塔吊基础承载力计算书
TC6013塔吊桩基础计算书
TC6013塔吊桩基础计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机混凝土基础技术规程》(JGJ187-2009)、《建筑桩基技术规范》(JGJ94-2008)、《混凝土结构设计规范》(GB50010-2010)、《钢结构设计规范》(GB50017-2003)、《建筑地基基础设计规范》(GB 50007-2011)、《建筑结构荷载规范》(GB 50009-2012)等编制。
一、参数信息塔吊型号:QTZ100-TC6013, 自重(包括压重)F1=744.8kN,最大起重荷载F=80.0kN,塔吊倾覆力距M=1000.0kN.m,塔吊起重高度H=120.0m,塔身宽度B=1.6m,承台长度Lc或宽度Bc=5.00m,承台厚度Hc=1.40m,桩直径或方桩边长 d=0.40m,桩间距a=4.20m,基础埋深D=0.00m,保护层厚度:50.00mm,承台混凝土强度等级:C35,承台钢筋级别:HRB335,桩混凝土强度等级:C35,桩钢筋级别:HRB335,承台箍筋间距S=400.00mm。
二、荷载的计算1.自重荷载及起重荷载(1)塔机自重标准值:F kl=744.80kN(2)基础及附加构造自重标准值:G k = 25.0×Bc×Bc×Hc+0.00= 25.0×5.00×5.00×1.40+0.00 = 875.00kN;(3)起重荷载标准值:F qk=80.00kN1.风荷载计算(1)非工作状态下塔机塔身截面对角线方向所受风荷载标准值:塔机所受风线荷载标准值q sk'=0.8aβzμsμz W0a0BH/H=0.8×1.2×1.85×1.60×0.99×0.50×0.35×1.60=0.79kN/m塔机所受风荷载水平合力标准值F vk'=q sk'×H = 0.79×120.00 = 94.52kN标准组合的倾翻力矩标准值M k = 1000.00kN.m三、桩基承载力验算1.桩基竖向承载力验算取最不利的非工作状态荷载进行验算。
塔吊地基承载力验算
塔吊地基承载力验算地基承载力验算根据地质报告,基础持力层土层为黄土,地基承载力特征值取值为160KPa。
根据塔吊使用说明书要求,塔吊基础选用5.6 m×5.6 m×1.35 m固定支腿钢筋混凝土基础。
根据厂家提供的使用说明书,塔吊附着式安装的参数如下:载荷、工况、工作状况、非工作状况,其中Fv表示基础所受垂直力,Fh表示基础所受水平力,M表示基础所受倾覆力矩,e表示偏心距,单位为m。
根据《塔式起重机设计规范》—GB/T-92中第13页第4.6.3条,固定式混凝土基础的抗倾翻稳定性验算要求,荷载的偏心距e取不超过b/3.地基承载力验算:一)工作状态下:1.基础所受垂直力Fv为:640 KN。
2.基础自重:G=5.6×5.6×1.35×25=1058.4 KN。
3.塔吊总重:F=Fv+G =640+1058.4=1698.4 KN。
4.力矩M/=M+Fh×1.35=2210+53×1.35=2281.55 KN.ma。
a。
当轴心荷载作用时:P=F/A= 1698.4/(5.6×5.6)=54.16 kPa<f=160kPa,满足要求。
b。
当偏心荷载作用时:e=M//F=2281.55/1698.4=1.34<b/3=5.6/3=1.66(1.87),塔吊稳定性满足要求。
Pmax=F/A×(1+6e/b)=1698.4/(5.6×5.6)×(1+6×1.34/5.6)=131.92 kPa<1.2f=192 kPa,符合要求。
Pmin=F/A×(1-6e/b)=1698.4/(5.6×5.6)×(1-6×1.34/5.6)=-23.29,计算出的Pmin<0,此时基底接触压力将重新分布,按下式重新计算Pmax:2F/3b(b/2-e)=2×1698.4/3×5.6×(5.6 / 2-1.34)=138.49kPa<f=160kPa,符合要求。
塔吊基座承载力计算说明
塔吊基座地基承载力计算说明(注意里面的错误)
以西侧塔吊为例进行地基承载力计算
根据勘察报告及塔吊平面布置图,塔吊基础标高位于22.62m ,埋深12.9m ,地层类别为④2砂质粉土-粘质粉土,承载力特征值ak f =170kPa ,如图所示:
根据《建筑地基基础设计规范》(GB50007-2011)5.2.4条,当基础宽度大于3m 或埋置深度大于0.5m 时,从载荷试验或其他原位测试、经验值等方法确定的地基承载力,尚应按下式修正:
3)0.5)a ak b d m f f r b r d ηη=+-+-((
塔吊基础宽取6.0m ,根据规范中表5.2.4承载力修正系数b η、d η分别取0.3、1.5,基
础底面以下土的重度r 取8kN/m 3(有效重度),基础以上土的加权平均重度m r 取16.0kN/m 3。
1700.38(63) 1.516(12.90.5)475a f kN =+⨯⨯-+⨯⨯-=
塔吊基础所需承载力200kN ,故地基承载力满足要求。
这里在计算塔吊地基承载力过程中实际上犯了一个错误,塔吊处在基坑中央时,四周无堆载的情况下,不应该进行承载力的深度、宽度修正!
