QTZ40塔吊基础计算书

合集下载

QTZ40塔吊物重量换算表

QTZ40塔吊物重量换算表

起吊物料重量换算表
(编制依据:QTZ40塔机使用说明书)
注意事项:
1、在塔机后端3-15米处可以吊重2吨的货物,但不得前行
15米开外,不得使用快速档,控制半径在15米以内!
2、塔吊司机、信号指挥工要必须遵循塔吊安全使用(十不吊)原则!
3、每天上岗前接受项目的安全员、机械管理员的身体健康情况检查!
4、信号指挥工必须着专用醒目服装,严禁违章作业,饮酒后作业,冒险作业;一旦严重违章2次以上,项目部对其进行处罚,并按照主管部门的相关规定处理!
塔吊司机每周要配合安全员、机械管理员下载塔吊防倾翻数据,对有违章作业的情况,认真分析并接受经验,立即整改到位。

5、。

QTZ40塔吊基础计算书

QTZ40塔吊基础计算书

QTZ63塔吊基础计算书根据现场情况,塔机基础采用独立基础,底面尺寸为5.0×5.0米,高度1.35米塔机基础埋深2.5米,配筋○20@130双层双向,“S”形○14@500,梅花形布置,混凝土标号C35,承台底设100厚C15混凝土垫底基础四周用M10水泥砂浆砌筑240厚标准砖挡土墙至室外地坪。

塔机基础中心到基坑距离约3.5米。

一. 参数信息塔吊型号:QTZ63, 自重(包括压重)F1=258.80kN,最大起重荷载F2=40.00kN,塔吊倾覆力距M=544.00kN.m,塔吊起重高度H=20.00m,塔身宽度B=1.40m,混凝土强度等级:C35,基础埋深D=2.50m,基础最小厚度h=1.35m,基础最小宽度Bc=5.00m,二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=5.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×298.8=358.56kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×B c×B c×H c+20.0×B c×B c×D) =2512.50kN;B c──基础底面的宽度,取B c=5.00m;W──基础底面的抵抗矩,W=0.118B c×B c×B c=14.75m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×544.00=761.60kN.m; a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-761.60/(358.56+2512.50)=2.23m。

QTZ40塔吊基础设计计算1

QTZ40塔吊基础设计计算1

QTZ40塔吊基础设计计算一、梁面积计算由于QTZ40塔吊厂家要求塔基基础承载力P=200KPa ,而实际地基承载力小于本塔吊基础所要求的地基承载力,故做灰土换填处理。

灰土换填做法:做3:7灰土处理,压实系数≥0.94。

3:7灰土换置深度为1m ,处理后承载力要求达到180 KP a 。

为安全起见,本设计3:7灰土处理后承载力按f a =160KP a 计算。

1、原梁长5.6米,梁宽1.0米,梁高1.2米,要求地基承载能力为200KPa 。

基础总作用面积A 0=10.98 m 2≈11 m 2 总作用力F=20T/m 2×A 0=220T2、实际地基承载力按f a =160KPa 计算,则需要面积 A ′=2/16mT F =13.75 m 23、原地基承载力200 KPa 变为160 KPa 后,面积需增加 A z =A ′-A 0=2.75 m 24、梁长增至6.2米,梁宽增至1.2米,梁高不变,增加后总作用面积A=14.656 m 2A -A 0=14.656-11=3.656 m 2>2.75 m 2 满足面积要求二、稳定性验算1、QTZ40塔吊厂家提供如下数据基础所受的垂直荷载F k=28T基础所受的水平荷载F vk=6.1T基础所受倾翻力矩M k=62 T·m基础所受的扭矩11 T·m混凝土强度等级不小于C35,砼总重量不小于30吨。

计算简图砼总重量为43.968T>30T,满足要求。

2、抗倾覆验算偏心距e='vk hG F M k ⨯+ =)28(2.11.662'k G AA +⨯+=34.1)5.22.1656.1428(656.1453.1032.69=⨯⨯+m <55.142.64==l m 3、持力层验算 平均压力 P K =AG F KK + =()656.145.22.1656.1428⨯⨯+=49.1KPa <160 KPa 最大压力值 a32maxL k b GP ‘==)2(2.13)('2e lG F A A K K -⨯⨯+⨯=)34.122.6(2.47.512-⨯⨯=163.17KPa <1.2f a =192KPa4、下卧层地基承载力验算验算天然地基下卧层承载力f a ′=120KP a 是否满足要求 P z =θztan 2b p b k +⨯=︒⨯⨯+⨯20tan 122.12.11.49=30.53KPaP C Z =Z γ=18.5×1=18.5 KPaP z + P C Z =49.03 KPa <120 KPa 满足要求5、配筋Ⅰ-Ⅰ截面的底部受拉,上部受压,弯矩值最大,因此作为计算基础钢筋配置的依据。

