21定量分析中的误差

合集下载

定量分析中的误差及有效数字答案

定量分析中的误差及有效数字答案

思考题1. 指出在下列情况下,各会引起哪种误差?如果是系统误差,应该用什么方法减免?(1) 砝码被腐蚀;答:引起系统误差(仪器误差),采用校准砝码、更换砝码。

(2) 天平的两臂不等长;答:引起系统误差(仪器误差),采用校正仪器(天平两臂等长)或更换仪器。

(3) 容量瓶和移液管不配套;答:引起系统误差(仪器误差),采用校正仪器(相对校正也可)或更换仪器。

(4) 试剂中含有微量的被测组分;答:引起系统误差(试剂误差),采用空白试验,减去空白值。

(5) 天平的零点有微小变动;答:随机(偶然)误差。

(6) 读取滴定管体积时最后一位数字估计不准;答:随机(偶然)误差。

采用读数卡和多练习,提高读数的准确度。

(7) 滴定时不慎从锥形瓶中溅出一滴溶液;答:过失,弃去该数据,重做实验。

(8) 标定HCl 溶液用的NaOH 标准溶液中吸入CO2。

答:系统误差(试剂误差)。

终点时加热,除去CO2,再滴至稳定的终点(半分钟不褪色)。

2. 判断下列说法是否正确(1) 要求分析结果达到0.2%的准确度,即指分析结果的相对误差为0.2%。

(2) 分析结果的精密度高就说明准确度高。

(3) 由试剂不纯造成的误差属于偶然误差。

(4) 偏差越大,说明精密度越高。

(5) 准确度高,要求精密度高。

(6) 系统误差呈正态分布。

(7) 精密度高,准确度一定高。

(8) 分析工作中,要求分析误差为零。

(9) 偏差是指测定值与真实值之差。

(10) 随机误差影响测定结果的精密度。

(11) 在分析数据中,所有的“0”均为有效数字。

(12) 方法误差属于系统误差。

(13) 有效数字中每一位数字都是准确的。

(14) 有效数字中的末位数字是估计值,不是测定结果。

(15) 有效数字的位数多少,反映了测量值相对误差的大小。

(16) 有效数字的位数与采用的单位有关。

(17) 对某试样平行测定多次,可以减少系统误差。

(18) Q检验法可以检验测试数据的系统误差。

答:(1) 对;(2) 错;(3) 错;(4) 错;(5) 对;(6) 错;(7) 错;(8) 错;(9) 错;(10) 对;(11) 错;(12) 对;(13) 错;(14) 对;(15) 对;(16) 错;(17) 错;(18) 错3. 单选题(1) 准确度和精密度的正确关系是……………………..……………………………………………….( )(A) 准确度不高,精密度一定不会高(B) 准确度高,要求精密度也高(C) 精密度高,准确度一定高(D) 两者没有关系(2) 从精密度好就可判断分析结果准确度的前提是…………………..……………………………….( )(A) 偶然误差小(B) 系统误差小(C) 操作误差不存在(D) 相对偏差小(3) 以下是有关系统误差叙述,错误的是………………………………...…………………………….( )(A) 误差可以估计其大小(B) 误差是可以测定的(C) 在同一条件下重复测定中,正负误差出现的机会相等(D) 它对分析结果影响比较恒定(4) 测定精密度好,表示………….…………………………………..………………………………….( )(A) 系统误差小(B) 偶然误差小(C) 相对误差小(D) 标准偏差小(5) 下列叙述中错误的是…………….……………………………………..…………………………….( )(A) 方法误差属于系统误差(B) 系统误差具有单向性(C) 系统误差呈正态分布(D) 系统误差又称可测误差(6) 下列因素中,产生系统误差的是………………………………………….………………………….( )(A) 称量时未关天平门(B) 砝码稍有侵蚀(C) 滴定管末端有气泡(D) 滴定管最后一位读数估计不准(7) 下列情况所引起的误差中,不属于系统误差的是……..………………..………………………….( )(A) 移液管转移溶液后残留量稍有不同(B): 称量时使用的砝码锈蚀(C) 天平的两臂不等长(D) 试剂里含微量的被测组分(8) 下述说法不正确的是……..…..………………..…………………….……………………………….( )(A) 偶然误差是无法避免的(B) 偶然误差具有随机性(C) 偶然误差的出现符合正态分布(D) 偶然误差小,精密度不一定高(9) 下列叙述正确的是……….…………………..……………………………………………………….( )(A) 溶液pH为11.32,读数有四位有效数字(B) 0.0150g试样的质量有4位有效数字(C) 测量数据的最后一位数字不是准确值(D) 从50mL滴定管中,可以准确放出5.000mL标准溶液(10) 分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称……….( )(A) 0.1000克以上(B) 0.1000克以下(C) 0.2克以上(D) 0.2克以下(11) 精密度的高低用()的大小表示………………………..………………………………………….( )(A) 误差(B) 相对误差(C) 偏差(D) 准确度(12) 分析实验中由于试剂不纯而引起的误差属于…………………..…………….……………..…….( )(A): 系统误差(B) 过失(C) 偶然误差(D)方法误差(13) 四次测定结果:0.3406、0.3408、0.3404、0.3402,其分析结果的平均值为……………………….( )(A) 0.0002 (B) 0.3405 (C) 0.059% (D) 0.076%(14) 配制一定摩尔浓度的NaOH溶液时,造成所配溶液浓度偏高的原因是…..…………………….( )(A) 所用NaOH固体已经潮解(B): 向容量瓶倒水未至刻度线(C) 有少量的NaOH溶液残留在烧杯中(D) 用带游码的托盘天平称NaOH固体时误用“左码右物”(15) 四次测定结果:55.51、55.50、55.46、55.49、55.51,其分析结果的平均偏差为………..………….( )(A) 55.49 (B) 0.016 (C) 0.028 (D) 0.008(16) 托盘天平读数误差在2克以内,分析样品应称至( )克才能保证称样相对误差为1% 。