请大家在工作和学习过程中避免这种错误!。
塔吊基础计算书
天然基础计算书123工程;工程建设地点:;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人;本计算书主要依据施工图纸及以下规范及参考文献编制:塔式起重机设计规范GB/T13752-1992、地基基础设计规范GB50007-2002、建筑结构荷载规范GB50009-2001、建筑安全检查标准JGJ59-99、混凝土结构设计规范GB50010-2002等编制;一、参数信息塔吊型号:QTZ50, 塔吊起升高度H:32.00m,塔身宽度B:1.6m, 基础埋深d:4.45m,自重G:357.7kN, 基础承台厚度hc:1.35m,最大起重荷载Q:50kN, 基础承台宽度Bc:5.50m,混凝土强度等级:C35, 钢筋级别:HRB335,基础底面配筋直径:18mm地基承载力特征值fak:140kPa,基础宽度修正系数ηb :0.15, 基础埋深修正系数ηd:1.4,基础底面以下土重度γ:20kN/m3, 基础底面以上土加权平均重度γm:20kN/m3;二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=357.7kN;塔吊最大起重荷载:Q=50kN;作用于塔吊的竖向力:Fk=G+Q=357.7+50=407.7kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=1335kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /Fk+Gk≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离;Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1.35=1020.938kN;Bc──为基础的底面宽度;计算得:e=1335/407.7+1020.938=0.934m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求四、地基承载力验算依据建筑地基基础设计规范GB50007-2002第5.2条承载力计算; 计算简图:混凝土基础抗倾翻稳定性计算:e=0.934m > 5.5/6=0.917m地面压应力计算:P k =Fk+Gk/AP kmax =2×Fk+Gk/3×a×Bc式中 Fk──作用在基础上的垂直载荷;Gk──混凝土基础重力;a──合力作用点至基础底面最大压力边缘距离m,按下式计算:a=Bc/20.5-Mk /Fk+Gk=5.5/20.5-1335/407.7+1020.938=2.955m;Bc──基础底面的宽度,取Bc=5.5m;不考虑附着基础设计值:Pk=407.7+1020.938/5.52=47.228kPaPkmax=2×407.7+1020.938/3×2.955×5.5= 58.609kPa;计算公式如下:fa = fak+ηbγb-3+ηdγmd-0.5fa--修正后的地基承载力特征值kN/m2;fak2;ηb 、ηd--基础宽度和埋深的地基承载力修正系数;γ--基础底面以上土的重度,地下水位以下取浮重度,取20.000kN/m3;b--基础底面宽度m,当基宽小于3m按3m取值,大于6m按6m取值,取5.500m;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度,取20.000kN/m3;d--基础埋置深度m 取4.450m;解得地基承载力设计值:fa=258.100kPa;实际计算取的地基承载力设计值为:fa=258.100kPa;地基承载力特征值fa 大于压力标准值Pk=47.228kPa,满足要求地基承载力特征值1.2×fa 大于偏心矩较大时的压力标准值Pkmax=58.609kPa,满足要求五、基础受冲切承载力验算验算公式如下:F1≤ 0.7βhpftamho式中βhp --受冲切承载力截面高度影响系数,当h不大于800mm时,βhp取1.0.当h大于等于2000mm时,βhp 取0.9,其间按线性内插法取用;取βhp=0.95;ft --混凝土轴心抗拉强度设计值;取 ft=1.57MPa;ho --基础冲切破坏锥体的有效高度;取 ho=1.30m;am --冲切破坏锥体最不利一侧计算长度;am=at+ab/2;am=1.60+1.60 +2×1.30/2=2.90m;at--冲切破坏锥体最不利一侧斜截面的上边长,当计算柱与基础交接处的受冲切承载力时,取柱宽即塔身宽度;取at=1.6m;ab--冲切破坏锥体最不利一侧斜截面在基础底面积范围内的下边长,当冲切破坏锥体的底面落在基础底面以内,计算柱与基础交接处的受冲切承载力时,取柱宽加两倍基础有效高度;ab=1.60 +2×1.30=4.20;Pj--扣除基础自重后相应于荷载效应基本组合时的地基土单位面积净反力,对偏心受压基础可取基础边缘处最大地基土单位面积净反力;取 Pj=70.33kPa;Al --冲切验算时取用的部分基底面积;Al=5.50×5.50-4.20/2=3.57m2Fl --相应于荷载效应基本组合时作用在Al上的地基土净反力设计值;Fl=PjAl;Fl=70.33×3.57=251.43kN;允许冲切力:0.7×0.95×1.57×2900.00×1300.00=3936068.50N=3936.07kN >Fl= 251.43kN;实际冲切力不大于允许冲切力设计值,所以能满足要求六、承台配筋计算1.抗弯计算M I =a122l+a'Pmax+P-2G/A+Pmax-Pl/12式中:MI--任意截面I-I处相应于荷载效应基本组合时的弯矩设计值;a1 --任意截面I-I至基底边缘最大反力处的距离;取a1=Bc-B/2=5.50-1.60/2=1.95m;Pmax--相应于荷载效应基本组合时的基础底面边缘最大地基反力设计值,取70.33kN/m2;P --相应于荷载效应基本组合时在任意截面I-I处基础底面地基反力设计值,P=Pmax ×3×a-al/3×a=70.33×3×1.6-1.95/3×1.6=41.759kPa;G --考虑荷载分项系数的基础自重,取G=1.35×25×Bc×Bc×hc=1.35×25×5.50×5.50×1.35=1378.27kN/m2;l --基础宽度,取l=5.50m;a --塔身宽度,取a=1.60m;a' --截面I - I在基底的投影长度, 取a'=1.60m;经过计算得MI=1.952×2×5.50+1.60×70.33+41.76-2×1378.27/5.502+70.33-41.76×5.50/12=133.50kN·m;2.