1元计算书_35_塔吊天然基础的计算书4

1元计算书_35_塔吊天然基础的计算书4

塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2019)。

一. 参数信息本计算书依据塔吊规范JGJ187进行验算。

塔吊型号:QTZ40 塔机自重标准值:Fk1=256.76kN 起重荷载标准值:Fqk=4.00kN 塔吊最大起重力矩:M=949.20kN.m 塔吊计算高度:H=45.8m 塔身宽度:B=2.5m非工作状态下塔身弯矩:M=-796.74kN.m 承台混凝土等级:C35钢筋级别:HPB300 地基承载力特征值:260.00kPa承台宽度:Bc=8.00m 承台厚度:h=2.00m基础埋深:D=0.00m计算简图:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值=256.76kNFk12) 基础以及覆土自重标准值=8×8×2×25=3200kNGk3) 起重荷载标准值=4kNFqk2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)=0.8×0.7×1.95×1.54×0.2=0.34kN/m2=1.2×0.34×0.4×2.5=0.40kN/mb. 塔机所受风荷载水平合力标准值F vk =qsk×H=0.40×45.8=18.49kNc. 基础顶面风荷载产生的力矩标准值M sk =0.5Fvk×H=0.5×18.49×45.8=423.31kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.30kN/m2)=0.8×0.7×1.95×1.54×0.3=0.50kN/m2=1.2×0.50×0.4×2.5=0.61kN/mb. 塔机所受风荷载水平合力标准值F vk =qsk×H=0.61×45.8=27.73kNc. 基础顶面风荷载产生的力矩标准值M sk =0.5Fvk×H=0.5×27.73×45.8=634.96kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值Mk=-796.74+0.9×(949.2+423.31)=438.52kN.m 非工作状态下,标准组合的倾覆力矩标准值Mk=796.74+634.96=1431.70kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2019)第4.1.3条承载力计算。

QTZ40塔吊基础施工方案

QTZ40塔吊基础施工方案

QTZ40型塔吊基础施工方案一、工程概况本方案主要依据施工图纸及以下规范及参考文献编制: 《塔式起重机设计规范》(GB/T13752-1992)《地基基础设计规范》(GB50007-2002)《建筑结构荷载规范》(GB50009-2001)《建筑安全检查标准》(JGJ59-99)《混凝土结构设计规范》(GB50010-2002)《建筑桩基技术规范》(JGJ94-94)二、塔吊基础布置小韩二期南地块拆迁安置定销房项目工程;工程建设地点:奥体中心东侧小韩、大韩之间;本工程由徐州金鼎湾新城置业有限公司投资建设,徐州正大建设项目管理有限公司监理,江苏弘扬建设工程有限公司组织施工。

确定3#、5#、21#、22#27#28#选用QTZ40型,能满足工程施工需要。

塔吊基础砼标号为C35,更能满足塔吊基础稳固性,也符合安全技术设计要求。

三、基础承台的设计验算基础承台尺寸为4200×4200×1250,混凝土强度等级为C3 0,基础承台上表面标高为-6.800m,基础承台埋深为1.250m 。

基础配筋拟采用二级钢,直径选择14mm。

具体验算过程如下:1)参数信息提供的QTZ40塔吊说明书中技术数据要求,独立式基础载荷表(附着式倾覆力矩大小减少)(1)Fv—基础所受的垂直荷载(KN)430,基础所受的水平荷载18.4(2)M—作用在基础上的倾翻力矩KNM702(3)E—偏心矩(M)(4)FG—砼基础重力(KN)(5)PB ----- 地面计算压应力(KPA)(6) 【PB】---地面许用压应力(7)Z合力中心至基础边缘距离CM(8)要求塔基设计满足要求抗倾覆稳定性和强制条件C=M+FH*H/(Fg+Fg)≤b/3PB=2(Fg+Fg)/3b1≤【PB】2、基础地耐力根据地质报告,本塔吊基础在4号粘土层fak=280KPa (1)基础截面尺寸见基础施工图fg=【(1.73*0.65*4*1.34)+(1.8*1.8*1.3)】*25=253K N(2)基础回填重量F=(6*6*1.3-10)*13.5=496.8kn(3)计算基础荷载M2=430+FH*H=1200+18.4*4.8=1288KN*M四、验算原厂家提供基础应力E2=M2/(FV+Fg+Fe)=1288/(430+253+496.8)=1.092<b/ 3=2.33(抗倾覆满足要求)五、验算地耐力PB=2(Fg+Fg)/3b1=2(430+253+496.8)/3*7(3.5-0.326) =2358/62.32=37.8KN/M2结论:地耐力满足塔基要求四、施工人员组织由于塔吊属于大型施工机械设备,它的安全性至关重要,因此塔吊基础的施工应列入项目经理部的主要施工质量控制对象中;由项目经理牵头,技术负责人把关,各部门各司其职,管理好塔吊基础的施工质量与安全。