化学分析中误差及分析数据的处理

化学分析中误差及分析数据的处理

xi x 100% x
精密度是几次平行测定结果之间相互接 近的程度。
偏差(deviation)是指单次测定结果与几次 测定结果的平均值之间的差值。
●当绝对偏差di相同时,被测物测定结果 的平均值x越大,相对偏差Er 就越小,表 示测定结果的精密度越高。
(4) 准确度和精密度的关系
以打靶为例:三人打靶,每人打十发子弹。
(1)系统误差偏低。重复测定时,它会重复出现。
① 方法误差(method error) ② 仪器误差(instrumental error) ③ 试剂误差(reagent error) ④ 主观误差(personal error)
(2)偶然误差特点:随机发生,难以控制。
由一些难以控制的因素造成的误差。 ●测量时环境温度、压力的变化。 ●仪器的不稳定。 ●操作时的不当心。 ●天气的阴、晴、雨、雪变化。
总体与样本:总体亦称母体,是指随机变量xi
的全体。样本(或子样)是指从总体中随机抽取 的一组数据。 样本平均值:对某试样平行测定n次的算术平均值。
(1)真实值、平均值与中位数
总体平均值:在消除系统误差后,对某试样平行 测定无穷多次的算术平均值。用于代表(但不一 定是)真实值 ③中位数(xm): 一组按大小顺序排好的测量数据的中间数据既为 xm。当n为偶数时,中位数为中间相邻的两个数 据的平均值。
2、误差产生原因
系统误差(可测误差)(determinate error)
由某种固定因素造成的误差。
偶然误差(随机误差或未定误差)(random error)
由某些偶然因素造成的误差。
过失误差(粗差)(mistake)
由于工作上粗枝大叶、不遵守操作规程 等造成的误差。
特点:使测定结果系统偏高或系统

定量分析测定中的误差(精)

定量分析测定中的误差(精)

第一章定量分析测定中的误差本章教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。

2、掌握系统误差和偶然误差的概念。

3、掌握有效数字的概念及运算规则,并能在实践中灵活运用。

教学重点与难点:准确度和精密度表示方法;误差来源;有效数字及运算法则。

教学内容:第一节定量分析中的误差教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。

2、掌握系统误差和偶然误差的概念。

教学重点:误差、偏差的概念和计算方法,准确度和精密度表示方法教学难点:误差来源实验引题:1、每位同学测自己20秒的脉搏,测6次,记录每次脉动次数。

2、投影屏开启4~5次,记录每次所需时间。

设问:1、同一块表测得的脉动次数或开启时间相同吗?2、不同的表(定时)测得的脉动次数或开启时间相同吗?引入内容:在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等方面的限制,使测得的结果不可能和真实含量完全一致;即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。

