塔吊基础种类与计算书

合集下载

塔吊基础计算书

塔吊基础计算书

CG5512塔吊基础计算书1.工程概况(略)2.塔吊基础构造塔吊采用CGT5512附着式塔式起重机,工作臂长40米,最大起重量6吨,最大起重力矩为800千牛米。

扶墙设置一道。

塔吊基础采用C30钢筋混凝土基础,基础平面尺寸为6mX6m,基础深度为1.5m。

地基承载力不小于200Kpa。

图1. 塔吊基础构造图3.塔吊基础设计3.1设计规范《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009《混凝土结构设计规范》GB50010-2010《建筑桩基技术规范》JGJ94-2008《建筑地基基础设计规范》GB50007-20113.2设计荷载工作工况:塔机自重标准值Fk1:449kN;起重荷载标准值Fqk(kN):60 kN;竖向荷载标准值Fk:509 kN;水平荷载标准值Fvk:31 kN;倾覆力矩标准值Mk:1039 kN·m。

非工作工况:竖向荷载标准值Fk:449 kN;水平荷载标准值Fvk:71 kN;倾覆力矩标准值Mk:1668 kN·m。

3.2.2.钢筋混凝土容重: 25KN/m34.结构计算4.1工作工况4.1.1荷载数据(1)作用在基础底部中心的荷载基础自重及上部土重标准值: G k = γm×b×l×d = 20.00×6.00×6.00×1.50 = 1080.00kN 基础自重及上部土重设计值: G = 1.35×G k = 1.35×1080.00= 1458.00kN(2)作用在基础底部的荷载标准组合荷载:F k = 509.00kNM kx = -662.30kN.mM ky = 46.50kN.m(3)作用在基础底部的荷载基本组合荷载:F = 687.15kNM x = -894.11kN.mM y = 62.77kN.m4.1.2荷载标准组合下的地基反力基础底面面积: A = b×l = 6.00×6.00=36.00m2荷载在X方向和Y方向都存在偏心基底最小反力标准值:p kmin = F k + G kA-|M kx|W x-|M ky|W y=509.00 + 1080.0036.00-662.3036.00-46.5036.00= 24.45kPa>0kPa 基底最大反力标准值:p kmax = F k + G kA+|M kx|W x+|M ky|W y=509.00 + 1080.0036.00+662.3036.00+46.5036.00= 63.83kPa4.1.3荷载基本组合下的地基反力荷载在X方向和Y方向都存在偏心基底最小反力设计值:p min = F + GA-|M x|W x-|M y|W y=687.15 + 1458.0036.00-894.1136.00-62.7736.00= 33.01kPa>0kPa 基底最大反力设计值:p max = F + GA+|M x|W x+|M y|W y=687.15 + 1458.0036.00+894.1136.00+62.7736.00= 86.17kP4.1.4地基承载验算修正后的地基承载力特征值: f a = 228.00kPa基底平均反力标准值: p k=44.14 kPa≤ f a=228.00kPa,满足要求基底最大反力标准值: p kmax=63.83kPa≤ 1.2f a=1.2×228.00=273.60kPa,满足要求4.1.5基础抗冲切验算(1)冲切验算公式按《建筑地基基础设计规范》(GB50007-2011)下列公式验算:F l≤ 0.7βhp f t a m h0(8.2.8-1)αm = (a t+a b)/2 (8.2.8-2)F l = p j A l(8.2.8-3)冲切力F1根据作用在基底净反力设计值求得,计算时pj取基底最大净反力对于多工况,冲切力为F1为各工况中的最大值验算柱对冲切时,对冲切锥体的每一侧面均按上述公式计算抗冲切力。

塔吊四桩基础的计算书(TC7020)

塔吊四桩基础的计算书(TC7020)