塔吊四桩基础的计算QTZ40

塔吊四桩基础的计算QTZ40

塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

一. 参数信息二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=256.76kN2) 基础以及覆土自重标准值G k=5×5×1.35×25=843.75kN3) 起重荷载标准值F qk=4kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m2)W k=0.8×1.48×1.95×1.54×0.2=0.71kN/m2q sk=1.2×0.71×0.35×1.8=0.54kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.54×35.00=18.82kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×18.82×35.00=329.28kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.55kN/m2)W k=0.8×1.54×1.95×1.54×0.55=2.03kN/m2q sk=1.2×2.03×0.35×1.80=1.54kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=1.54×35.00=53.84kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×53.84×35.00=942.23kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=-200+0.9×(160+329.28)=240.35kN.m非工作状态下,标准组合的倾覆力矩标准值M k=-200+942.23=742.23kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(256.76+843.75)/4=275.13kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(256.76+843.75)/4+Abs(742.23+53.84×1.35)/4.95=439.79kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(256.76+843.75-0)/4-Abs(742.23+53.84×1.35)/4.95=110.46kN 工作状态下:Q k=(F k+G k+F qk)/n=(256.76+843.75+4)/4=276.13kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(256.76+843.75+4)/4+Abs(240.35+18.82×1.35)/4.95=329.83kN Q kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(256.76+843.75+4-0)/4-Abs(240.35+18.82×1.35)/4.95=222.43kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(256.76+4)/4+1.35×(240.35+18.82×1.35)/4.95=160.50kN 非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×256.76/4+1.35×(742.23+53.84×1.35)/4.95=308.95kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×256.76/4-1.35×(742.23+53.84×1.35)/4.95=-135.64kN 2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

40塔吊基础施工方案计算书

40塔吊基础施工方案计算书

塔吊基础设计计算书编制:审核:审批:一、1#塔吊设计:1、塔吊选择:本塔吊采用塔吊生产厂家提供的QTZ40型塔吊,塔吊基础长宽均为4.2m ,高1.25m 。

基础砼强度等级采用C35级,钢筋采用HRB400级。

QTZ40型塔式起重机主要性能及参数如下:塔吊型号:QTG40, 塔吊起升高度H :40.800m , 塔身宽度B :2.5m , 基础埋深D :4.5m ,自重F 1:287.83kN , 基础承台厚度Hc :1.250m , 最大起重荷载F 2:46.6kN , 基础承台宽度Bc :4.200m ,2、技术参数:Fv=425(KN) M=630KN.m Fh=68KN3、确定基础尺寸:由地勘报告知,塔机基底所处位置地基承载力为160kpa ,原厂家设计塔吊基础对地基承载力要求不小于200kpa ,大于本工程的160kpa,故需在基础下部设一扩大的钢筋砼平台,以增大基底面积.暂定平台尺寸为4200×4200×1250,做地基承载力验算.4、力学演算天然基础尺寸为b ×b ×h=5m ×5m ×1.3m砼基础的重力Fg=5×5×1×25=625KN地面容许压应力[P B ]=160KPa222/57.1,/7.16:35,/360:400mm N f mm N f C mm N f HRB t c y ===4.1、地基承载力演算地基承载力为:f=25㎡×160KPa/10=400吨塔吊结构自重:Fv=31吨塔吊基础自重:Fg=25×1.35×2.5=84.37吨f=216吨>F=Fv+Fg=31+84.37=115.37吨所以,地基承载力能满足塔吊使用要求。

4.2塔吊抗倾覆演算()()2/751.07.84331035.1686302.12.1m kN F F h F M e g v h =+⨯+⨯=++= e=0.751m<b/3=5/3=1.67m 满足要求4.3、偏心荷载下地面压应力验算:()()2/95.87)751.025(537.8433102)2(32m kN e b l F F P g v =-⨯⨯+⨯=-+=<160kP 满足要求 4.4、抗剪强度验算:按GB50007-2002《建筑地基基础设计规范》公式(8.4.9)410800⎪⎪⎭⎫ ⎝⎛=h hs β KN h b f KN V o w t hs S 3310080.2121057.1946.07.07.043.2884/)7.843310(⨯=⨯⨯⨯⨯⨯=<=+=β 满足要求。

QTZ塔吊物重量换算表

QTZ塔吊物重量换算表

Q T Z塔吊物重量换算表集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
起吊物料重量换算表
(编制依据:QTZ40塔机使用说明书)
注意事项:
1、在塔机后端3-15米处可以吊重2吨的货物,但不得前行
15米开外,不得使用快速档,控制半径在15米以内!
2、塔吊司机、信号指挥工要必须遵循塔吊安全使用(十不吊)原则!
3、每天上岗前接受项目的安全员、机械管理员的身体健康情况检查!
4、信号指挥工必须着专用醒目服装,严禁违章作业,饮酒后作业,冒险作业;一旦严重违章2次以上,项目部对其进行处罚,并按照主管部门的相关规定处理!
5、塔吊司机每周要配合安全员、机械管理员下载塔吊防倾翻数据,对有违章作业的情况,认真分析并接受经验,立即整改到位。