这说明客观上存在着难于避免的误差。

一、真实值、平均值与中位值1.真实值(x T)物质中各组分的真实数值,称为该量的真实值。

显然,它是客观存在的。

一般来说,真实值是末知的,但下列情况可认为其真实值是已知的。

(1)理论真实值 如某种化合物的理论组成等。

(2)相对真实值 认定精度高一个数量级的测定值作为低一级测量值的真实值,这种真实 值是相对比较而言的。

如分析实验室中标准试样及管理试样中组分的含量等。

2.平均值(1) 算术平均值(x ) 几次测量数据的算术平均值为12311nni i x x x x x x nn =++++==∑ (1-1) (2) 总体平均值(u ) 表示总体分布集中趋势的特征值。

定量分析中的误差及数据处理

定量分析中的误差及数据处理
(2)仪器误差:仪器不符合要求 例: 天平两臂不等 砝码未校正 滴定管、容量瓶未校正
(3)试剂误差 所用试剂纯度差,有杂质。
例:去离子水不合格 试剂级别不合适
(4)主观误差 操作人员主观因素造成。
例:指示剂颜色辨别偏深或偏浅 滴定管读数位置不正确
2. 偶然误差产生的原因 (1)偶然因素 (2)滴定管读数
平均偏差:
d
1 n
n
| xi
i 1
x
|
相对平均偏差: d 100 % x
特点:简单
缺点:大偏差得不到应有反映
2. 标准偏差 标准偏差的计算分两种情况:
(1) 当测定次数趋于无穷大时:
总体标准偏差 : X 2 / n
μ 为无限多次测定 的平均值(总体平均值), 即
lim
n
1 n
n i 1
3. 过失误差产生的原因
(三) 误差减免方法 1. 系统误差的减免 方法误差—— 采用标准方法,对比实验 仪器误差—— 校正仪器 试剂误差—— 作空白实验 2. 偶然误差的减免 增加平行测定的次数
思考题:
1.下列叙述错误的是:
A.方法误差属于系统误差 B.系统误差包括操作误差 C.系统误差又称可测误差 D.系统误差呈正态分布 E. 系统误差具有单向性
定量分析中的误差和数据处理
分析测试的误差与偏差 误差产生的原因及其减免方法 分析结果的数据处理 分析测试结果准确度的的评价 有效数字及其运算规则
一、分析测试的误差与偏差
误差和准确度 偏差和精密度 准确度和精密度的关系
1.误差和准确度
准确度: 测定值与真实值的接近程度。 准确度的高低用误差来衡量。
C 20.6,20.9,21.1,21.0 D 20.8,20.6

定量分析中的误差及数据处理

定量分析中的误差及数据处理
进行预测和控制。
多元线性回归
总结词
多元线性回归是定量分析中常用的方法,用于探索多个自变量与一个因变量之 间的线性关系。
详细描述
多元线性回归通过最小二乘法拟合一个平面或一个超平面,使得因变量的观测 值与预测值之间的残差平方和最小。这种方法可以帮助我们了解多个自变量对 因变量的影响程度和方向,并可进行预测和控制。
对各种不确定度进行量化评估,计算其对最终测量结 果的影响。
不确定度报告
将不确定度评估结果整合到测量报告中,为用户提供 完整的数据分析结果。
04
回归分析
一元线性回归
总结词
一元线性回归是定量分析中常用的方法,用于探索一个因变量与一个自变量之间的线性 关系。
详细描述
一元线性回归通过最小二乘法拟合一条直线,使得因变量的观测值与预测值之间的残差 平方和最小。这种方法可以帮助我们了解自变量和因变量之间的关联程度和方向,并可
Box-Cox变换
离散化
是一种通用的数据变换方法,通过选择适当 的λ值,使数据达到最合适的形式。
将连续变量转换为离散变量,便于分类或 决策树算法的使用。
数据插值与外推
线性插值
基于已知的数据点,通过线性函数进行插值, 得到未知点的值。
样条插值
通过样条函数进行插值,可以更好地处理数 据的弯曲程度。
多项式插值
05
数据分析与可视化
描述性统计
总结词
描述性统计是定量分析的基础,用于 概括和描述数据的特征。
详细描述
通过均值、中位数、众数、标准差等 统计量,描述数据的集中趋势和离散 程度。此外,还包括数据的频数分布 、偏度、峰度等描述性统计指标。
推断性统计
总结词
推断性统计基于样本数据推断总体特征 ,通过样本信息对总体进行估计和预测 。

