塔吊基础计算书

合集下载

塔吊基础计算书

塔吊基础计算书

CG5512塔吊基础计算书1.工程概况(略)2.塔吊基础构造塔吊采用CGT5512附着式塔式起重机,工作臂长40米,最大起重量6吨,最大起重力矩为800千牛米。

扶墙设置一道。

塔吊基础采用C30钢筋混凝土基础,基础平面尺寸为6mX6m,基础深度为1.5m。

地基承载力不小于200Kpa。

图1. 塔吊基础构造图3.塔吊基础设计3.1设计规范《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009《混凝土结构设计规范》GB50010-2010《建筑桩基技术规范》JGJ94-2008《建筑地基基础设计规范》GB50007-20113.2设计荷载工作工况:塔机自重标准值Fk1:449kN;起重荷载标准值Fqk(kN):60 kN;竖向荷载标准值Fk:509 kN;水平荷载标准值Fvk:31 kN;倾覆力矩标准值Mk:1039 kN·m。

非工作工况:竖向荷载标准值Fk:449 kN;水平荷载标准值Fvk:71 kN;倾覆力矩标准值Mk:1668 kN·m。

3.2.2.钢筋混凝土容重: 25KN/m34.结构计算4.1工作工况4.1.1荷载数据(1)作用在基础底部中心的荷载基础自重及上部土重标准值: G k = γm×b×l×d = 20.00×6.00×6.00×1.50 = 1080.00kN 基础自重及上部土重设计值: G = 1.35×G k = 1.35×1080.00= 1458.00kN(2)作用在基础底部的荷载标准组合荷载:F k = 509.00kNM kx = -662.30kN.mM ky = 46.50kN.m(3)作用在基础底部的荷载基本组合荷载:F = 687.15kNM x = -894.11kN.mM y = 62.77kN.m4.1.2荷载标准组合下的地基反力基础底面面积: A = b×l = 6.00×6.00=36.00m2荷载在X方向和Y方向都存在偏心基底最小反力标准值:p kmin = F k + G kA-|M kx|W x-|M ky|W y=509.00 + 1080.0036.00-662.3036.00-46.5036.00= 24.45kPa>0kPa 基底最大反力标准值:p kmax = F k + G kA+|M kx|W x+|M ky|W y=509.00 + 1080.0036.00+662.3036.00+46.5036.00= 63.83kPa4.1.3荷载基本组合下的地基反力荷载在X方向和Y方向都存在偏心基底最小反力设计值:p min = F + GA-|M x|W x-|M y|W y=687.15 + 1458.0036.00-894.1136.00-62.7736.00= 33.01kPa>0kPa 基底最大反力设计值:p max = F + GA+|M x|W x+|M y|W y=687.15 + 1458.0036.00+894.1136.00+62.7736.00= 86.17kP4.1.4地基承载验算修正后的地基承载力特征值: f a = 228.00kPa基底平均反力标准值: p k=44.14 kPa≤ f a=228.00kPa,满足要求基底最大反力标准值: p kmax=63.83kPa≤ 1.2f a=1.2×228.00=273.60kPa,满足要求4.1.5基础抗冲切验算(1)冲切验算公式按《建筑地基基础设计规范》(GB50007-2011)下列公式验算:F l≤ 0.7βhp f t a m h0(8.2.8-1)αm = (a t+a b)/2 (8.2.8-2)F l = p j A l(8.2.8-3)冲切力F1根据作用在基底净反力设计值求得,计算时pj取基底最大净反力对于多工况,冲切力为F1为各工况中的最大值验算柱对冲切时,对冲切锥体的每一侧面均按上述公式计算抗冲切力。

塔吊基础设计计算书

塔吊基础设计计算书

塔吊基础设计计算书四桩基础计算一、塔吊的基本参数信息塔吊型号:QTZ63,塔吊起升高度H=101.00m,塔吊倾覆力矩M=630.00kN.m,混凝土强度等级:C35,塔身宽度B=2.50m,基础以上土的厚度D=1.50m,自重F1=450.80kN,基础承台厚度Hc=1.00m,最大起重荷载F2=60.00kN,基础承台宽度Bc=4.00m,桩钢筋级别:II级钢,桩直径或者方桩边长=0.60m,桩间距a=3.50m,承台箍筋间距S=200.00mm,承台砼的保护层厚度=50.00mm。

二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F1=450.80kN,塔吊最大起重荷载F2=60.00kN,作用于桩基承台顶面的竖向力F=1.2×(F1+F2)=612.96kN,塔吊的倾覆力矩M=1.4×630.00=882.00kN。

三、矩形承台弯矩及单桩桩顶竖向力的计算图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算依据《建筑桩技术规范》JGJ94-94的第5.1.1条。