40塔吊基础承载计算

40塔吊基础承载计算

塔吊桩基础的计算书一. 参数信息塔吊型号:QTZ40,自重(包括压重)F1=287.83kN,最大起重荷载F2=46.60kN塔吊倾覆力距M=400.00kN.m,塔吊起重高度H=15.00m,塔身宽度B=1.3m混凝土强度:C35,钢筋级别:Ⅰ级,承台长度Lc或宽度Bc=2.00m桩直径或方桩边长 d=0.40m,桩间距a=1.60m,承台厚度Hc=1.00m基础埋深D=0.00m,承台箍筋间距S=150mm,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=287.83kN2. 塔吊最大起重荷载F2=46.60kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=401.32kN塔吊的倾覆力矩 M=1.4×400.00=560.00kN.m三. 矩形承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条)其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=1.2×334.43=401.32kN;G──桩基承台的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D)=120.00kN; M x,M y──承台底面的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大压力:N=(401.32+120.00)/4+560.00×(1.60/2)/[4×(1.60/2)2]=305.33kN 最大拔力:N=(401.32+120.00)/4-560.00×(1.60/2)/[4×(1.60/2)2]=-44.67kN2. 矩形承台弯矩的计算(依据《建筑桩技术规范》JGJ94-94的第5.6.1条)其中 M x1,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i1──扣除承台自重的单桩桩顶竖向力设计值(kN),N i1=N i-G/n。

塔吊基础、承台承载力计算书

塔吊基础、承台承载力计算书

塔吊基础、承台承载力计算书一、概况根据本工程的情况采用一台江苏正兴建设机械有限公司生产的QTZ40B型塔式起重机负责整个工程的货物垂直运输,该型号的塔机的技能参数及技术指标如下:(详细塔吊性能见使用说明书)。

最大工作幅度:40m起升高度:50m额定起重力矩:400kN最大重力力矩:400KN基础承受的荷载:二、桩基础,承台栽力计算1、单桩验算本工程塔吊基础采用4ф600四根灌注桩,桩长l=20m,按下图布置:桩顶偏心竖向作用下:N max=(F+G)/n+M x y max/Σy i2+M y x max/Σx i=630/4+453*1.25/(1.252+1.252)+453*1.1/2.2=157.5+181.2+249.15=587.85KN所以单桩的竖向承载力应满足R≥1.2N max=1.2*587.85=705.42KN桩身暂按构造筋配置取8Ф16R=ф(f c A+f y’A s’)=0.36*(15*3.14*3002+210* 3.14*82*8)=1647KN ≥705.42KN符合要求当塔吊大臂方向移至与基础成45度斜角时,为单桩承受最大荷载处此时:Q=(F+G)/n=1.2*(240+24*3.6*3.6*1.25)/4=188.64KN ≤R=1556KNQmax=Q+M*Xmax/ Σx i2=188.64+453*1.54/1.542=482.8kN≤R=1647KNQmin= Q-M*Xmax/ Σx i2=188.64-294.2=-105.36kN≤R=1647KN2、承台强度验算承台采用C30混凝土,轴心抗压强度设计值fc=15N/mm2,Ⅱ级钢筋,fy=310/mm21、h=1250mm,h0=1250-50=1200mm2、各桩均在破坏锥体范围内,不必作冲切验算3、抗剪强度验算:V=0.006f c b m h0=0.006*10*3600*1200=2592KN≥R=1647KN4、承台配筋:As=M/(0.9h0fy)=453*106/0.9*1200*310=1354mm2单位长度内的配筋面积:As=1354/3.6=376 mm2选Φ12 @ 120双向双层布置5、水平剪力H=βd2(1.5d2+0.5d)1/5(1+Q min/(2.1γf t A)=3.6*0.62(1.5*0.62+0.5*0.6)1/5(1+0/2.1*453*3.14*0.32) =1.32kN<10/4=2.5kN所以需配抗弯钢筋As=M/fy(h0-As’)=2.5*4.0*106/(210*(550-402)) =318mm2600桩实配钢筋:主筋13Ф16,间距145mm,长20米。

QTZ40塔吊基础施工方案

QTZ40塔吊基础施工方案

塔吊基础施工方案受控状态发放编号二○一一年四月发布二○一一年四月执行一、工程概况1、凤城庭院一期5#、6#、7#、7-1#及地下车库,位于西安凤城七路北侧和开元路十字路口东南角。