定量分析中的误差

定量分析中的误差

定量分析中的误差定量分析中的误差,也称为测量误差,是指实际测量结果与真实值之间的差异。

在定量分析领域中,对误差的准确定义和评估是非常重要的,因为它直接影响到数据的可靠性和结果的准确性。

本文将探讨定量分析中的误差的类型、产生原因以及如何评估和控制误差。

1.系统误差是由于测量方法、仪器或实验条件等固有的偏倚或倾斜引起的误差。

这种误差是有方向性的,通常是持续的,会导致测量结果偏离真实值的固定量。

系统误差的产生原因包括:-仪器漂移:由于仪器老化、磨损或使用不当等,仪器的测量性能会逐渐下降,导致系统误差。

-校准不准确:如果仪器的校准不准确,或者校准曲线的拟合不好,都会产生系统误差。

-环境条件:例如温度、湿度等环境条件的变化,会影响到实验条件,进而产生系统误差。

-人为因素:操作员的技术水平、操作规范等因素也可能引起系统误差。

2.随机误差是由于各种随机因素所引起的误差,其大小和方向都是无规律的,因此也称为无偏差误差。

这种误差会导致在多次重复测量中,得到不同结果,形成结果的分布。

随机误差的产生原因包括:-个体差异:不同个体之间的差异,包括实验对象的差异和人体感知的差异等,会导致随机误差。

-实验条件的不确定性:例如仪器的读数精度、样品的异质性等,都会产生随机误差。

-测量误差的传播:由于测量值之间的运算和计算过程中的近似或舍入,误差会被传递到结果中,导致随机误差。

在定量分析中,我们需要对误差进行评估和控制,以保证数据的准确性和可靠性。

评估误差的方法包括:1.校准和验证:通过与已知标准值的比较,来评估仪器的准确性和正误差大小。

2.重复测量:通过多次重复测量同一样品,来评估测量值的离散程度,即随机误差的大小。

3.数据处理和统计分析:使用合适的统计方法,对测量数据进行处理和分析,以评估误差的大小和分布。

控制误差的方法包括:1.合理设计实验:在实验过程中,根据实验目的和特点,合理设计实验方案,减少系统误差和随机误差的产生。

定量分析中的误差

定量分析中的误差
增加平行测定次数。
如在计算机应用前,用核磁共振(C13谱)测一 些有机物含量时,因为C13丰度本身就小(1.1%), 再加上有机物含量不大,因而测量信号往往被“噪音” 掩盖而测不出来。
目前解决办法是连续进样,计算机进行成千上 万次的处理,则噪音信号(即偶然误差)被相互抵 消,从而使被测信号明显地显示出来。
但精密度高的也不一定准确度高,好的结果应 是精密度和准确度都高。
三、误差产生的原因及避免方法
在分析化学实验中,我们可以将误差分为系统 误差、随机误差和过失误差。
1 .系统误差(systematic errors)
由某种固定因素所引起的误差,使测量 结果系统偏高或偏低。当重复进行测量时, 它会重复出现。系统误差的大小理论上是可 以测定的,所以系统误差又称确定误差或可 测误差。
特点:
1) 非确定误差。
2) 服从统计规律:当测定次数足够多时,即 绝对值相近而符号相反的误差出现的机会 相同,大误差出现的机会少而小误差出现 的机会多,个别特大误差出现的机会特别 少。
3) 随机误差完全符合正态分布规律,即
68.3%;2 95.5%;3 99.7%。
减免的方法
3. 过失误差(gross mistake)
对于初学者,除了产生上述两类误差外,往往 还可能由于工作上的粗枝大叶,不遵守操作规程等 而造成过失误差。如器皿不洁净、丢失溶液、加错 试剂等,这些都属于不应有的过失,会对分析结果 带来严重影响,必须避免。
d1 = -0.20 d 2 = 0.15 dr1 = -0.28% dr2 = 0.21%
d3 = 0.05 dr3 = 0.07%
二、准确度和精密度的关系以 Nhomakorabea靶为例来说明:三人打靶,每人打五发。