其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=612.96kN;G──桩基承台的自重G=1.2×(25×Bc×Bc×Hc/4+20×Bc×Bc×D/4)=1.2×(25×4.00×4.00×1.00+20×4.00×4.00×1.50)=1056.00kN;Mx,My──承台底面的弯矩设计值,取882.00kN.m;xi,yi──单桩相对承台中心轴的XY方向距离a/2=1.75m;Ni──单桩桩顶竖向力设计值(kN);经计算得到单桩桩顶竖向力设计值,最大压力:N=(612.96+1056.00)/4+882.00×1.75/(4×1.752)=543.24kN 。

塔吊天然基础的计算书

塔吊天然基础的计算书

QTZ80(TC5610-6)塔吊天然基础的计算书依据《塔式起重机混凝土基础工程技术规程》一.参数信息塔吊型号:QTZ80( TC5610-6)起重荷载标准值:Fqk=58.8kN塔吊计算高度:H=45.9m非工作状态下塔身弯矩:M=1552kN.m钢筋级别:HRB400承台宽度:Bc=6m1) 塔机自重标准值Fk1 =464.1kN2) 基础以及覆土自重标准值G<=6X 6X 1.35 X 25=1215kN3) 起重荷载标准值Fqk=58.8kN2. 风荷载计算附件一计算简图:二.荷载计算1.自重荷载及起重荷载(JGJ/T 187-2009)。

塔机自重标准值:Fk1=464.10kN塔吊最大起重力矩:M=1335kN.m塔身宽度:B=1.6m承台混凝土等级:C30地基承载力特征值:350kPa1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(Wo=0.2kN/m2) 叫=0-昭丛口凯=0.8 X 1.59 X 1.95 X 1.349 X 0.2=0.67kN/m 2字止=f H=1. 2X 0.67 X 0.35 X 1.6=0.45kN/mb. 塔机所受风荷载水平合力标准值F v k=q s k X H=0.45X 45.9=20.64kNc. 基础顶面风荷载产生的力矩标准值Mjk=°.5Fvk X H=0.5X 20.64 X 45.9=473.73kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(本地区Wo=0.35kN/mi2)Wjt =2=0.8 X 1.63 X 1.95 X 1.349 X 0.35=1.20kN/m- m f H=1.2 X 1.20 X 0.35 X 1.6=0.81kN/mb. 塔机所受风荷载水平合力标准值F v k=q s k X H=0.81 X 45.9=37.03kNc. 基础顶面风荷载产生的力矩标准值Mjk=0.5F vk X H=0.5X 37.03 X 45.9=849.88kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值l\^=1552+0.9X( -1335+473.73)=776.85kN.m非工作状态下,标准组合的倾覆力矩标准值l\^=1552+849.88=2401.88kN.m三.地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算塔机工作状态下:当轴心荷载作用时:22=(464.1+58.8+1215)/(6 X 6)=48.28kN/m 2 当偏心荷载作用时:肚二(代十旳隅訂陆=(464.1+58.8+1215)/(6 X 6) -2X (776.85 X 1.414/2)/36.002=17.76kN/m 2由于P kmin》0所以按下式计算Pkmax:2 =(垃十曳)"+亚化+甌訂陷=(464.1+58.8+1215)/(6 X 6)+2 X (776.85 X 1.414/2)/36.002=78.79kN/m 2塔机非工作状态下:当轴心荷载作用时:2 =(464.1+1215)/(6 X 6)=46.64kN/m 2当偏心荷载作用时:肚严以十翼山- 叭-M訂%=(464.1+1215)/(6 X 6)-2X (2401.88 X 1.414/2)/36.00=-47.70kN/m由于P kmin<0所以按下式计算Pkmax:二近+兀顾爲心=(2401.88+37.03 X 1.35)/(464.10+1215.00)=1.46m < 0.25b=1.50m载力满足要求!—12-X 忑f2=3-1.03=1.97m=(464.1+1215.00)/(3 X 1.97 X 1.97)=144.57kN/m四.地基基础承载力验算修正后的地基承载力特征值为:f a=570.00kPa非工作状态地基承轴心荷载作用:由于f a》Pk=48.28kPa,所以满足要求!偏心荷载作用:由于1.2 Xf a》P kma>=144.57kPa,所以满足要求! 五•承台配筋计算依据《建筑地基基础设计规范》GB 50007-2011第8.2条。

塔吊基础计算书

塔吊基础计算书

假设塔吊型号:6010/23B,最大4绳起重荷载10t;塔吊无附墙起重最大高度H=59.8m,塔身宽度B=2.0m;承台基础混凝土强度:C35, 厚度Hc=1.35m,承台长度Lc或宽度Bc=6.25m;承台钢筋级别:Ⅱ级,箍筋间距S=200mm,保护层厚度:50mm;承台桩假设选用4根φ400×95(PHC-A)预应力管桩,已知每1根桩的承载力特征值为1700KN;参考塔吊说明书可知:塔吊处于工作状态(ES)时:最大弯矩Mmax=2344.81KN·m 最大压力Pmax=749.9KN塔吊处于非工作状态(HS)时:最大弯矩Mmax=4646.86KN·m 最大压力Pmax=694.9KN2、对塔吊基础抗倾覆弯矩的验算取塔吊最大倾覆力矩,在工作状态(HS)时:Mmax=4646.86KN·m,计算简图如下:2.1 x、y向,受力简图如下:以塔吊中心O点为基点计算:M1=M=4646.86KN·mM2=2.125·R B=M1 2.125·R B=4646.86M=2097.9KN<2×1800=3600KN(满足要求)R2.2 z向,受力简图如下:以塔吊中心O点为基点计算:M1=M=4646.86KN·mM2=3·R BM2=M13·R B=4646.86R B=1548.95KN<1800KN(满足要求)3、承台桩基础设计3.1 塔吊基础承台顶面的竖向力与弯矩计算计算简图如下:上图中X轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