配筋面积计算αs = M/α1fcbh2ζ = 1-1-2αs1/2γs= 1-ζ/2As = M/γshfy式中,αl --当混凝土强度不超过C50时, α1取为1.0,当混凝土强度等级为C80时,取为0.94,期间按线性内插法确定,取αl=1.00;fc --混凝土抗压强度设计值,查表得fc=16.70kN/m2;ho --承台的计算高度,ho=1.30m;经过计算得:αs=133.50×106/1.00×16.70×5.50×103×1.30×1032=0.001;ξ=1-1-2×0.0010.5=0.001;γs=1-0.001/2=1.000;As=133.50×106/1.000×1.30×103×300.00=342.46mm2;由于最小配筋率为0.15%,所以最小配筋面积为:5500.00×1350.00×0.15%=11137.50mm2;故取 As=11137.50mm2;建议配筋值:HRB335钢筋,18120mm;承台底面单向根数44根;实际配筋值11198 mm2;。
塔吊基础承载力计算书
塔吊基础承载力计算书编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。
为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。
地质报告中风化泥岩桩端承载力为P=220Kpa。
按桩径r=米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。
一、塔吊基础承载力验算1、单桩桩端承载力为:F1=S×P=π×r2×P=π××220==2、四根桩端承载力为:4×F1=4×=3、塔吊重量51T(说明书中参数)基础承台重量:×××=塔吊+基础承台总重量=51+=4、基础承台承受的荷载F2=××=5、桩基与承台共同受力=4F1+F1=+=>塔吊基础总重量=所以塔吊基础承载力满足承载要求。
二、钢筋验算桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。
验算要求轴向力设计值N≤(fcAcor+fy’AS’+2xfyAsso) 必须成立。
Fc=mm2(砼轴心抗压强度设计值)Acor=π×r2/4(构件核心截面积)=π×11002/4=950332mm2fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值)AS’=23×π×r2/4=23×π×162/4=4624mm2(全部纵向钢筋截面积)x=(箍筋对砼约束的折减系数,50以下取)fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值)dCor=1100mm (箍筋内表面间距离,即核心截面直径)Ass1=π×r2/4=π×82/4=16×=(一根箍筋的截面面积)S螺旋箍筋间距200mmA’sso=πdCorAssx/s=π×1100×200=(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式N≤(fcAcor+fy’AS’+2xfyAsso)=×950332+300×4624+2××210×=.6N<经验算钢筋混凝土抗拉满足要求。
塔吊基础计算
塔吊基础计算QTZ63塔吊天然基础的计算书参数信息:塔吊型号为QTZ63,自重(包括压重)为F1=450.80kN,最大起重荷载为F2=60.00kN,塔吊倾覆力距为M=630.00kN.m,塔吊起重高度为70.00m,塔身宽度为B=1.50m,混凝土强度等级为C35,基础埋深为D=5.00m,基础最小厚度为h=1.35m,基础最小宽度为Bc=5.00m。
基础最小尺寸计算:基础的最小厚度为H=1.35m,基础的最小宽度为Bc=5.00m。
塔吊基础承载力计算:按照《建筑地基基础设计规范》(GB-2002)第5.2条承载力计算。
计算简图如下:当不考虑附着时的基础设计值计算公式为:当考虑附着时的基础设计值计算公式为:当考虑偏心距较大时的基础设计值计算公式为:其中,F为塔吊作用于基础的竖向力,包括塔吊自重、压重和最大起重荷载,F=1.2×510.8=612.96kN;G为基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D) =4012.50kN;Bc为基础底面的宽度,取Bc=5.00m;W为基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M为倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a为合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+4012.50)=2.31m。
经过计算得到:无附着的最大压力设计值为Pmax=(612.96+4012.50)/5.002+882.00/20.83=227.35kPa;无附着的最小压力设计值为Pmin=(612.96+4012.50)/5.002-882.00/20.83=142.68kPa;有附着的压力设计值为P=(612.96+4012.50)/5.002=185.02kPa;偏心距较大时压力设计值为Pkmax=2×(612.96+4012.50)/(3×5.00×2.31)=267.06kPa。
塔吊地基承载力验算
QTZ-80塔吊地基承载力验算书1、塔吊基础为:6m ×6m ×1.35m 的浅基础结构形式2、计算说明:塔吊基础属于设备基础,吊臂在工作状态或风荷载的作用下使塔吊基础的受力不断发生变化。
根据地基承载力验算时选择最不利状态的计算原则。
地基受偏心荷载的偏心距e 不会随着吊臂的转动发生变化,所以取e 不超过b/6为最不利状态(图1-1)。
地基承载力验算的最薄弱位置为图1-2的受力状态。
3、地基承载力验算依据:地基承载力设计值为f=80 kPa塔吊拟按照40m 高,如再升高则在30m 高处附墙。
根据塔吊40m 高时的参数作如下验算:塔吊自重F =450 kN倾覆力矩M =1200 kN ·mkPa kPa ,符合要求25.46)66/()1215450(/)(=⨯+=+=A G F p 80=<f m m ,符合要求72.0)1215450/(1200)/(=+=+=G F M e 16/66/==<b 根据图1-2计算,m 33)(22402c dy y c y I cx =-=⎰45.2533==c w x kPa kPa ,符合要求。
