘里的苹果数可能为(5,4,9)或(13,4,1)。

通过试验能够发现,显然第2次结束后只有(5,4,9)成立,所以搬动过程是的。

(6,6,6)→(5,6,7)→(5,4,9)→(5,1,12)→(9,1,8)→(4,6,8)
2.解答
67×(5+5)+(24+1)×(2+5)+12×(2+2)=893(分)。

四年级下册数学倒推法

四年级下册数学倒推法

四年级下册数学倒推法摘要:一、四年级下册数学倒推法的概念二、倒推法的应用实例三、倒推法在数学中的意义四、如何培养孩子掌握倒推法正文:一、四年级下册数学倒推法的概念在四年级下册的数学课程中,倒推法作为一种解决问题的策略,逐渐被孩子们所接触和掌握。

倒推法,顾名思义,是从结果出发,向前推导出达到这个结果所需的条件和过程。

它是一种逆向思维的方式,能够帮助孩子更好地理解问题,找到解决问题的关键。

二、倒推法的应用实例在实际数学问题中,倒推法的应用非常广泛。

例如,当我们需要计算一个四位数的各位数字之和时,我们可以先将这个四位数按照千位、百位、十位、个位的顺序分别提取出来,然后将这四个数字相加,得到的结果就是四位数的各位数字之和。

这就是一个典型的倒推法应用实例。

三、倒推法在数学中的意义倒推法在数学中的意义主要体现在以下几点:1.培养孩子的逻辑思维能力:通过倒推法,孩子们能够更加清晰地看到问题背后的逻辑关系,从而提高他们的逻辑思维能力。

2.提高孩子的解决问题的能力:倒推法能够帮助孩子从不同角度审视问题,找到问题的关键,从而提高他们解决问题的能力。

3.培养孩子的逆向思维能力:逆向思维是一种非常重要的思维方式,它能够帮助孩子们在面对问题时,有更广阔的思路和更多的解决方法。

四、如何培养孩子掌握倒推法要培养孩子掌握倒推法,家长和老师可以从以下几点入手:1.引导孩子多角度思考问题:当孩子遇到问题时,引导他们从不同角度去思考问题,尝试用倒推法解决问题。