3.1.1 桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第5.1.1条)其中 n——单桩个数,n=4;F——作用于桩基承台顶面的竖向力设计值,等同于前面塔吊说明书中的P;G——桩基承台的自重;G=25.1×Bc×Bc×Hc=25.1×6.252×1.35=1323.63KN Mx,My——承台底面的弯矩设计值(KN•m);xi,yi——单桩相对承台中心轴的X、Y方向距离(m);Ni——单桩桩顶竖向力设计值(KN)。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书一、编制依据2.1、《塔式起重机使用说明书》2.2《岩土工程勘察报告》2.3《建筑地基基础设计规范》(GB50007-2002)2.6《地基与基础施工及验收规范》(GBJ202-83)2.7《混凝土结构设计规范》(GB50010-2002)2.8《混凝土结构工程施工及验收规范》(GB50204-92)二、工程概况一、计算系数塔吊型号:广西QTZ80(TCT5512)工作幅度:50m;塔吊起升高度:128.50m;塔身宽度B:1.7m;标准节长度b:5.0m; 塔吊自重(包括压重)G:777KN,最大起重荷载Q:60KN。

主弦杆材料:角钢/方钢;宽度/直径C:120mm;定额起重力矩Me:885K N·M;基础所受水平力:30KN;基础形式:桩承台;承台宽度Bc:3.60m;承台高度Hc:1.0m;承台砼强度等级:C30;承台钢筋级别:HPB235,HRB400;所处城市:广西玉林市,基本风压W0:0.25kn/㎡;地面粗糙度类别:C类有密集建筑群的城市郊区,风荷载高度变化系数Hz:1.7。

二、塔吊对基础中心作用力的计算按受力最大的塔吊自由高度44m计算1、塔吊竖向力计算:塔吊自重G: G=523KN塔吊最大起重荷载Q:Q=60KN作用于塔吊基础的竖向力Fk: Fk=Q+G=60+523=583KN2、塔吊风荷载计算:依据《建筑结构荷载规范》(GB5009-2001)中风荷载体型系数:地处广西玉林市,基本风压力W0=0.25KN/㎡查表得风荷载高度变化系数μz: μz=1.178挡风系数计算ψ=[3B+2b+(4B2+b2/4)1/2].C/B.b=[3×1.7+2×5+(4×1.72+52/4) 1/2]×0.12/1.7×5=0.273塔吊主材料是角钢/方钢,体形系数μs =2.481风振系数βz:βz=1.0风荷载设计值为:W=0.8βz×μs×μz×W0=0.8×1.0×2.481×1.178×0.25=0.585KN/㎡3、塔吊基础所受弯矩的计算:风荷载对塔吊基础产生的弯矩计算Mw=W×ψ×B×H×H×0.5=0.585×0.273×1.7×44×44×0.5=262.81KN-mMkmax=Mw+Mc+P×hc=261.81KN.m+989 KN.m+30 KN×1.0m=1280.81 KN.m三、承台内暗置挑梁配筋计算暗梁宽度b: 500mm, 暗梁高度h: 1000mm作用于桩基承台顶面的竖向力F: F=1.2Fk=1.2×583kn=699.6 kn作用于桩基承台顶面的弯矩M: M=Mw+M c=261.81 KN.m +989 KN.m =1250.81 KN.m暗梁端承受的竖向力Fh: Fh=F/4=699.6kn/4=174.9 KN暗梁端承受的弯矩Mv: Mv=M/2=1250.81 KN.m /2=625.41 KN.m圆桩直径1250mm等效为方桩a: a=1250mm×0.8=1000mm计算简图:不考虑梁另一端竖向力产生的反向力弯矩作用,偏于安全,梁计算截面处的弯矩M1:M1=(Mv+Fn×0.19m)=(625.41 KN.m +174.9 KN×0.19m)=658.641 KN.m1、梁截面配筋计算依据《砼结构设计规范》(GB50010-2002)第7.5条受弯构件承载力计算,采用双排配筋。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊基础计算书典范

塔吊基础计算书典范

一、QTZ5013塔吊天然基础的计算书1、地基承载力计算1.1塔基在独立状态时,作用于基础的荷载应包括塔机作用于基础顶的竖向荷载标准值(F k)、水平荷载标准值(F vk)、倾覆力矩(包括塔机自重、起重荷载、风荷载等引起的力矩)荷载标准值(M k)、扭矩荷载标准值(T k),以及基础及其上土的自重荷载标准值(G k)。