地下一层为停车库及设备间,7-1#地上3层的商业用房,5#、6#、7#地上主楼为住宅部分。

总建筑面积94294m2。

建筑平面呈规则矩形和梯形布置,建筑尺寸:长123m,宽90m。

结构形式为钢筋混凝土剪力墙框架结构,标准层层高2.9m,建筑高度93.25m、98.40m、91.5m、12.9m。

2、本工程耐火等级为一级,建筑物抗震设防烈度为八级。

二、塔吊布置概况结合本项目特点:5#、6#商住楼为框架剪力墙结构,将各安装1台QTZ40塔吊(臂长47米),将采用汽车吊装。

三、塔吊基础定位3.1 塔吊基础定位塔吊为QTZ40塔吊(TC4708),其地处位置的地质条件较好,基础底面为中风化完整的砂岩层,承载力为9051kPa,基础采用嵌入式基础,其大小为5.5米×5.5米,深1.4米,其基础定位为:科研楼的○4轴线向○5轴线偏0.4米和4.9米,○C轴线向外偏4.0米及8.5米,其组成的5.5米×5.5米的正方形为塔吊基础定位边线,并且塔吊预埋件的对称中线即为塔吊基础的对称中轴线,基顶标高为绝对标高333.30米 (自然地面标高为333.80米), 塔吊迎土四面砌筑1米宽的24砖挡土墙,高出自然地面0.5米。

塔吊基础顶面排水采用集中排水,具体见附图。

在塔吊基础的项面的内边处和靠挡土墙面处分别设置一个钢筋头,作为基础的沉降和变形观测点。

定位大样图如下图:塔吊基础、安装及拆卸定位图四、塔吊计算书QTZ40(TC4708)塔吊嵌入式基础计算书1、参数信息(见表1-1)表1-1自重(包括压重)F12、塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510.8=504kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =672.00kN;Bc──基础底面的宽度,取Bc=4.00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=10.67m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×400.00=560.00kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=4.00/2-560.00/(504+672)=1.52m。

40塔吊计算书最终修改

40塔吊计算书最终修改

矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载塔机竖向荷载简图 1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4.5×4.5×(1×25+0×19)=506.25kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×506.25=607.5kN 桩对角线距离:L=(a b2+a l2)0.5=(3.52+3.52)0.5=4.95m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(355.6+506.25)/5=172.37kN 荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(355.6+506.25)/5+(367.813+11.777×1)/4.95=249.059kN Q kmin=(F k+G k)/n-(M k+F Vk h)/L=(355.6+506.25)/5-(367.813+11.777×1)/4.95=95.681kN 2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(434.72+607.5)/5+(562.742+16.488×1)/4.95=325.466kN Q min=(F+G)/n-(M+F v h)/L=(434.72+607.5)/5-(562.742+16.488×1)/4.95=91.422kN 四、桩承载力验算是否考虑承台效应否土名称土层厚度l i(m)侧阻力特征值q sia(kPa) 端阻力特征值q pa(kPa)抗拔系数承载力特征值f ak(kPa)2-1 1 25 0 0.7 - 2-2 6 15 0 0.65 - 3-1 3 70 1500 0.75 - 3-2 3 55 1500 0.55 - 4-1 2 45 1200 0.7 - 4-2 1 36 900 0.7 - 5 4 75 2500 0.75 - 1、桩基竖向抗压承载力计算桩身周长:u=4*d=4×0.3=1.2m桩端面积:A p=d*d=0.3×0.3=0.09m2R a=uΣq sia·l i+q pa·A p=1.2×(1×12.5+6×7.5+3×35+3×27.5)+600×0.09=349kNQ k=249.059kN≤R a=349NQ kmax=325.466kN≤1.2R a=1.2×349=418.8kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=95.681kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=4×3.142×142/4=616mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=325.466kNψc f c A p+0.9f y'A s'=(0.85×14×0.09×106 + 0.9×(300×616))×10-3=1237.32kN Q=325.466kN≤ψc f c A p+0.9f y'A s'=1237.32kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=95.681kN≥0不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算A s/A p×100%=(616/(0.09×106))×100%=0.68%≥0.65%满足要求!五、承台计算1、荷载计算承台有效高度:h0=1000-50-16/2=942mmM=(Q max+Q min)L/2=(325.466+(91.422))×4.95/2=1031.745kN·mX方向:M x=Ma b/L=1031.745×3.5/4.95=729.554kN·mY方向:M y=Ma l/L=1031.745×3.5/4.95=729.554kN·m2、受剪切计算V=F/n+M/L=434.72/5 + 562.742/4.95=200.635kN受剪切承载力截面高度影响系数:βhs=(800/942)1/4=0.96塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(3.5-1.6-0.6)/2=0.65m a1l=(a l-B-d)/2=(3.5-1.6-0.6)/2=0.65m剪跨比:λb'=a1b/h0=650/942=0.69,取λb=0.69;λl'= a1l/h0=650/942=0.69,取λl=0.69;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.69+1)=1.035αl=1.75/(λl+1)=1.75/(0.69+1)=1.035βhsαb f t bh0=0.96×1.035×1.57×103×4.5×0.942=6615.592kNβhsαl f t lh0=0.96×1.035×1.57×103×4.5×0.942=6615.592kNV=200.635kN≤min(βhsαb f t bh0,βhsαl f t lh0)=6615.592kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×0.942=3.484ma b=3.5m>B+2h0=3.484m,a l=3.5m>B+2h0=3.484m角桩内边缘至承台外边缘距离:c b=(b-a b+d)/2=(4.5-3.5+0.6)/2=0.8mc l=(l-a l+d)/2=(4.5-3.5+0.6)/2=0.8m角桩冲跨比::λb''=a1b/h0=650/942=0.69,取λb=0.69;λl''= a1l/h0=650/942=0.69,取λl=0.69;角桩冲切系数:β1b=0.56/(λb+0.2)=0.56/(0.69+0.2)=0.629β1l=0.56/(λl+0.2)=0.56/(0.69+0.2)=0.629[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=[0.629×(0.8+0.65/2)+0.629×(0.8+0.65/2)]×0.983×1570×0 .942=2058.835kNN l=V=200.635kN≤[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=2058.835kN满足要求!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=729.554×106/(1.03×16.7×4500×9422)=0.011ζ1=1-(1-2αS1)0.5=1-(1-2×0.011)0.5=0.011γS1=1-ζ1/2=1-0.011/2=0.995A S1=M y/(γS1h0f y1)=729.554×106/(0.995×942×360)=2163mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2%梁底需要配筋:A1=max(A S1, ρbh0)=max(2163,0.002×4500×942)=8479mm2承台底长向实际配筋:A S1'=9249mm2≥A1=8479mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=729.554×106/(1.03×16.7×4500×9422)=0.011ζ2=1-(1-2αS2)0.5=1-(1-2×0.011)0.5=0.011γS2=1-ζ2/2=1-0.011/2=0.995A S2=M x/(γS2h0f y1)=729.554×106/(0.995×942×360)=2163mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.002×4500×942)=8479mm2 承台底短向实际配筋:A S2'=9249mm2≥A2=8479mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=4725mm2≥0.5A S1'=0.5×9249=4625mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=4725mm2≥0.5A S2'=0.5×9249=4625mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。