定量分析中误差及数据处理

定量分析中误差及数据处理
第3章 定量分析中的误差及数据处理
CLICK HERE TO ADD A TITLE
学习目的
原始测量数据如:m、V……
有效数字
测量误差 客观存在
测量结果:x1、x2、x3……
应记录几位数字?
计算公式
应保留几位数字?
误差的分类、特点及消除或减小
如何用测量值x1、x2、x3科学的表达样品真值
置信区间
可疑数值判断
=真值
和分别决定了正态曲线的位置与形状
描述了测量值x出现在某一位置的概率密度或出现在某一区域内的概率(如:出现在+内的概率为1)
反映数据集中趋势
反映数据分散趋势
3-4 随机误差的分布规律(2)
测量平均值 的分布规律
即一系列测定的平均值 (m)的分布规律(其中任一平均值均是n(有限)次测定平均结果)
01
系统误差(Systematic Error)
02
具有单向性、重现性、为可测误差,理论上可消除
03
随机误差(Random Error),亦称偶然误差
04
由不确定因素引起—服从统计规律(见3-4)
05
过失误差(mistake)
06
由粗心大意引起,可以避免,通常不算入误差范畴
误差的分类
3-1 误差的基本概念(4)
0.01 mL
0.02 mL
解:
常量滴定分析时,通常要求由滴定管读数引起的误差在0.1%以内,同时要求节约试剂,因此滴定体积一般应控制在2030 mL范围内(25 mL)
例5:滴定分析中称样质量的控制 万分之一分析天平的精度? 称取一份试样的绝对误差? 计算称样质量分别为20.0和200.0 mg时相对误差。
0.1 mg

定量分析中的误差及结果处理(2)

定量分析中的误差及结果处理(2)
y 68.3%
95.5%
99.7% -3 -2 -1 0 1 2 3 z
2.4
随机误差分布规律: 1)对称性:大小相等的正、负误差出现的概率相等,误差分布曲线是对称的。 2)单峰性:小误差出现的概率大,大误差出现的概率小,特别大的误差出现的 概率非常小。误差分布曲线只有一个峰值。误差有明显的集中趋势。 3)有界性:仅仅由于偶然误差造成的误差不可能很大,即大误差出现的概率很 小。如果发现误差很大的测定值出现,往往是由于其他过失误差造成。
注意:滴定分析测定常量组分时,分析结果的相对平均偏差一般小于0.2%。
2.1.2精密度和偏差
1. 精密度(PRECISION) • 多次测量值(XI)之间相互接近的程度。 反映测定的再现性。 • 2. 表示方法---偏差 • 1) 算术平均值 • 对同一种试样,在同样条件下重复测定N次,结果分别为X1,X2,……XN
t分布:1908年,由英国人高塞特(W.S.Gosset)提出。用标准偏差s代替 ,统计量t代替z。的涵义为平均值的误差是以平均值的标准偏差为单位 表示的数值,这时随机误差不服从正态
2.1.1准确度与误差
• 2)
RELATIVE ERROR
• 表示误差在真实值中所占的百分率,分析结果的准确度常用相对误差表示。
• RE% =(E/XT) *100%=(X-XT) /XT*100%
• 如, 对于1000KG和10KG,绝对误差相同(±1KG),但产生的相对误差却不同。
• RE%=(±1/1000)*100%=±0.1%
前三位是准确的,最后一位是估计的、不甚准确,但它不是臆造的。记录时
应保留这一位。这四位都是有效数字。
有效数字--实际上能测到的数字(只有
)。

02 第二章 误差与分析数据的处理

02 第二章 误差与分析数据的处理

1.频数分布
频数是指每组中测量值出现的次数,频数与数据 总数之比为相对频数,即概率密度。
整理上述数据,按组距0.03来分成10组,得频数分布表:
分 组
1.265% 1.295% 1.295% 1.325% 1.325% 1.355% 1.355% 1.385% 1.385% 1.415% 1.415% 1.445% 1.445% 1.475% 1.475% 1.505% 1.505% 1.535% 1.535% 1.565%
因此,应该了解分析过程中误差产生的原因及其出现的 规律,以便采取相应措施,尽可能使误差减小。另一方面 需要对测试数据进行正确的统计处理,以获得最可靠的数 据信息。