1.2矩形基础地基承载力计算应符合下列规定:1、基础底面压力应符合:1)、当轴心荷载作用时:p k≤f a=200kpa式中:p k ------相当于荷载效应便准组合时,基础底面处的平均压力值;f a -------修正后的地基承载力特征值。

2)、当偏心荷载作用时,除符合上式外,尚应符合下列要求:p kmax≤1.2 f a=1.2*200=240 kpa 式中:p kmax -------相应于荷载效应标准组合时,基础底面边缘的最大压力值。

2、基础底面的压力可按下列公式确定:1)当轴心荷载作用时:p k=(F k+G k)/bl=(842.4+1108.404)/(5*5)=78.03216 kn/m2≤240 kpa 故,符合要求。

式中:F k -----塔机作用于基础顶面的竖向荷载标准值;G k -----基础及其上土的自重标准值;b-------矩形基础底面的短边长度;l--------矩形基础底面的长边长度。

2)当偏心荷载作用时:p kmax=(F k+G k)/bl+(M k+F vk•h)/W=(842.4+1108.404)/(5*5)+(882+4*1.35)/20.83=78.03216+42.6=120.63 kn/m2≤1.2 f a 符合要求。

式中:M k-------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值;F vk-------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载值;h-------基础的高度;W--------基础底面的抵抗矩。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书一、参数信息塔式起重机型号:QTZ80(5613)新乡克瑞重型机械科技股份有限公司。

最大载重量=6000.00kg(最大),标准节重量=860kg(每节高度1.65米),平衡重=14800kg,塔机自重(40米标准高度):40000kg,塔机基本高度40米。

基础搭设高度为:130.0m。

二、基础尺寸计算考虑到施工现场D轴至E轴交19轴至20轴桩基没有施工,塔吊基础要躲开桩基,所以塔吊基础形状及位置详见后附图。

实际塔吊基础底面积37.06平方米,混凝土基础形状详见后附图,混凝土强度等级:C35,基础厚度1.35米。

三、塔式起重机基础承载力计算(考虑动载、自重误差及风载对基础的影响,取系数n=2):当不考虑附着时的基础设计值计算公式:P=(2N总+1.2G)/基础底面积N总塔式起重机自重G为基础自重N总塔式起重机自重:N总=(N自重+N标准节+N平衡重+N最大起重量)*2=(40*9.8+0.86*9.8*43+14.8*9.8+6*9.8)*2=1916.5KNG=1.2*37.06*1.35*2.5*9.8=1470.92KNP=(2N总+1.2G) /基础底面积=(1916.5+1470.92)/37.06=91.04KPa根据以上计算,此基础需要承受最大承载力P=91.04Kpa。

根据塔吊厂家提供的塔吊基础图(见后附图)要求地基承载力为200KPa,塔吊基础尺寸5.3米*5.3米,基础底面积28.09平方米。

样本要求地基需承受的最大压力为5618KN。

实际施工中本工程依据河南省郑州地质工程勘察院2011年06月提供的《建正东方中心岩土工程勘察报告(详细勘察)》设计。

基础持力层为第8层粉土,天然地基承载力特征值为160kpa。

基础底面积37.06平方米,实际地基可以承受的最大压力为5929.6KN。

综上所述,本工程设计的塔吊基础满足计算需要最大承载力及塔机样本要求的地基需承受的最大压力,计算结论:本塔吊基础符合要求。

塔吊基础计算书(CFG桩复合地基)

塔吊基础计算书(CFG桩复合地基)