2.提供丰富的倒推法实例:通过提供丰富的倒推法实例,让孩子在实际操作中掌握倒推法。

3.鼓励孩子多进行数学游戏:数学游戏是培养孩子数学思维的很好方式,家长和老师可以鼓励孩子多进行数学游戏,从而提高他们掌握倒推法的技能。

四年级知识点倒推法解题

四年级知识点倒推法解题

四年级知识点倒推法解题在四年级数学学习中,知识点倒推法是一种常用的解题方法。

通过给出问题的答案,倒推法能够帮助我们找到问题的解决思路和过程。

本文将介绍四年级数学中常见的倒推法解题方法。

一、加法与减法倒推在进行加法和减法运算时,倒推法能够帮助我们找到运算中缺失的数值或者完成未知数的计算。

举例来说,如果题目给出了一个完整的算式:8 + □ = 15,我们可以通过倒推法来求解未知数。

首先,根据题目中的等号,知道答案必须是15;然后,通过减法运算,计算缺失的数值:15 - 8 = 7。

因此,答案是7。

同样,对于减法运算,倒推法也可以帮助我们找到缺失的数值。

比如如果题目是:□ - 6 = 9,我们可以通过倒推法来求解未知数。

根据题目给出的等式,我们知道答案肯定是15;然后,通过加法运算,计算缺失的数值:9 + 6 = 15。

因此,答案是15。

通过加法和减法的倒推法解题,我们可以更好地理解数值间的关系,提高计算的准确性和速度。

二、乘法与除法倒推在四年级的数学学习中,乘法和除法也是常见的运算方法。

在解决乘法和除法问题时,倒推法同样适用。

举例来说,如果题目给出了一个完整的算式:6 × □ = 54,我们可以通过倒推法来求解未知数。

首先,根据题目中的等号,知道答案必须是54;然后,通过除法运算,计算缺失的数值:54 ÷ 6 = 9。

因此,答案是9。

同样,对于除法运算,倒推法同样适用。

比如如果题目是:□ ÷ 7 = 5,我们可以通过倒推法来求解未知数。

根据题目给出的等式,我们知道答案肯定是35;然后,通过乘法运算,计算缺失的数值:7 × 5 = 35。

因此,答案是35。

通过乘法和除法的倒推法解题,我们可以更好地理解数值间的倍数关系,提高解决实际问题时的运算能力。

三、面积与体积倒推除了常见的运算法则,倒推法在解决面积和体积问题时也起到了重要的作用。

通过给出的面积或体积数值,我们可以找到缺失的边长或者对象的数量。

倒推法练习题四年级

倒推法练习题四年级

倒推法练习题四年级倒推法是一种解题方法,通过从已知结果反向推导出问题的解决过程。

在数学中,倒推法常常被用来解决代数方程、几何问题等。

倒推法练习题在四年级数学中也有一定的难度,接下来我们将通过几个倒推法练习题来帮助四年级学生更好地理解和掌握这个解题方法。

练习题一:小明的奶奶今年80岁,小明今年8岁。

请问小明的奶奶是在小明出生多少年后69岁的?解题思路:根据已知条件,小明今年8岁,奶奶今年80岁,所以小明出生到今年的时间为8年。

我们需要倒推出奶奶在小明出生多少年后是69岁,即在奶奶目前年龄的基础上减去69岁即可。

解题步骤:80岁 - 69岁 = 11岁答案:小明的奶奶在小明出生11年后是69岁。

练习题二:某校举办运动会,第一天参与运动会的男生比女生多40人,第二天女生增加了15人,男生增加了25人,这时男生和女生的人数相等,请问第一天参加运动会的男生和女生各有多少人?解题思路:根据已知条件,第二天男生和女生的人数相等,即增加的人数相同,我们需要通过倒推法来确定第一天参加运动会的男生和女生的人数。

解题步骤:设第一天参加运动会的男生数量为x,则女生数量为x - 40。

第二天男生增加了25人,女生增加了15人,所以第二天男生数量为x + 25,女生数量为x - 40 + 15。

根据题意可得:x + 25 = x - 40 + 15化简得:25 = -40 + 1525 = -25答案:根据上述计算,我们得到了一个矛盾的结论,即等式无解。

这说明题目中的题设有误或者存在其他意外情况,需要重新核对题目。

练习题三:玩具店搞促销活动,购买玩具可以获得积分,根据积分可以获得相应的折扣。

小明去购买了一款玩具,使用了自己的积分并支付了70元,折扣为总价的30%。

请问小明的积分原本有多少?解题思路:根据已知条件,小明支付了70元,折扣为总价的30%,我们需要通过倒推法来确定小明原本的积分数量。

解题步骤:设小明原本的积分数量为x,则小明需要支付的总价为70元 / (1 - 0.3) = 100元。

四年级奥数-教师版-第5讲倒推法应用题

四年级奥数-教师版-第5讲倒推法应用题

第五讲倒推法的应用知识导航在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例1:一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?解析:这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10]÷7=56÷4=14(□-8)+10=14×7=98□-8=98-10=88□=88+8=96答:于昆这次数学考试成绩是96分.【巩固】某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是_____.解析:{[(□ + 6)×6]- 6}=6解:运用倒推法知这个数为(6×6+6)÷6-6=1【解题技巧】解答此类问题的方法规律是:原题加,逆推为减;原题减,逆推为加;原题乘,逆推为除;原题除,逆推为乘。

第13课倒过来推算(二)校本教材-2021-2022学年四年级上册趣味数学-通用版

第13课倒过来推算(二)校本教材-2021-2022学年四年级上册趣味数学-通用版

试一试 第13课 倒过来推算(二)倒推法的妙用倒推法又称逆推法,是一种常见的思维方法,它是从问题的结果出发,一步一步倒着推,最后得出所求的答案。

注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反。

回答下面问题:小虎在计算除法时,把除数5写成了3,结果得到的商是27,还余2。

正确的商应该是多少?余多少?① 小虎由于粗心大意把5写成3,计算的结果是一个错误的商,怎样才能求出正确的商呢?② 解决这个问题必须先求出什么?你能算出姐姐今年多少岁吗?3个笼子里共养了36只兔子,如果从第一个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么解决这个问题必须先求出被除数是多少。

可以先抓住错误的除数、商和余数,利用它们求出被除数,明白了吗?姐姐你今年多少岁了? 用我的年龄乘6,加上6,除以6,再减去6,正好还是6。

3个笼子里的兔子一样多。

求3个笼子里原来各养了多少只兔子?3个笼子里的兔子不管怎么取,36只的总数始终不变。

变化后“3个笼子里的兔子一样多”,可以求出现在每个笼子里的兔子是:36÷3=12。

根据“从第一个笼子里取出8只放到第2个笼子里”,可以知道第一个笼子里原来养了12+8=20只兔子;再根据“从第2个笼子里取出6只放到第3个笼子里”所以第三个笼子里原来有12-6=6只。

第一个笼子里有兔子:36÷3+8=20(只)第二个笼子里有兔子:36÷3-6=6(只)第三个笼子里有兔子:36-20-6=10(只)快来挑战吧!1.修一条公路,第一次修了全长的一半多20米,第二次修了剩下的一半少10米,最后剩下160米第三次修完。