2.1 定量分析中的 误差
误差与准确度
准确度(accuracy)是指分析结果(测定平均值)与真值
接近的程度,常用误差大小表示。误差小,准确度高。
两组精密度不同的测量值的正态分布曲线
正态分布规律
(1)x=μ时,y最大。即多数测量值集中在μ附近,或者说
总体平均值是最可信赖值或最佳值。 (2)x=μ时的直线为对称轴。即正负误差出现的概率相等。 (3)x→〒≦时,曲线以x轴为渐近线。即大误差出现的 概率小,出现很大误差的测定值概率趋近零。 (4) ↗, y↘ ,即测量精密度越差,测量值分布越分散, 曲线平坦。
2.正态分布
在分析化学中,测量数据一般符合正态分布规律。正态分 布是德国数学家高斯首先提出的,又称高斯曲线,下图即为正 态分布曲线N(μ,σ2),其数学表达式为
1 y f(x) e 2
(x ) 2 2 2
y表示概率密度;x表示测量值; μ是总体平均值;σ是总体标准偏差 μ决定曲线在x轴的位臵;σ决定 曲线的形状:σ小,数据的精密度好, 曲线瘦高;σ大,数据分散,曲线较扁平。

定量分析中的误差

定量分析中的误差
2019/11/21
二、 误差的表示方法
1.误差(error)
误差(E)是指测定值(x)与真实值(μ )之间 的差。误差越小,表示测定结果与真实值越接近 ,准确度越高;反之,误差越大,准确度越低。
一般用绝对误差和相对误差来表示。 绝对误差E = xi – μ 相对误差RE = E/μ ×100%
2019/11/21
第一章 定量分析中的误 差与数据处理
第一节 定量分析中的误差
一、 准确度和精密度 二、误差的表示方法 三、误差的表示、种类、 性质、产生的原因及减 免
2019/11/21
§1.1 定量分析的误差
1.1.1 准确度和精密度
典型实例:甲、乙、丙三人同时测定一铁矿石中Fe2O3的含 量(真实含量以质量分数表示为50.36%),各分析四 次,测定结果如下:
10.37%;10.47%;10.43%;10.40% ,计算单次分析结果的 平均偏差,相对平均偏差,标准偏差和变异系数。
解: 平均偏差d= di 0.18% 0.036%
n
5
相对平均偏差Rd d 0.036% 100% 0.35%
x 10.43%
标准偏差s
di2 8.6107 4.7 104 0.047%
特点:简单;
n
缺点:大偏差得不到应有反映。
标准偏差: S = [∑di2/(n -1)]0.5
特点:较大的偏差能够更显著地反映。
相对平均偏差 = d / X ×100% 相对标准偏差 :(变异系数)CV% = S / X ×100%
2019/11/21
例题
用标准偏差比用平均偏差更科学更准确。 例: 两组数据 (1) X-X: 0.11, -0.73, 0.24, 0.51,

第二章 误差及分析数据的统计处理

第二章 误差及分析数据的统计处理

(3)、有界性:小误差测量值出现的机会大,大误差 测量值出现的机会小,极大误差的测定值出现的 机会更小。实际测定的结果总是被限制在一定的 范围内波动。 (4)、抵偿性:误差的算术平均值的极限为零。
有关随机误差分布规律的正态分布曲线将在后 面详细介绍。 (三)过失误差 这种误差不同于上面讨论的两类误差,它是由 于操作者粗心大意或操作失误造成的。在分析工 作中应避免这类误差的发生。
f对t分布的影响实质上反映的是测量次数n对t分布 的影响 。 从图可以看出:t分布曲线一般总要比标准正态分布 曲线 “矮胖”,这表明有限次测量的分布要更分散。
2=0.023
y x x-
概率密度 个别测量值 随机误差
1=0.047
15.90 15.95 16.00 16.05 16.10 16.15 16.20

0
x-
x
测量值的正态分布
随机误差的正态分布
把一个普通的正态分布转换为标准正态分布, 设 u x μ u称为标准正态变量
σ
x为测定值,µ 为总体平均值,σ总体标准偏差。
此时高斯方程就转化为只有变量u的函数表达式,