塔吊桩基础计算书一. 参数信息塔吊型号: 中联QTZ80(5610)自重(包括压重): F1=694.3kN最大起重荷载: F2=60.00kN 塔吊倾覆力距: M=630.00kN.m塔吊起重高度: H=105.60m 塔身宽度: B=1.60m桩混凝土等级: C20 承台混凝土等级: C30 保护层厚度: 50mm 矩形承台边长: 6.00m承台厚度: Hc=1.350m 承台箍筋间距: S=200mm承台钢筋级别: Ⅱ级承台预埋件埋深: h=0.50m承台顶面埋深: D=5.000m 桩直径: d=0.400m桩间距: a=4.000m 桩钢筋级别: Ⅱ级桩入土深度: 23.0m 桩型与工艺: 干作业钻孔灌注桩二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=6.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:由于偏心距 e=M/(F×1.2+G×1.2)=882.00/(904.8+5778.00)=0.13≤B/6=1.00所以按小偏心计算,计算公式如下:当考虑附着时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=754.3kN;G──基础自重与基础上面的土的自重,G=25.0×B c×B c×H c+20.0×B c×B c×D =4815.00kN;B c──基础底面的宽度,取B c=6.00m;W──基础底面的抵抗矩,W=B c×B c×B c/6=36.00m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;经过计算得到:最大压力设计值 P max=1.2×(754.3+4815.00)/6.002+882.00/36.00=210.14kPa最小压力设计值 P min=1.2×(754,3+4815.00)/6.002-882.00/36.00=161.14kPa有附着的压力设计值 P k=1.2×(754.3+4815.00)/6.002=185.64kPa四. 地基基础承载力验算Quk =Qsk + Q pk = u ∑qsik l i + q pk * Ap=1.257 (0.35*35+1.5*40+1.8*50+6.4*70+3*50+9.95*60) +2500*0.126=2021.06kN按规范安全系数标准计算单桩竖向承载力特征值Ra = Quk/2 =1010.53 kN复合地基承载力计算桩间距4m,采用正方形或矩形布桩m =0.0157取β=0.80fsp,k=m*Ra/Ap+β*(1-m)*fs,k= 0.0157*1010.53/0.1256+0.8*(1-0.0157)*120= 218.81kPa> P K偏心荷载作用:1.2×fsp,k=262.57 kPa >P kmax=210.14kPa满足要求。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书一、塔吊基本参数(按起重臂下自由高度40m计算)1.塔帽、驾驶室、转盘等合计:G1=90KN2.起重臂重合计:G2=75KN3.平衡臂重合计:G3=60KN4.配重合计:G4=120KN5.标准节14节合计:G5=168KN6.起重量1.3—6吨:即Q1=13—60KN7.起升速度:V=1m/秒8.起重机旋转速度:n=0.6r/min9.制动时间:按0.2秒计算10.起重机倾斜按3‰考虑11.Q2 基础自重:5*5*1.35*2450kg*10=827kN12.根据建设单位提供的地质勘察报告地基承载力满足要求二、工作状态下稳定性验算:(倾覆点O1)1、起重机重力矩M1=G4*16.5+G3*9.5+(G1+G5)*2.5-G2*20=120*16.5+60*9.5+(90+168)*2.5+960*2.5-75*20=4095KN.m2、起重力矩M2=870KN.m3、工作力矩M3=M2V/gt=870*1/(900-40*0.62)=770KN.m4、旋转力矩M4=M2n2h/(900-Hn2)=870*0.62*40/(900-40*0.62)=14.14KN.m5、风压力矩M5=10.2*20+5*40=404KN.m6、倾斜力矩M6=(G1+G2+G3+G4+G5+Q2)*3‰*∑G/(Q2+∑G)*40=(90+75+60+120+168+827)*3‰*513/(827+513)*40=61.56KN.m K=(M1-M3-M4-M5-M6)/M2=(4095-770-14.1-404-61.56)/870=3.27>1.15 稳定三、工作状态(倾覆点Q2)1、M=(G1+G5+Q2)*2.5+G2*25-G3*4.5-G4*11.5=2937.5KN.m2、其余同第二节K=(M-M3-M4-M5-M6)/M2=(2937.5-637-14.14-404-61.56)/870=2.09>1.15 稳定四、非工作状态(倾覆点O2)1.M1=2850—2937.5KN.m 取M1=2850KN.m(最低高度)2.M5按0.6KN/m2计算:N1=40.8KN M5=40.8*14.14=576.9KN.m3.M6=61.56KN.m4.K=M1/(M5+M6)=2850/(576.9+61.56)=4.46>1.15 稳定。

塔吊基础承载力计算书

塔吊基础承载力计算书

塔吊基础承载力计算书编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。

为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。

地质报告中风化泥岩桩端承载力为P=220Kpa。

按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。

一、塔吊基础承载力验算1、单桩桩端承载力为:F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T2、四根桩端承载力为:4×F1=4×24.87=99.48T3、塔吊重量51T(说明书中参数)基础承台重量:5.2×5.2×1.3×2.2=77.33T塔吊+基础承台总重量=51+77.33=128.33T4、基础承台承受的荷载F2=5.2×5.2×4.0=108.16T5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T所以塔吊基础承载力满足承载要求。

二、钢筋验算桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。

验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。

Fc=14.3/mm2(砼轴心抗压强度设计值)Acor=π×r2/4(构件核心截面积)=π×11002/4=950332mm2fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值)AS’=23×π×r2/4=23×π×162/4=4624mm2(全部纵向钢筋截面积)x=1.0(箍筋对砼约束的折减系数,50以下取1.0)fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值)dCor=1100mm (箍筋内表面间距离,即核心截面直径)Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积)S螺旋箍筋间距200mmA’sso=πdCorAssx/s=π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式248.7KN<12382.87KN经验算钢筋混凝土抗拉满足要求。