4.9345.25120025.46max =+=+=x w M p p 962.1=<f 结论:由于方案中部分技术参数不够明确,如上述荷载的弯距M 中是否包含水平力对塔吊基底产生的弯距、塔吊基础安装平面位置、标高未明确给出等。
请承包方补充完整,并附上QTZ80的说明书。
上述计算符合要求的结论暂作参考。
QTZ80塔吊施工方案会审意见1、方案中有多处地方随意修改,字迹不清,书写格式不符合要求。
2、塔吊安装方案中附墙高度为25米处,计算书中的计算高度为40米,附墙高度与其不一致。
起重臂长方案中为50米,计算书中为40米的计算参数。
3、部分特种作业上岗证已过期,请承包方更换有效证书。
4、请承包方提供QTZ80塔吊的使用说明书原件或未经修改的版本。
塔吊基础计算书
塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。
在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。
即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。
(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。
iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。
As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。
塔吊基础施工方案及地基承载力计算书(最终版)
目录一、编制依据 (1)二、工程概况 (1)三、塔吊设计参数 (2)四、塔吊基础设计 (4)五、塔吊基础施工技术措施及质量验收 (5)六、塔吊穿地下室处理措施 (7)七、塔吊基础计算书 (9)1. 参数信息 (9)2. 基础最小尺寸确定 (9)3、塔吊基础承台顶面的竖向力和弯矩确定 (9)4、矩形承台弯矩及单桩桩顶竖向力的计算 (10)5、矩形承台截面主筋的计算 (10)6、桩承载力验算 (11)7、桩竖向承载力验算 (12)8、塔吊稳定性验算: (12)附图: (13)高层塔吊基础施工方案一、编制依据1、本工程施工组织设计;2、哈尔滨世茂滨江新城三期三区工程岩土工程勘察报告;3、GB50202-2002《地基与基础施工质量验收规范》;4、GB50205-2001《钢结构工程施工质量验收规范》;5、GB50007-2002《建筑地基基础设计规范》;6、GB50017-2003《钢结构设计规范》;7、JGJ33-2001《建筑机械使用安全技术规程》;8、JGJ94-2008《建筑桩基技术规范》;9、本工程设计图纸;10、长沙中联重工科技发展股份公司生产的QTZ63(TCT5010-4)型平头塔式起重机使用说明书。
二、工程概况1、工程名称:哈尔滨世茂滨江新城三期三区项目2、建设单位:哈尔滨世茂滨江新城开发建设有限公司3、监理单位:北京中建工程顾问有限公司4、施工单位:中建三局第三建设工程有限责任公司5、建设地点:哈尔滨市松北区世茂大道西端。
6、结构形式:地下室部分为框剪结构,主体为剪力墙结构7、建设规模:哈尔滨世茂滨江新城三期三区工程位于哈尔滨市松北区三环路以西,四环以东,世茂大道以南,松花江以北。
本工程拟建11栋高层,其中三栋21层,五栋18层,三栋15层;69栋别墅,层数为2 -3层。
建筑用地面积174545.60㎡,代征半道、绿地等面积22481.77㎡。
各栋高层层数及建筑高度如下表:项目设计使用功能高档住宅及配套地下车库单体数量11建筑层数地上/地下68#-70#(15/1);71#-73#、75#、78#(18/1);74#、79#、80#(21/1)建筑高度68#-70#楼—45.9m;71#、72#楼—55.1m;73#、75#、78#楼—54.6m;74#、79#、80#楼—63.9m本工程11栋高层除78#和79#高层共用一台塔吊外,其余各栋均设置一台塔吊共布置10台塔吊。
塔吊基础计算书
塔吊基础计算书10.1 D1100-63型塔吊基础设计计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。
一. 参数信息塔吊型号:D1100-63塔机自重标准值:Fk1=3213.90kN 起重荷载标准值:Fqk=630kN塔吊最大起重力矩:M=11000.00kN.m 塔吊计算高度:H=90.8m塔身宽度:B=4m 非工作状态下塔身弯矩:M=0kN.m承台混凝土等级:C40钢筋级别:HRB400地基承载力特征值:193kPa承台宽度:Bc=9.5m承台厚度:h=2m基础埋深:D=0m计算简图:二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值Fk1=3213.9kN2) 基础以及覆土自重标准值Gk=9.5×9.5×2×25=4512.5kN承台受浮力:Flk=9.5×9.5×1.50×10=1353.75kN3) 起重荷载标准值Fqk=630kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(Wo=0.2kN/m2)=0.8×1.77×1.95×0.99×0.2=0.55kN/m2=1.2×0.55×0.35×4=0.92kN/mb. 塔机所受风荷载水平合力标准值Fvk=qsk×H=0.92×90.8=83.40kNc. 基础顶面风荷载产生的力矩标准值Msk=0.5Fvk×H=0.5×83.40×90.8=3786.29kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值(本地区Wo=0.45kN/m2)=0.8×1.84×1.95×0.99×0.45=1.28kN/m2=1.2×1.28×0.35×4=2.15kN/mb. 塔机所受风荷载水平合力标准值Fvk=qsk×H=2.15×90.8=195.07kNc. 基础顶面风荷载产生的力矩标准值Msk=0.5Fvk×H=0.5×195.07×90.8=8856.07kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值Mk=0+0.9×(11000+3786.29)=13307.66kN.m非工作状态下,标准组合的倾覆力矩标准值Mk=0+8856.07=8856.07kN.m三. 地基承载力计算依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)第4.1.3条承载力计算。