1 y (u) e 2
-
u2
2
此式就是标准正态分布曲线方程,从形式上看,标准正 态分布与 0, 1 的正态分布完全相同,所以标准 正态分布记作N(0,1)。各种不同的正态分布都可以 通过上述变化而转换成标准正态分布。以u值为横坐 标,误差出现的概率为纵坐标,当测定次数无限多时, 得到随机误差标准正态分布曲线,如p12,图2-2。
从这两批数据的个别测定值的偏差来看,第二批 较分散,因为其中有两个较大的偏差(上角标* 者)。所以用平均偏差反映不出这两批数据的好坏。 从表中第三列的计算可以看出:将偏差平方后再加 和,所得结果分别为0.72、0.99,清楚看出两批数 据的差异。 总体标准偏差(均方根偏差) ( x - )

分析化学 第二章 定量分中误差和数据处理

分析化学 第二章 定量分中误差和数据处理


用沉淀滴定法测定纯NaCl(0.6066)中氯的质量
分数,得到下列结果:0.5982,0.6006,
0.6046,0.5986,0.6024。
则平均结果为_______ 0.6009 ____;
平均结果的绝对误差为_____-_0__._0057 ____;
相对误差为___ -0.94%_____;
(1)系统误差产生的主要原因(或分类) :
a. 方法误差 b. 仪器误差 c. 试剂误差 d. 操作误差
e. 主观误差
a.方法误差
这种误差是由于分析方法本身所造成的。例如: 在重量分析中,沉淀的溶解损失或吸附某些杂质而产 生的误差;在滴定分析中,反应进行不完全,干扰离 子的影响,滴定终点和化学计量点的不符合,以及其 他副反应的发生等,都会系统地影响测定结果。
0.0,+0.1, -0.7,+0.2,-0.1,-0.2, +0.5,-0.2,+0.3,+0.1 两组数据平均偏差均为0.24
(二)标准偏差和相对标准偏差
近年来,在分析化学的教学中,愈来愈广泛地采用数理统 计方法来处理各种测定数据。在数理统计中,我们常把所 研究对象的全体称为总体(或母体);自总体中随机抽出 的一部分样品称为样本(或子样);样本中所含测量值的 数目称为样本大小(或容量)。例如,我们对某一批煤中 硫的含量进行分析,首先是按照有关部门的规定进行取 样、粉碎、缩分,最后制备成一定数量的分析试样,这就 是供分析用的总体。如果我们从中称取10份煤样进行平 行测定,得到10个测定值,则这一组测定结果就是该试 样总体的一个随机样本,样本容量为10。
0.0,+0.1, -0.7,+0.2,-0.1,-0.2, +0.5,-0.2,+0.3,+0.1 S2=0.33
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/1/7
标准正态分布
•μ=0,σ=1,记作N(0,1)。令 :
u2
y e 2 2π
u x
•研 究 误 差 正 态 分 布 的 目 的 是求出误差在某区域内出现 的概率是多少,即对区间[ u1,u2]积分,求面积(误 差在某一定范围内出现的概 率 )。
u2ydu 1
u2
u2
e 2du
d i1 i1
n
n
相对平均偏差: d 100 %
x
平行测定值彼此越接近(离散性越小),平均偏差或相 对平均偏差就越小,测量值的精密度越高;
一组平行测定值中,小偏差出现概率比大偏差的高。
按总的测定次数求算术平均值,所得结果偏小。平均偏差
和相对平均偏差对大偏差不能作出应有的反映。
2021/1/7
(2)极差R
指一组平行测定值中最大值xmax与最小值xmin之差: R = xmax- xmin
xmin< <xmax, x m ax x 0 ,x m in x 0
R ( x m x a ) x ( x m x i) n x m x a x x m x in
极差R实际上就是最大正偏差与绝对值最大的负偏差之 和。这表明极差对一组平行测定值中的大偏差反映灵敏。
极差简单直观,便于计算,在某些常规分析中,可用 极差简单地评价精密度是否达到要求。
极差的缺点是对数据提供的信息利用不够,过分依赖 于一组数据的两个极值,不能反映数据的分布。
2021/1/7
(3)标准偏差(均方根)和相对标准偏差
当测定为无限多次时,标准偏差σ的数学表达式为
n ( xi )2
i1Biblioteka 选哪一个更能使测定结果准确度高?
(不考虑其他原因,只考虑称量因素)
b:如何确定滴定体积消耗量? 0~10mL; 20~25mL; 40~50mL
2021/1/7
4. 有关偏差的基本概念与计算
(1)平均偏差和相对平均偏差
平均偏差(average deviation)又称算术平均偏差:
n
n
di xi x
偶然误差是由于客观存在的大量随机因素的影响而产 生的。当消除了系统误差且平行测定次数足够多时,偶然 误差的大小呈正态分布。
2021/1/7
当测定值连续变化时,随机误差的分布特性可用
高斯分布的正态概率密度函数来表示:
e
(
x 2 2
)
2
y