塔吊基础计算书

塔吊基础计算书

矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性塔机型号QTZ80(TC6013A-6)-中联重科塔机独立状态的最大起吊高度H0(m) 46塔机独立状态的计算高度H(m) 48塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.8二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 262.15起重臂自重G1(kN) 772、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值倾覆力矩设计值M'(kN·m) 1.2×(77×30+3.8××14.1-168×13.6)+1.4×0.5×43.334×48=693.962 三、基础验算基础布置图基础布置基础长l(m) 5.5 基础宽b(m) 5.5 基础高度h(m) 1.6基础参数基础混凝土强度等级C35 基础混凝土自重γc(kN/m3) 25 基础上部覆土厚度h’(m)0 基础上部覆土的重度γ’(kN/m3) 19 基础混凝土保护层厚度δ(mm)50地基参数地基承载力特征值f ak(kPa) 550 基础宽度的地基承载力修正系数ηb0基础及其上土的自重荷载标准值:G k=blhγc=5.5×5.5×1.6×25=1210kN基础及其上土的自重荷载设计值:G=1.2G k=1.2×1210=1452kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=77×30+3.8××14.1-168×13.6+0.9×(1120.8+0.5×24.162×48/1.2)=870.07kN·mF vk''=F vk/1.2=24.162/1.2=20.135kN荷载效应基本组合时,平行基础边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2) =1.2×(77×30+3.8××14.1-168×13.6)+1.4×0.9×(1120.8+0.5×24.162×48/1.2)=1332.811kN·mF v''=F v/1.2=33.827/1.2=28.189kN基础长宽比:l/b=5.5/5.5=1≤1.1,基础计算形式为方形基础。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书一、塔吊型号TQZ60本工程根据建筑物高度需要,塔设高度为58m,吊钩有效高度50m,基础表面受力情况如下:工作状态下:基础顶部所受的水平力H=24.5KN,基础所受的垂直力P=555KN,基础所受倾翻力矩M1=1252KN.M基础所受的扭矩M2=67KN.M非工作状态下:H=24.5KN,P=555KN,M1=1796KN.m,M2=0KN.m。

以上数据属生产厂家提供,根据使用说明书要求地基承载力必须达到120KN/m2以上。

而现场地质报告,安装塔吊地基承载力达不到以上要求。

所以本工程拟采用预制管桩基础,单桩承载力为650KN,承台尺寸为600*600*130cm。

二、桩基计算:基础埋深1.4米,基底以上结构及覆土总重量G=γAh=20×6×6×1.4=1008KN桩基数量:n=(N+G)/R=(555+1008)/650=2.4 取n=4 根据地质报告提供资料q工作=45Kpa,q非工作=60KpaΦ500管桩端阻力为500Kpa。

R=(45×2+60×8)×3.14×0.5+3.14×0.52÷4×5000=187.9KN满足要求,设计有效桩长为10米。

187.9>2R=130KN满足要求三、单桩承载力验算:承台底部弯矩(取M1=1796KN·M)M=M1+Hh=1796+24.5×1.3=1827.85 KN·MM max=(F+G)/N+(M x y i)/∑y i=(555+1008)/4+(1827.85×1.75)/4×1.752=651.87KN<125R=812.5KN 满足要求N=(555+1008)/4=390.75<R 满足要求四、承台设计1.承台尺寸为600*600*130cm 砼强度C25f ck=17.0N/mm2f cmk=18.5N/mm2f tk=1.75N/mm2R g=310KN h0=125 桩顶埋入承台5cm承台的冲切、抗剪及抗弯验算的桩净反力为N=N max-G/N=651.87-1008/4=399.87KN2.承台冲切验算:μm=4×(2+3.5)/2=11m h0=1250.75f tkμm h0=0.75×1.75×11×1.25×103=1804.69KNKF c=2.2×555=1221<1804KN 满足要求3.受剪计算:最大剪力V=651KV=1.55×399.87×2=1239.60KN0.07×17.0×2.5×1.25×103=3718.75KN 满足要求4.承台的弯矩及配筋计算:M=∑Nx i=2×399.87×1.75=1399.545KN·MA g=(1.4×1399.545×104)/(0.9×1.25×3100)=28.09cm2取30Φ16=3Ag=2.011×30=40.22 双向配筋Φ16@200 五、底板配筋:底板高度h=400mm,h0=360mm,砼强度C25(f c=12.5N/mm2,f cm=13.5N/mm2),Ⅱ级钢筋f y=310N/mm2。

塔吊桩基础的计算书

塔吊桩基础的计算书

一、工程概况华菱新城地标工程位于长沙市火星大道与劳动东路交汇处的东南角,总建筑面积39569m2。

本工程地下2层,裙房3层,主楼28层(第4层为转换层),建筑物总高度90.4m。

二、塔吊选型根据本工程的实际情况和现场具体情况,本工程的垂直运输机械选用一台TC5015型高层塔吊。

该塔吊的塔身高度可达120m,臂长55m,能满足本工程施工需要。

三、塔吊安装位置经现场勘察确定:塔吊基础位置位于地下室内,其中心线在F轴以北2.1m,10/1轴以东1.4m处。

塔吊安装于此处,安装、拆除比较方便,且基本覆盖主楼。

但距南向的高压电塔距离较近(约25m),须对高压电塔进行必要防护,避免塔吊起重臂碰撞高压电塔。

四、塔吊基础设计1、塔吊基础选型根据现场条件,塔吊基础初步确定为:钢筋混凝土单桩(直径1.8m,混凝土强度等级C35)+钢筋混凝土承台(承台长度、宽度为5m,混凝土强度等级C35)。