塔吊基础、承台承载力计算书
塔吊基础、承台承载力计算书一、概况根据本工程的情况采用一台江苏正兴建设机械有限公司生产的QTZ40B型塔式起重机负责整个工程的货物垂直运输,该型号的塔机的技能参数及技术指标如下:(详细塔吊性能见使用说明书)。
最大工作幅度:40m起升高度:50m额定起重力矩:400kN最大重力力矩:400KN基础承受的荷载:二、桩基础,承台栽力计算1、单桩验算本工程塔吊基础采用4ф600四根灌注桩,桩长l=20m,按下图布置:桩顶偏心竖向作用下:N max=(F+G)/n+M x y max/Σy i2+M y x max/Σx i=630/4+453*1.25/(1.252+1.252)+453*1.1/2.2=157.5+181.2+249.15=587.85KN所以单桩的竖向承载力应满足R≥1.2N max=1.2*587.85=705.42KN桩身暂按构造筋配置取8Ф16R=ф(f c A+f y’A s’)=0.36*(15*3.14*3002+210* 3.14*82*8)=1647KN ≥705.42KN符合要求当塔吊大臂方向移至与基础成45度斜角时,为单桩承受最大荷载处此时:Q=(F+G)/n=1.2*(240+24*3.6*3.6*1.25)/4=188.64KN ≤R=1556KNQmax=Q+M*Xmax/ Σx i2=188.64+453*1.54/1.542=482.8kN≤R=1647KNQmin= Q-M*Xmax/ Σx i2=188.64-294.2=-105.36kN≤R=1647KN2、承台强度验算承台采用C30混凝土,轴心抗压强度设计值fc=15N/mm2,Ⅱ级钢筋,fy=310/mm21、h=1250mm,h0=1250-50=1200mm2、各桩均在破坏锥体范围内,不必作冲切验算3、抗剪强度验算:V=0.006f c b m h0=0.006*10*3600*1200=2592KN≥R=1647KN4、承台配筋:As=M/(0.9h0fy)=453*106/0.9*1200*310=1354mm2单位长度内的配筋面积:As=1354/3.6=376 mm2选Φ12 @ 120双向双层布置5、水平剪力H=βd2(1.5d2+0.5d)1/5(1+Q min/(2.1γf t A)=3.6*0.62(1.5*0.62+0.5*0.6)1/5(1+0/2.1*453*3.14*0.32) =1.32kN<10/4=2.5kN所以需配抗弯钢筋As=M/fy(h0-As’)=2.5*4.0*106/(210*(550-402)) =318mm2600桩实配钢筋:主筋13Ф16,间距145mm,长20米。
塔吊基础计算书(CFG桩复合地基)
塔吊桩基础计算书一. 参数信息塔吊型号: 中联QTZ80(5610)自重(包括压重): F1=694.3kN最大起重荷载: F2=60.00kN 塔吊倾覆力距: M=630.00kN.m塔吊起重高度: H=105.60m 塔身宽度: B=1.60m桩混凝土等级: C20 承台混凝土等级: C30 保护层厚度: 50mm 矩形承台边长: 6.00m承台厚度: Hc=1.350m 承台箍筋间距: S=200mm承台钢筋级别: Ⅱ级承台预埋件埋深: h=0.50m承台顶面埋深: D=5.000m 桩直径: d=0.400m桩间距: a=4.000m 桩钢筋级别: Ⅱ级桩入土深度: 23.0m 桩型与工艺: 干作业钻孔灌注桩二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=6.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:由于偏心距 e=M/(F×1.2+G×1.2)=882.00/(904.8+5778.00)=0.13≤B/6=1.00所以按小偏心计算,计算公式如下:当考虑附着时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=754.3kN;G──基础自重与基础上面的土的自重,G=25.0×B c×B c×H c+20.0×B c×B c×D =4815.00kN;B c──基础底面的宽度,取B c=6.00m;W──基础底面的抵抗矩,W=B c×B c×B c/6=36.00m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;经过计算得到:最大压力设计值 P max=1.2×(754.3+4815.00)/6.002+882.00/36.00=210.14kPa最小压力设计值 P min=1.2×(754,3+4815.00)/6.002-882.00/36.00=161.14kPa有附着的压力设计值 P k=1.2×(754.3+4815.00)/6.002=185.64kPa四. 地基基础承载力验算Quk =Qsk + Q pk = u ∑qsik l i + q pk * Ap=1.257 (0.35*35+1.5*40+1.8*50+6.4*70+3*50+9.95*60) +2500*0.126=2021.06kN按规范安全系数标准计算单桩竖向承载力特征值Ra = Quk/2 =1010.53 kN复合地基承载力计算桩间距4m,采用正方形或矩形布桩m =0.0157取β=0.80fsp,k=m*Ra/Ap+β*(1-m)*fs,k= 0.0157*1010.53/0.1256+0.8*(1-0.0157)*120= 218.81kPa> P K偏心荷载作用:1.2×fsp,k=262.57 kPa >P kmax=210.14kPa满足要求。
QTZ6013塔式起重机基础计算书