塔吊计算书40

塔吊计算书40

单桩基础计算书江与城项目工程;工程建设地点:大竹林;属于结构;地上2层;地下8层;建筑高度:30m;标准层层高:0m ;总建筑面积:80000平方米;总工期:0天。

本工程由投资建设,设计,地质勘察,监理,重庆拓达建设(集团)有限公司组织施工;由/担任项目经理,/担任技术负责人。

本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-94)等编制。

一. 参数信息塔吊型号:QTZ40,塔吊自重(包括压重)G: 287.830 kN,最大起重荷载Q: 40.000 kN,塔吊起升高度H: 30.000 m,塔身宽度B: 1.600 m,桩顶面水平力 H0: 15.000 kN,混凝土的弹性模量E c:31500.000 N/mm2,地基土水平抗力系数m:24.500 MN/m4,混凝土强度: C35,桩直径d: 1.600 m,保护层厚度: 100.000 mm,桩钢筋级别: HRB400,桩钢筋直径: 20.00 mm,塔吊倾覆力矩M: 831.09kN·m;二. 塔吊对基础中心作用力的计算1. 塔吊自重(包括压重):G = 287.830 kN2. 塔吊最大起重荷载:Q = 40.000 kN作用于塔吊的竖向力设计值: F = 1.2×287.830 + 1.2×40.000 = 612.960 kN 风荷载对塔吊基础产生的弯矩计算:M kmax=1163.53kN·m;三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。

QTZ40塔吊基础验算书

QTZ40塔吊基础验算书

8、QTZ40塔吊基础承载力验算1、2、5#塔吊为QTZ40塔吊,塔吊为独立状态计算,分工况和非工况两种状态分别进行塔吊基础的受力分析。

& 1、塔机概况塔吊型号:QTZ40,塔吊最大安装高度H=35m(2#塔吊)塔身宽度B=1.5m,自重F1=201.88kN,最大起重荷载F2=39.2kN,基础以上土的厚度D=0.00m,塔吊基础混凝土强度等级:C35基础厚度Hc=1.2m,基础宽度Bc=4.5m,8.2、桩基概况查国家标准图集03SG409可得,PHC400A95-21为C80混凝土,桩身结构竖向承载力设计值R=1650kN。