钢筋混凝土单桩持力层为中风化岩,桩长约7m,中风化岩的承载力为3MPa。

2、塔吊基础承载力计算(1)技术参数塔吊型号:TC5015塔吊,自重(包括压重、塔吊最大起重荷载)F1=511.2KN,塔吊倾覆力矩M=1335KN〃m,塔吊起重高度H=120m,塔身宽度=1.6m;混凝土强度等级为C35,钢筋级别:HPB235,混凝土的弹性模量E C=14500.00N/㎜2,桩直径d=1.800m,地基水平抗力系数m= 40MN/m4;桩顶水平力H0=73.9KN,保护层厚度:50㎜。

(2)塔吊基础承台顶面的竖向力与弯矩计算塔吊自重(包括压重、最大起重荷X载)F=511.2KN,作用于桩基承台顶面的竖向力F=1.2×511.2=613.44KN,塔吊的倾覆力矩M=1.4×1335=1869KN〃m(3)桩身最大弯矩计算计算简图如下:按照弯矩法计算桩身最大弯矩:依据《建筑桩基技术规范》(JGJ94—94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。

塔吊基础计算书

塔吊基础计算书
5.00
配重高度hp(m)
0.70
基础混凝土强度
C35
3、计算简图
二、计算过程:
1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)
f = fk+ηb×r×( b-3)+ηd×rm×( d-0.5)=
208.12
kN/m2
其中:
基础宽度的地基承载力修正系数ηb=
0.3
基础深度的地基承载力修正系数ηd=
fy为钢筋的抗拉、抗压强度设计值查规范
fy=
300
N/mm2
最小配筋面积
Asmin=ρbh=
9375
mm2
其中:
ρ为基础最小配筋率
0.0015
查表得配筋
Φ28 @ 125双向
截面积As(mm2)
13816
mm2
满足要求
冲击承载力Fl≤0.7βhpft×bm×ho=
3512507
N
其中:
βhp为受冲切承载力截面高度影响系数
0.94
ft为混凝土的抗拉强度设计值查表得ft=
1.57
N/mm2
c的取值:
1.6
m
bm为冲切破坏最不利一侧计算长度
bm=(c+bb)/2=
2.81
m
bb==c+2h0=
4.02
m
h0为截面有效高度h0=h-as=
Pmax=2×(F2+G1+G2+G3)/(3×l×a)=
165.01
kN/m2
Pmax

1.2f=
249.75
kN/m2
基础底面处的平均压力值Pk
Pk=Pmax/2=
82.50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然基础计算书
123工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天。

本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。

本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》
(GB50010-2002)等编制。

一、参数信息
塔吊型号:QTZ50,塔吊起升高度H:32.00m,
塔身宽度B:1.6m,基础埋深d:4.45m,
自重G:357.7kN,基础承台厚度hc:1.35m,
最大起重荷载Q:50kN,基础承台宽度Bc:5.50m,
混凝土强度等级:C35,钢筋级别:HRB335,
基础底面配筋直径:18mm
地基承载力特征值f ak:140kPa,
基础宽度修正系数ηb:0.15,基础埋深修正系数ηd:1.4,
基础底面以下土重度γ:20kN/m3,基础底面以上土加权平均重度γm:20kN/m3。

二、塔吊对交叉梁中心作用力的计算
1、塔吊竖向力计算
塔吊自重:G=357.7kN;
塔吊最大起重荷载:Q=50kN;
作用于塔吊的竖向力:F k=G+Q=357.7+50=407.7kN;
2、塔吊弯矩计算
风荷载对塔吊基础产生的弯矩计算:
M kmax=1335kN·m;
三、塔吊抗倾覆稳定验算
基础抗倾覆稳定性按下式计算:
e=M k/(F k+G k)≤Bc/3
式中 e──偏心距,即地面反力的合力至基础中心的距离;
M k──作用在基础上的弯矩;
F k──作用在基础上的垂直载荷;
G k──混凝土基础重力,G k=25×5.5×5.5×1.35=1020.938kN; Bc──为基础的底面宽度;
计算得:e=1335/(407.7+1020.938)=0.934m < 5.5/3=1.833m;
基础抗倾覆稳定性满足要求!
四、地基承载力验算
依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:
混凝土基础抗倾翻稳定性计算:
e=0.934m > 5.5/6=0.917m
地面压应力计算:
P k=(F k+G k)/A
P kmax=2×(F k+G k)/(3×a×Bc)
式中 F k──作用在基础上的垂直载荷;
G k──混凝土基础重力;
a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:
a=Bc/20.5-M k/(F k+G k)=5.5/20.5-1335/(407.7+1020.938)=2.955m。

Bc──基础底面的宽度,取Bc=5.5m;
不考虑附着基础设计值:
P k=(407.7+1020.938)/5.52=47.228kPa
P kmax=2×(407.7+1020.938)/(3×2.955×5.5)= 58.609kPa;
地基承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条。