QTZ6013桩基础计算书一、计算依据1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-20114、《建筑结构荷载规范》GB50009-2012二、参数信息三、桩顶作用效应计算(图1)承台配筋图(图2)暗梁配筋图(图3)桩配筋图(图4)基础布置图承台及其上土的自重荷载标准值:Gk=bl(hγc+h'γ')=6.45×6.45×(1.7×25+0×19)=1768.106kN承台及其上土的自重荷载设计值:G=1.35Gk=1.35×1768.106=2386.943kN桩对角线距离:L=(ab2+al2)0.5=(3.52+3.52)0.5=4.95m1、荷载效应标准组合轴心竖向力作用下:Qk=(Gk1+Gk)/n=(779.3+1768.106)/4=636.852kN荷载效应标准组合偏心竖向力作用下:Q kmax=(Gk1+G k)/n+(M k+F Vk h)/L=(779.3+1768.106)/4+(2766+40.2×1.7)/4.95=1209 .475KNQ kmin=(Gk1+G k)/n-(M k+F Vk h)/L=(779.3+1768.106)/4-(2766+40.2×1.7)/4.95=64.22 8KN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(Fk+G)/n+(M+F v h)/L=(795.3+2386.943)/4+(1.35×2766+40.2×1.35×1.7)/4.95 =1568.602kNQ min=(Fk+G)/n-(M+F v h)/L=(795.3+2386.943)/4-(1.35×2766+40.2×1.35×1.7)/4.95=22.52kN四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14159×0.6=1.885m桩端面积:A p=πd2/4=3.14159×0.6×0.6/4=0.283m2承载力计算深度:min(b/2,5)=3.225m承台底净面积:A c=(bl-nA p)/n=(6.45×6.45-4×0.283)/4=10.118m2复合桩基竖向承载力特征值:R a=ψuΣq sia·l i+q pa·A p+ηc f ak A c=1×1.885×1803.48+1703.249×0.283+0.1×10.118×130. 06=4012.652kNQ k=636.852kN≤R a=4012.652kNQ kmax=1209.475kN≤1.2R a=1.2×4012.652=4815.182kN满足要求2、桩基竖向抗拔承载力计算Q kmin= 64.228KN≥0 kN满足要求不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=m1πd2/4=8×3.14159×18/1000×18/1000/4=0.002m2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1568.602kN桩身结构竖向承载力设计值:R=1600kNQ=1568.602kN<=R=1600kN满足要求(2)、轴心受拔桩桩身承载力Q kmin=64.228kN≥0 kN满足要求不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009,第6.2.2条:纵向钢筋的最小配筋率,对于灌注桩不宜小于0.2%~0.65%(小直径桩取最高值);对于预制桩不宜小于0.8%;对于预应力管桩不宜小于0.45%。
1#塔吊5.8米基础计算书(6515-8)
矩形板式桩基础13月13日计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性1、塔机传递至基础荷载标准值基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=5.8×5.8×(1.3×25+0×19)=1093.3kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×1093.3=1475.955kN 桩对角线距离:L=(a b2+a l2)0.5=(3.62+3.62)0.5=5.091m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(718.6+1093.3)/4=452.975kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(718.6+1093.3)/4+(2761+105.6×1.3)/5.091=1022.251kNQ kmin=(F k+G k)/n-(M k+F Vk h)/L=(718.6+1093.3)/4-(2761+105.6×1.3)/5.091=-116.301kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(970.11+1475.955)/4+(3727.35+142.56×1.3)/5.091=1380.039kN Q min=(F+G)/n-(M+F v h)/L=(970.11+1475.955)/4-(3727.35+142.56×1.3)/5.091=-157.006kN 四、桩承载力验算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2R a=ψuΣq sia·l i+q pa·A p=0.8×2.513×(5.95×160+4.6×70+5.5×100+3×140+11.1×100+6.5×160+8.5×200+0.5×250 )+8000×0.503=16528.041kNQ k=452.975kN≤R a=16528.041kNQ kmax=1022.251kN≤1.2R a=1.2×16528.041=19833.65kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=-116.301kN<0按荷载效应标准组合计算的桩基拔力:Q k'=116.301kN桩身位于地下水位以下时,位于地下水位以下的桩自重按桩的浮重度计算,桩身的重力标准值:G p=((d1-d+h z)γz+(l t-(d1-d+h z))(γz-10))A p=(((-1.25)-0+29.1)×25+(45.65-((-1.25)-0+29.1))×(25-10))×0.503=484.515kNR a'=ψuΣλi q sia l i+G p=0.8×2.513×(0.6×5.95×160+0.5×4.6×70+0.5×5.5×100+0.6×3×140+0. 5×11.1×100+0.6×6.5×160+0.6×8.5×200+0.7×0.5×250)+484.515=7613.568kN Q k'=116.301kN≤R a'=7613.568kN满足要求!