这条公路全长多少米?2.每到生长季节,池塘里的浮萍长得特别快,浮萍的面积每天都比前一天增加一倍,经过16天就可以长满整个池塘。

那么,需要多少天才能长满半个池塘?故事屋:小讲堂古代有这么一个故事,一位母亲有两个儿子,大儿子开染布作坊,小儿子做雨伞生意。

倒推法_精品文档

倒推法_精品文档

2021/5/27
5
例2、电工组买来一捆电线,工人们第 一天用去全长的一半多5米,第二天 用去余下的一半少8米,第三天用去 14米,最后还剩10米,这捆电线原来 有多长?
2021/5/27
6
练习:
1、修一段公路,第一天修了全路的 一半多2千米,第二天修了余下的一 半少1千米,这时还剩下20千米没有 修,这条公路有多长?
21/5/27
1
例1、王老师说:“把我的年龄减去 2,除以5加上8,乘6正好是72.”同 学们,你能推算出王老师今年多大 吗?
2021/5/27
2
倒推法
倒推法又称逆推法,也叫还原法,是 一种常见的思考方法。它是从问题的最后 结果出发,一步一步倒着推,最后得出所 求答案。
两个相反:1、运算次序与原来相反 2、运算方法与原来相反。
2021/5/27
9
自我检测
独立完成练习三十九 4、5
2021/5/27
10
例3、小虎做一道减法题时,把被减数 十位上的6错看成9,减数个位上的9错 写成6,最后所得的差是577,这道题 的正确答案是多少?
思考:
1、被减数十位上的6错看成9,结果会 怎样?
2、减数个位上的9错写成6,结果会怎
样?
2021/5/27
7
练习:
2、百货商店出售彩色电视机,上 午售出总数的一半多20台,下午售 出剩下的一半多15台,还剩75台。 店里原有彩色电视机多少台?
2021/5/27
8
练习:
3、有若干吨煤,第一次用去了一 半多2吨,后买进4吨;第二次又用 去一半,接着又买进3吨,这时还 剩15吨。原有煤多少吨?
2021/5/27
11
练习:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒推法(还原法)解题
例1、甲、乙、丙三个组共有图书90本,如果乙组向甲组借来3本后,又送给丙组5本,那么三个组的图书数刚好相等。

问:甲、乙、丙三个组原来各有图书多少本?
试一试,做一做
1、甲、乙两个车站共停了75辆汽车,如果从甲站开往乙站12辆,又从乙站开往甲站45辆,这时甲站停的汽车辆数就是乙站的2倍。

原来甲、乙两个车站各停了多少辆汽车?
2、五个小朋友共有铅笔120支,甲给乙10支,给丁5支;乙给丙6支;丙给丁11支,给戊3支;丁给乙4支;戊给甲2支,给乙7支,这时五人铅笔的支数相等。

五个小朋友原来各有多少支铅笔?
例3某村修一条公路,第一次修了它的一半多5米,第二次修了剩下公路的一半多4米,最后还剩下6米没修。

这条公路长多少米?
试一试,做一做
1、食堂有一袋大米,第一天吃去它的一半多4
千克,第二天吃去的比剩下的一半少1千克,这时袋里还有大米19千克。

这袋大米原来有多少千克?
2、明明用去他所带钱的一半买了一支铅笔,又用去余下钱的一半买了一块橡皮,最后剩下2角钱。

明明原来有多少钱?一支铅笔多少钱?
3、有一筐苹果,把它们三等分后还剩2个苹果,取出其中的两份,将它们再三等分后还剩2个,然后又取出其中的两份,将它们又三等分之后还剩2个。

问:这筐苹果至少有多少个?
试一试,做一做
1、有一堆糖,把它们五等分后剩下1块,取出其中的四份,将其五等分后也剩1块,再取出其中三份,将其五等分后还是剩下1块。

这堆糖最少有多少块?
2、有一筐篮球,每次拿出其中的一半,然后再放回1个,这样连续拿了3次,筐里的篮球还剩下4个。

原来筐里有多少个篮球?
3、有砖26块,兄弟两人争着去挑,哥哥看弟弟挑得太多,就抢下弟弟的一半,弟弟不服,又从哥哥那儿抢走哥哥现有的一半,哥哥不肯,弟弟还给哥哥5块,这时哥哥比弟弟多挑2块。

问:弟弟最初挑了多少块?
试一试,做一做
两棵树上一共有小鸟35只,从第一棵树上飞到第二棵树上8只,又从第二棵树上飞走7只,这时第一棵树上的小鸟是第二棵树上的3倍。

原来每棵树上各有多少只小鸟?二巩固练习
1、一所小学,上学年毕业学生245人,本学年
招收新生350人,转走学生15人,转来学生25人,现在共有学生1150人。

这所小学上学年有学生多少人?
2、甲、乙、丙三个中队共有图书498册,如果甲中队给乙中队4册,乙中队给丙中队10册,那么三个中队的图书册数相等。

原来甲、乙、丙三个中队各有图书多少册?
3、刘刚去商店买东西,先用去所带钱的一半多4元,又用去余下钱的一半多2元,还剩下14元。

刘刚带了多少钱?。

相关文档
最新文档