计算公式如下:
f a = f ak+ηbγ(b-3)+ηdγm(d-0.5)
f a--修正后的地基承载力特征值(kN/m2);
f ak--地基承载力特征值,按本规范第5.2.3条的原则确定;取140.000kN/m2;
ηb、ηd--基础宽度和埋深的地基承载力修正系数;
γ--基础底面以上土的重度,地下水位以下取浮重度,取20.000kN/m3;
b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值,取5.500m;
γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取
20.000kN/m3;
d--基础埋置深度(m) 取4.450m;
解得地基承载力设计值:f a=258.100kPa;
实际计算取的地基承载力设计值为:f a=258.100kPa;
地基承载力特征值f a大于压力标准值P k=47.228kPa,满足要求!
地基承载力特征值1.2×f a大于偏心矩较大时的压力标准值P kmax=58.609kPa,满足要求!
五、基础受冲切承载力验算
依据《建筑地基基础设计规范》(GB 50007-2002)第8.2.7条。

验算公式如下:
F1≤ 0.7βhp f t a m h o
式中βhp --受冲切承载力截面高度影响系数,当h不大于800mm时,βhp取1.0.当h大于等于2000mm时,βhp取0.9,其间按线性内插法取用;取βhp=0.95;
f t --混凝土轴心抗拉强度设计值;取 f t=1.57MPa;
h o --基础冲切破坏锥体的有效高度;取 h o=1.30m;
a m --冲切破坏锥体最不利一侧计算长度;a m=(a t+a b)/2;
a m=[1.60+(1.60 +2×1.30)]/2=2.90m;
a t --冲切破坏锥体最不利一侧斜截面的上边长,当计算柱与基础交接处的受冲切承载力时,取柱宽(即塔身宽度);取a t=1.6m;
a b --冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,当冲切破坏锥体的底面落在基础底面以内,计算柱与基础交接处的受冲切承载力时,取柱宽加两倍基础有效高度;a b=1.60 +2×1.30=4.20;
P j --扣除基础自重后相应于荷载效应基本组合时的地基土单位面积净反力,对偏心受压基础可取基础边缘处最大地基土单位面积净反力;取 P j=70.33kPa;
A l --冲切验算时取用的部分基底面积;A l=5.50×(5.50-4.20)/2=3.57m2
F l --相应于荷载效应基本组合时作用在A l上的地基土净反力设计值。

F l=P j A l;
F l=70.33×3.57=251.43kN。

允许冲切力:0.7×0.95×1.57×2900.00×1300.00=3936068.50N=3936.07kN > F l= 251.43kN;
实际冲切力不大于允许冲切力设计值,所以能满足要求!
六、承台配筋计算
1.抗弯计算
依据《建筑地基基础设计规范》(GB 50007-2002)第8.2.7条。

计算公式如下:
M I=a12[(2l+a')(P max+P-2G/A)+(P max-P)l]/12
式中:M I --任意截面I-I处相应于荷载效应基本组合时的弯矩设计值;
a1 --任意截面I-I至基底边缘最大反力处的距离;取a1=(Bc-B)/2=
(5.50-1.60)/2=1.95m;
P max --相应于荷载效应基本组合时的基础底面边缘最大地基反力设计值,取70.33kN/m2;
P --相应于荷载效应基本组合时在任意截面I-I处基础底面地基反力设计值,P=P max×(3×a-a l)/3×a=70.33×(3×1.6-1.95)/(3×1.6)=41.759kPa;
G --考虑荷载分项系数的基础自重,取G=1.35×25×Bc×Bc×hc=1.35×25×5.50×5.50×1.35=1378.27kN/m2;
l --基础宽度,取l=5.50m;
a --塔身宽度,取a=1.60m;
a' --截面I - I在基底的投影长度, 取a'=1.60m。

经过计算得M I=1.952×[(2×5.50+1.60)×(70.33+41.76-2×
1378.27/5.502)+(70.33-41.76)×5.50]/12=133.50kN·m。

2.配筋面积计算
αs= M/(α1f c bh02)
ζ = 1-(1-2αs)1/2
γs = 1-ζ/2
A s = M/(γs h0f y)
式中,αl --当混凝土强度不超过C50时,α1取为1.0,当混凝土强度等级为C80时,取为0.94,期间按线性内插法确定,取αl=1.00;
fc --混凝土抗压强度设计值,查表得fc=16.70kN/m2;
h o --承台的计算高度,h o=1.30m。

经过计算得:αs=133.50×106/(1.00×16.70×5.50×103×(1.30×103)2)=0.001;
ξ=1-(1-2×0.001)0.5=0.001;
γs=1-0.001/2=1.000;
A s=133.50×106/(1.000×1.30×103×300.00)=342.46mm2。

由于最小配筋率为0.15%,所以最小配筋面积为:5500.00×1350.00×
0.15%=11137.50mm2。

故取 A s=11137.50mm2。

建议配筋值:HRB335钢筋,18@120mm。

承台底面单向根数44根。

实际配筋值11198 mm2。

相关文档
最新文档