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=18×3.142×162/4=3619mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1380.039kNψc f c A p+0.9f y'A s'=(0.75×16.7×0.503×106 + 0.9×(360×3619.115))×10-3=7472.668kN Q=1380.039kN≤ψc f c A p+0.9f y'A s'=7472.668kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Q min=157.006kNf y A s=(360×3619.115)×10-3=1302.881kNQ'=157.006kN≤f y A s=1302.881kN满足要求!4、桩身构造配筋计算A s/A p×100%=(3619.115/(0.503×106))×100%=0.72%≥0.65%满足要求!5、裂缝控制计算裂缝控制按三级裂缝控制等级计算。
塔吊地基承载力计算
塔吊地基承载力计算 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、基础验算基础及其上土的自重荷载标准值:G k=blhγc=6×6××25=1215kN基础及其上土的自重荷载设计值:G==×1215=1458kN荷载效应标准组合时,平行基础边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+×(M2+=×29+××6-183×12+×(1134+××45/=·mF vk''=F vk/==荷载效应基本组合时,平行基础边长方向受力:M''=×(G1R G1+G2R Qmax-G3R G3-G4R G4)+××(M2+=××29+××6-183×12)+××(1134+××45/=·mF v''=F v/==基础长宽比:l/b=6/6=1≤,基础计算形式为方形基础。
W x=lb2/6=6×62/6=36m3W y=bl2/6=6×62/6=36m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩: M kx=M k b/(b2+l2)=×6/(62+62)=·mM ky=M k l/(b2+l2)=×6/(62+62)=·m1、偏心距验算相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=+1215)/36=≥0偏心荷载合力作用点在核心区内。
塔吊基础承载力计算
塔吊基础承载力计算根据机械租赁公司提供的数据,塔吊最大支反力为1200KN(单桩)。
由于本桩机承台刚度小,对桩的约束有限,且塔吊四个支腿分别安装在四个桩顶,所以桩不考虑承台抗冲切以及群桩效应。
1、桩顶轴向压力设计值“N=F+GN=1200+1.2×25×(4×2+2×1)×0.8=1360KN2、桩承载力设计值单桩竖向承载力极限值Q uk=Q sk+Q pk=u∑q sik l i+q pk A pQ uk= Q sk+Q pk =0.6×π(2.8×20+4.5×40+2.4×40+1.6×40+5×100+3.7×50)+1400×π×0.3²Q uk=2428.6KN桩身承载力设计值R= Q sk/r s+Q pk/r p因为r s= r p=1.7R= Q uk/1.7=2428.6/1.7=1428.6 KN3、验算R0N=0.9×1360<R=1428.6 KN 满足要求其中:F——作用于桩顶承台顶面的竖向力设计值G——承台自重r0——桩基重要性系数,取0.9;N——轴心竖向力作用下基桩的竖向力设计值;R ——基桩的竖向力设计值;Q sk——单桩总极限侧阻力标准值;Q pk——单桩总极限端阻力标准值;q sik——桩侧第i层土的极限侧阻力标准值(按《建筑桩基技术规范》JGJ94——94表5.2.8.1取值)q pk——极限端阻力标准值(按《建筑桩基技术规范》JGJ94——94表5.2.8.2取值)l i——桩穿越第I层土的厚度A p——桩端面积u——桩身周长;r s、r p——分别为桩侧阻抗力分项系数、桩端阻抗力分项系数(按《建筑桩基技术规范》JGJ94——94表5.2.2取值)。
塔吊基础计算书
配重高度hp(m)
0.70
基础混凝土强度
C35
3、计算简图
二、计算过程:
1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)
f = fk+ηb×r×( b-3)+ηd×rm×( d-0.5)=
208.12
kN/m2
其中:
基础宽度的地基承载力修正系数ηb=
0.3
基础深度的地基承载力修正系数ηd=
fy为钢筋的抗拉、抗压强度设计值查规范
fy=
300
N/mm2
最小配筋面积
Asmin=ρbh=
9375
mm2
其中:
ρ为基础最小配筋率
0.0015
查表得配筋
Φ28 @ 125双向
截面积As(mm2)
13816
mm2
满足要求
冲击承载力Fl≤0.7βhpft×bm×ho=
3512507
N
其中:
βhp为受冲切承载力截面高度影响系数
0.94
ft为混凝土的抗拉强度设计值查表得ft=
1.57
N/mm2
c的取值:
1.6
m
bm为冲切破坏最不利一侧计算长度
bm=(c+bb)/2=
2.81
m
bb==c+2h0=
4.02
m
h0为截面有效高度h0=h-as=
Pmax=2×(F2+G1+G2+G3)/(3×l×a)=
165.01
kN/m2
Pmax
<
1.2f=
249.75
kN/m2
基础底面处的平均压力值Pk
Pk=Pmax/2=
82.50
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔吊基础承载力计算书
编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。
为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。
地质报告中风化泥岩桩端承载力为P=220Kpa。
按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。
一、塔吊基础承载力验算
1、单桩桩端承载力为:
F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T