x:测量值; σ:总体标准偏差; μ:真值; x-μ:测量值的偶然误差; y:误差出现的频率。
u1
2π u1
2021/1/7
2.有限次测量数据的误差分布—— t分布
正态分布是建立在无限次测定的基础上的。有限次测 定数据的误差分布规律不可能完全服从正态分布。
戈塞特(W.S. Gosset)对标准正态分布进行了修正,提 出了有限次测定数据的误差分布规律——t分布。
t x
s
x
t s
n
2021/1/7
特点 ① 单向性。对分析结果的影响比
② 重现性。平行测定时,重复出
③ 可测性。可以被检测出来,因
产生的原因?
2021/1/7
系统误差产生的原因
a. 方法误差——选择的方法不够完善 例: 重量分析中沉淀的溶解损失; 滴定分析中指示剂选择不当。
b. 仪器误差——仪器本身的缺陷 例: 天平两臂不等长,砝码未校正; 滴定管,容量瓶未校正。
2021/1/7
系统误差产生的原因
c. 试剂误差——所用试剂有杂质 例:去离子水不合格; 试剂纯度不够。
d. 主观误差——人的主观因素造成 例:对指示剂颜色辨别偏深或偏浅; 滴定管读数不准。
2021/1/7
(2)偶然误差
特点 a. 不恒定 b. 难以校正 c. 服从正态分布(统计规律)
产生的原因 a.偶然因素 b.滴定管读数
n
μ为无限多次测定的总体平均值(真值)。当测定次数趋
向无穷大时,其可看作为真值。
在有限次测定(n<30)时,标准偏差用 s 表示:
s n (xi x)2
i1 n1 相对标准偏差简写为RSD,亦称变异系数CV
CV s 100% x
2021/1/7
【例2-1】 比较同一试样的两组平行测定值的精密度。
A组测定值: 20.3%,19.8%,19.6%,20.2%,20.1%,
20.4%,20.0%,19.7%,20.2%,19.7%; B组测定值:20.0%,20.1%,19.5%,20.2%,19.9%,
19.8%,20.5%,19.7%,20.4%,19.9%。
解: xA110i110xi 20.0%
t分布
t 分布曲线形状与自由度 f 有关。自由度 f 与测定次 数 n 有关(f = n – 1),所以 f 对 t 分布的影响实质上也 就是测定次数对 t 分布的影响。
当 f = ∞时,t 分布 曲线与标准正态分布 曲线完全重合。
标准正态分布看做 t分布的极限状态 。
3. 准确度和精密度的关系
精密度是保证准确度的先决条件; 精密度高不一定准确度高; 两者的差别主要是由于系统误差的存在。
2021/1/7
相对偏差和绝对偏差在 分析中的应用
a 基准物:硼砂 Na2B4O7·10H2O M=381 g·mol-1
碳酸钠 Na2CO3
M=106.0 g·mol-1
(3)过失误差
2021/1/7
误差的减免
1. 系统误差的减免
(1) 方法误差—— 采用标准方法,对比试验。 (2) 仪器误差—— 校正仪器。 (3) 试剂误差—— 作空白试验。
2. 偶然误差的减免
——增加平行测定的次数。
2021/1/7
2.1.2 偶然误差分布的数理统计规律
1. 偶然误差的正态分布特性
dA110i110xi x0.24%
dA 100%1.2% xA
sA
10
(xi xA)2
i1
0.28%
101
(CV A)xsA A10% 01.4%
xB20.0%
dB 0.24%
dB 100%1.2% xB
sB =0.31% (CV)B=1.6%
2021/1/7
5.误差的分类及其特点
(1) 系统误差
2021/1/7
讨论:
• 误差出现的频率随误差绝对值的增大呈指数下降; •正态分布的形状由参数σ和μ决定。 •σ的值等于0.608峰高处的峰宽。 •峰高等于 1

• σ越小,曲线既窄又高,表明精密度 就越好,数据越集中。 •σ越大,曲线既宽又低,表明精密度 就越差,数据越分散。 •σ表征数据的分散程度。真值μ表征 数据的集中趋势。
相关文档
最新文档