现场桩基间距a=2.50m,桩直径=0.40m.8.3、桩基荷载计算分析8.3.1自重荷载以及起重荷载塔吊自重G o=2O1.88kN;起重臂自重G i=30.3kN;小车和吊钩自重G2=2.86kN ;平衡臂自重G3=15.05kN ;平衡块自重G4=81kN ;塔吊最大起重荷载Q max=39.2kN ;塔吊最小起重荷载Q max=7.84kN ;塔基自重标准值:F ki =331.09kN ;基础自重标准值:G k=500kN ;起重荷载标准值:F qk=39.2kN ;8.3.2风荷载计算8.3.2.1工作状态下风荷载标准值塔机所受风均布线荷载标准值:(w o=0.2kN/m2)q sk=0.8a£隐庠g a BH/H=0.8 X 1.2 X 1.59 X 1.95 X 1.35 X 0.2 X 0.35 X1.5=0.422kN/m塔机所受风荷载水平合力标准值:F vk= q sk H=0.422X 39=16.46kN基础顶面风荷载产生的力矩标准值:M sk=0.5 F vk H=0.5 X 16.46X 39=321kN m8.3.2.2非工作状态下风荷载标准值塔机所受风均布线荷载标准值:(g O=0.55kN/m2)q '=0.8 a * p s p z 3 o a BH/H=0.8 X 1.2 X 1.59 X 1.95 X 1.35 X 0.55 X 0.35 X 1.5=1.3kN/m塔机所受风荷载水平合力标准值:F'= q' H=1.3X 39=50.27kN基础顶面风荷载产生的力矩标准值:M 'k=0.5 F'vk H=0.5X 50.27X 39=980.27kN m8.3.3塔机的倾覆力矩塔机自身的倾覆力矩,向起重臂方向为正,向平衡臂的方向为负。

QTZ塔吊基础计算方案

QTZ塔吊基础计算方案

Q T Z塔吊基础计算方案 The latest revision on November 22, 2020Q T Z40塔吊基础计算书博业大厦工程;属于框架结构;地上21层;地下2层;建筑高度:87.9m;总建筑面积:89800.00平方米;建设单位:内蒙古博业房地产开发有限公司;设计单位::内蒙古筑友建筑设计咨询有限责任公司;监理单位:内蒙古鸿元监理有限公司;施工单位:南通华新建工集团有限公司。

本工程QTZ40塔吊基础为十字梁基础,折合成矩形基础的边长为4.5m。

按矩形基础计算。

一、参数信息塔吊型号:QTG40,塔吊起升高度H=60.80m,塔吊倾覆力矩M=400fkN.m,混凝土强度等级:C35,塔身宽度B=1.5fm,基础以上土的厚度D:=0.50m,自重F1=287.83fkN,基础承台厚度h=1.30m,最大起重荷载F2=46.6fkN,基础承台宽度Bc=4.50m,钢筋级别:II级钢。

二、基础最小尺寸计算1.最小厚度计算依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。

根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:(7.7.1-2)其中:F──塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。

η──应按下列两个公式计算,并取其中较小值,取1.00;(7.7.1-2)(7.7.1-3)η1--局部荷载或集中反力作用面积形状的影响系数;η2--临界截面周长与板截面有效高度之比的影响系数;βh --截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm时,取βh=0.9,其间按线性内插法取用;ft--混凝土轴心抗拉强度设计值,取16.70MPa;σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值宜控制在1.0-3.5N/mm2范围内,取2500.00;u m --临界截面的周长:距离局部荷载或集中反力作用面积周边ho/2处板垂直截面的最不利周长;这里取(塔身宽度+ho)×4=9.20m;ho--截面有效高度,取两个配筋方向的截面有效高度的平均值;βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜大于4;当βs <2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2;αs --板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱,取αs =20.塔吊计算都按照中性柱取值,取αs=40。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QTZ40塔吊基础计算书
QTZ40塔吊基础计算书
博业大厦工程;属于框架结构;地上21层;地下2层;建筑高度:87.9m;总建筑面积:89800.00平方米;建设单位:内蒙古博业房地产开发有限公司;设计单位::内蒙古筑友建筑设计咨询有限责任公司;监理单位:内蒙古鸿元监理有限公司;施工单位:南通华新建工集团有限公司。

本工程QTZ40塔吊基础为十字梁基础,折合成矩形基础的边长为4.5m。

按矩形基础计算。

一、参数信息
塔吊型号:QTG40,塔吊起升高度H=60.80m,
塔吊倾覆力矩M=400fkN.m,混凝土强度等级:C35,
塔身宽度B=1.5fm,基础以上土的厚度D:=0.50m,
自重F1=287.83fkN,基础承台厚度h=1.30m,
最大起重荷载F2=46.6fkN,基础承台宽度Bc=4.50m,
钢筋级别:II级钢。