2、四根桩端承载力为:
4×F1=4×24.87=99.48T
3、塔吊重量51T(说明书中参数)
基础承台重量:5.2×5.2×1.3×2.2=77.33T
塔吊+基础承台总重量=51+77.33=128.33T
4、基础承台承受的荷载
F2=5.2×5.2×4.0=108.16T
5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T
所以塔吊基础承载力满足承载要求。
二、钢筋验算
桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。
验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。
Fc=14.3/mm2(砼轴心抗压强度设计值)
Acor=π×r2/4(构件核心截面积)
=π×11002/4=950332mm2
fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值)
AS’=23×π×r2/4=23×π×162/4
=4624mm2(全部纵向钢筋截面积)
x=1.0(箍筋对砼约束的折减系数,50以下取1.0)
fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值)
dCor=1100mm (箍筋内表面间距离,即核心截面直径)
Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积)
S螺旋箍筋间距200mm
A’sso=πdCorAssx/s
=π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式
N≤0.9(fcAcor+fy’AS’+2xfyAsso)=0.9(14.3×950332+300×4624+2×1.0×210×867.65)=15341360.6N 248.7KN<12382.87KN
经验算钢筋混凝土抗拉满足要求。
一个塔吊天然基础的计算
一、设计原理:
GB/T13752-92《塔式起重机设计规范》第4.6.3条对固定式基础设计要求如下:
固定式塔式起重机(简称塔吊)使用的混凝土基础必须能承受工作状态和非工作状态下的最大荷载,并必须满足起重机抗倾覆稳定性的要求,故必须满足以下几点设计要求:
1、塔吊基础承载力验算;
2、塔吊地基承载力验算;
3、塔吊基础受弯承载力验算。
二、塔吊基础及地基验算:
1、塔吊基础承载力验算参数信息:
塔吊型号TZ5012;自重(包括压重)F1=297.80kN;最大起重荷载F2=50.00kN;塔吊倾覆力距M=1035.3kN.m;塔吊起重高度H=30m;塔身宽度B=1.60m;混凝土强度等级:C35;基础埋深D=1.80m;基础最小厚度h=1.40m;基础最小宽度b=5.60m(十字形基础对角线长),混凝土基础的最小承压能力p=12MPa。
2、基础最小尺寸计算:
基础的最小厚度取:H=1.40m;
基础的最小宽度取:b=5.60m。
3、塔吊基础承载力计算:
依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算,计算简图如下:
当不考虑附着时的基础设计值计算公式(本工程为独立式塔吊,故仅考虑没有附着时的基础验算):其中F?塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=347.8kN;
G?基础自重与基础上面的土的自重,G=1443kN;
Bc?基础底面的宽度,取Bc=5.60m;
W?基础底面的抵抗矩,W=Bc×Bc×Bc/6=29.3m3;
M?倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1035.3kN.m。
经过计算得到:
无附着的最大压力设计值Pmax=92.4MPa
无附着的最小压力设计值Pmin=21.8MPa
Pmin=21.8MPa>p=12MPa
∴塔吊混凝土基础承压能力满足要求。
4、地基基础承载力验算:
地基基础承载力特征值计算依据《建筑地基基础设计规范》GB 50007-2002第5.2.3条,计算公式如下:其中fa?修正后的地基承载力特征值(kN/m2);
fak?地基承载力特征值,取280kN/m2;
ηb?基础宽度地基承载力修正系数,取0.30;
ηd?基础埋深地基承载力修正系数,取1.60;
γ?基础底面以下土的重度,取20.00kN/m3;
γm?基础底面以上土的重度,取20.00kN/m3;
b?基础底面宽度,取5.60m;
d?基础埋深度,取1.80m。
解得地基承载力设计值fa=337.2kPa
实际计算取的地基承载力设计值为:fa=337.2kPa
地基承载力特征值fa小于最大压力设计值Pmax=92.4kPa
∴塔吊基础的地基承载力满足要求。
5、基础偏心距a计算:
6、承台截面主筋的计算:
依据《混凝土结构设计规范》(GB50010-2002)第7.5条受弯构件承载力计算,本工程中塔吊基础为了节省混凝土,经塔吊厂家及安装单位同意,将塔吊基础优化成了“十”字形台式基础,在配筋计算过程中,仍按矩形基础计算计算,将“十”字形台式基础转化成B×L×H=5.60×5.60×1.3m的矩形基础,计算公式如下:
其中M?计算截面处的弯矩设计值(kN.m);
K?安全系数,取1.4;
h0?承台计算截面处的计算高度,h0=1260mm;
fy?钢筋受拉强度设计值,fy=310N/mm2。
弯矩设计值M=1035kN.m,配筋面积As=2945mm2
故根据厂家提供的塔吊基础配筋图:塔吊基础底主筋配Φ14@200,基础底分布筋配φ8@500,基础顶主筋配Φ14@200,基础顶分布筋配φ8@500能符合要求。
具体配筋详见附图《塔吊基础施工图》。
三、塔吊基础施工时的技术要求:
1、在塔吊基础的挖土过程中,必须放出足够大的坡度;
2、基坑开挖完毕后,立即浇捣砼垫层;
3、塔吊基础中所有预埋件由塔吊安装专业人员进行预埋;
4、基础的土质应坚硬,要求承载力不小于120KN/m2;
5、基础顶面要用水泥砂浆打平,用水准仪校平,平面度误差不超过1/500;
6、做好塔吊基础的施工检查和记录,锚柱埋置要准确,在砼灌注前、灌注中及灌注后要仔细复核螺栓埋置尺寸,确保上部结构的顺利安装。
经验收合格后,再进行上部塔机的安装。
7、由于塔吊基础顶面标高为-2.40m,低于自然地坪1800mm,故对塔吊基坑位置四周应搭设钢管架进行临边围护并设置通道。