二、基础最小尺寸计算
1.最小厚度计算
依据《混凝土结构设计规范》(GB50010-2002)第7.7条受冲切承载力计算。

根据塔吊基础对基础的最大压力和最大拔力,按照下式进行抗冲切计算:
(7.7.1-2)
其中: F──塔吊基础对基脚的最大压力和最大拔力;其它参数参照规范。

η──应按下列两个公式计算,并取其中较小值,取1.00;
(7.7.1-2)
(7.7.1-3)
η1--局部荷载或集中反力作用面积形状的影响系数;
η2--临界截面周长与板截面有效高度之比的影响系数;
βh--截面高度影响系数:当h≤800mm时,取βh=1.0;当h≥2000mm时,取βh=0.9,
其间按线性内插法取用;
ft--混凝土轴心抗拉强度设计值,取16.70MPa;
σpc,m--临界截面周长上两个方向混凝土有效预压应力按长度的加权平均值,其值
宜控制在1.0-3.5N/mm2范围内,取2500.00;
u
m --临界截面的周长:距离局部荷载或集中反力作用面积周边h
o
/2处板
垂直截面的
最不利周长;这里取(塔身宽度+h
o
)×4=9.20m;
h
o
--截面有效高度,取两个配筋方向的截面有效高度的平均值;
βs--局部荷载或集中反力作用面积为矩形时的长边与短边尺寸的比值,βs不宜
大于4;当βs<2时,取βs=2;当面积为圆形时,取βs=2;这里取βs=2;
αs--板柱结构中柱类型的影响系数:对中性,取αs=40;对边柱,取αs=30;对角柱,
取αs=20. 塔吊计算都按照中性柱取值,取αs=40 。

计算方案:当F取塔吊基础对基脚的最大压力,将h
o1
从0.8m开始,每增加
0.01m,
至到满足上式,解出一个h
o1
;当F取塔吊基础对基脚的最大拔力时,同理,解出
一个h
o
2,最
后h
o1与h
o2
相加,得到最小厚度h
c。

经过计算得到:
塔吊基础对基脚的最大压力F=200.00kN时,得h
o1
=0.80m;
塔吊基础对基脚的最大拔力F=200.00kN时,得h
o2
=0.80m;
解得最小厚度 H
o =h
o1
+h
o2
+0.05=1.65m;
实际计算取厚度为:H
o
=1.30m。

2.最小宽度计算
建议保证基础的偏心矩小于Bc/4,则用下面的公式计算:
其中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,
F=1.2×(287.83+46.60)=401.32kN;
G ──基础自重与基础上面的土的自重,
G=1.2×(25×Bc×Bc×Hc+γm ×Bc×Bc×D)
=1.2×(25.0×Bc×Bc×1.30+20.00×Bc×Bc×0.50);
γm──土的加权平均重度,
M ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1.4×400.00=560.00kN.m。

解得最小宽度 Bc=2.80m,
实际计算取宽度为 Bc=4.50m。

d--基础埋置深度(m) 取0.500m;
解得地基承载力设计值:fa=149.500kPa;
实际计算取的地基承载力设计值为:fa=360.000kPa;
地基承载力特征值fa大于最大压力设计值Pmax=107.691kPa,满足要求!
地基承载力特征值1.2×fa大于偏心矩较大时的压力设计值
Pkmax=114.253kPa,满足要求!
五、基础受冲切承载力验算
依据《建筑地基基础设计规范》GB 50007-2002第8.2.7条。

验算公式如下:
式中
βhp --- 受冲切承载力截面高度影响系数,当h不大于800mm时,βhp取1.0.当h大于等于2000mm时,βhp取0.9,其间按线性内插法取用;
f
--- 混凝土轴心抗拉强度设计值;
t
--- 基础冲切破坏锥体的有效高度;
h
o
--- 冲切破坏锥体最不利一侧计算长度;
a
m
--- 冲切破坏锥体最不利一侧斜截面的上边长,当计算柱与基础交接
a
t
处的受冲切承载力时,
取柱宽(即塔身宽度);当计算基础变阶处的受冲切承载力时,取上阶宽;
--- 冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,
a
b
当冲切破坏锥体的底面
落在基础底面以内,计算柱与基础交接处的受冲切承载力时,取柱宽加两倍基础有效
高度;当计算基础变阶处的受冲切承载力时,取上阶宽加两倍该处的基础有
效高度。

p
j
--- 扣除基础自重及其上土重后相应于荷载效应基本组合时的地基土单位面积净反力,对偏
心受压基础可取基础边缘处最大地基土单位面积净反力;
A
l
--- 冲切验算时取用的部分基底面积
F
l --- 相应于荷载效应基本组合时作用在A
l
上的地基土净反力设计值。

则,βhp --- 受冲切承载力截面高度影响系数,取βhp=0.96;
f
t --- 混凝土轴心抗拉强度设计值,取 f
t
=1.57MPa;
a
m
--- 冲切破坏锥体最不利一侧计算长度:
am=[1.50+(1.50 +2×1.30)]/2=2.80m;
h
o --- 承台的有效高度,取 h
o
=1.25m;
P
j --- 最大压力设计值,取 P
j
=114.25KPa;
F
l
--- 实际冲切承载力:
F
l
=114.25×(4.50+4.10)×((4.50-4.10)/2)/2=98.26kN。

其中4.50为基础宽度,4.10=塔身宽度+2h;
允许冲切力:0.7×0.96×1.57×2800.00×
1250.00=3686229.17N=3686.23kN;
实际冲切力不大于允许冲切力设计值,所以能满足要求!。

相关文档
最新文档