(TC7020)塔吊四桩基础的计算书依据《塔式起重机混凝土基础工程技术规程》(JGJ/T 187-2009)。

二. 荷载计算1. 自重荷载及起重荷载1) 塔机自重标准值F k1=1260kN2) 基础以及覆土自重标准值G k=4.5×4.5×1.60×25=810kN3) 起重荷载标准值F qk=160kN2. 风荷载计算1) 工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (Wo=0.2kN/m 2)W k=0.8×1.59×1.95×1.2×0.2=0.60kN/m2q sk=1.2×0.60×0.35×2=0.50kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.50×46.50=23.25kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×23.25×46.50=540.62kN.m2) 非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值 (本地区 Wo=0.35kN/m 2)W k=0.8×1.62×1.95×1.2×0.35=1.06kN/m2q sk=1.2×1.06×0.35×2.00=0.89kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=0.89×46.50=41.46kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=0.5×41.46×46.50=963.93kN.m3. 塔机的倾覆力矩工作状态下,标准组合的倾覆力矩标准值M k=1639+0.9×(1400+540.62)=3385.55kN.m非工作状态下,标准组合的倾覆力矩标准值M k=1639+963.93=2602.93kN.m三. 桩竖向力计算非工作状态下:Q k=(F k+G k)/n=(1260+810.00)/4=517.50kNQ kmax=(F k+G k)/n+(M k+F vk×h)/L=(1260+810)/4+Abs(2602.93+41.46×1.60)/4.95=1056.85kNQ kmin=(F k+G k-F lk)/n-(M k+F vk×h)/L=(1260+810-0)/4-Abs(2602.93+41.46×1.60)/4.95=-21.85kN工作状态下:Q k=(F k+G k+F qk)/n=(1260+810.00+160)/4=557.50kNQ kmax=(F k+G k+F qk)/n+(M k+F vk×h)/L=(1260+810+160)/4+Abs(3385.55+23.25×1.60)/4.95=1249.11kNQ kmin=(F k+G k+F qk-F lk)/n-(M k+F vk×h)/L=(1260+810+160-0)/4-Abs(3385.55+23.25×1.60)/4.95=-134.11kN四. 承台受弯计算1. 荷载计算不计承台自重及其上土重,第i桩的竖向力反力设计值:工作状态下:最大压力 N i=1.35×(F k+F qk)/n+1.35×(M k+F vk×h)/L=1.35×(1260+160)/4+1.35×(3385.55+23.25×1.60)/4.95=1412.92kN 最大拔力 N i=1.35×(F k+F qk)/n-1.35×(M k+F vk×h)/L=1.35×(1260+160)/4-1.35×(3385.55+23.25×1.60)/4.95=-454.42kN 非工作状态下:最大压力 N i=1.35×F k/n+1.35×(M k+F vk×h)/L=1.35×1260/4+1.35×(2602.93+41.46×1.60)/4.95=1153.38kN最大拔力 N i=1.35×F k/n-1.35×(M k+F vk×h)/L=1.35×1260/4-1.35×(2602.93+41.46×1.60)/4.95=-302.88kN2. 弯矩的计算依据《塔式起重机混凝土基础工程技术规程》第6.4.2条其中 M x,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──不计承台自重及其上土重,第i桩的竖向反力设计值(kN)。

塔吊基础计算书典范

塔吊基础计算书典范

一、QTZ5013塔吊天然基础的计算书1、地基承载力计算1.1塔基在独立状态时,作用于基础的荷载应包括塔机作用于基础顶的竖向荷载标准值(F k)、水平荷载标准值(F vk)、倾覆力矩(包括塔机自重、起重荷载、风荷载等引起的力矩)荷载标准值(M k)、扭矩荷载标准值(T k),以及基础及其上土的自重荷载标准值(G k)。

1.2矩形基础地基承载力计算应符合下列规定:1、基础底面压力应符合:1)、当轴心荷载作用时:p k≤f a=200kpa式中:p k ------相当于荷载效应便准组合时,基础底面处的平均压力值;f a -------修正后的地基承载力特征值。

2)、当偏心荷载作用时,除符合上式外,尚应符合下列要求:p kmax≤1.2 f a=1.2*200=240 kpa 式中:p kmax -------相应于荷载效应标准组合时,基础底面边缘的最大压力值。

2、基础底面的压力可按下列公式确定:1)当轴心荷载作用时:p k=(F k+G k)/bl=(842.4+1108.404)/(5*5)=78.03216 kn/m2≤240 kpa 故,符合要求。

式中:F k -----塔机作用于基础顶面的竖向荷载标准值;G k -----基础及其上土的自重标准值;b-------矩形基础底面的短边长度;l--------矩形基础底面的长边长度。

2)当偏心荷载作用时:p kmax=(F k+G k)/bl+(M k+F vk•h)/W=(842.4+1108.404)/(5*5)+(882+4*1.35)/20.83=78.03216+42.6=120.63 kn/m2≤1.2 f a 符合要求。

式中:M k-------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值;F vk-------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载值;h-------基础的高度;W--------基础底面的抵抗矩。

塔吊基础计算书

塔吊基础计算书

塔吊基础方案一、塔吊基础选择铺设混凝土基础的地基应能承受0.2MPa的压力,本工程强风化砂岩加泥层的承载力达0.25MPa,满足塔吊基础对地基承载力的要求,且该土层也是建筑物基础所在土层,以该土层作塔吊基础的持力层,既能满足塔吊使用要求,也不会有基坑开挖时引起塔吊基础变形的问题。

因塔吊基础上表面在自然地面以下,为保证基础上表面处不积水,将场地排水沟与塔吊基础相连通。

沿塔吊基础四周砖砌300×500排水沟,与场地排水沟相连并及时排除,确保塔吊基础不积水。

塔吊基础配筋及预埋件等均按使用说明书。

二、QTZ63塔吊基础计算书(一)参数信息塔吊型号:QTZ63,自重(包括压重)F1=450.80kN,最大起重荷载F2=60.00kN,塔吊倾覆力距M=630.00kN.m,塔吊起重高度=70.00m,塔身宽度B=1.50m,混凝土强度等级:C35,基础埋深D=0.2m,基础最小厚度h=1.5m,基础最小宽度Bc=5.00m。

(二)基础最小尺寸计算基础的最小厚度取:H=1.5m基础的最小宽度取:Bc=5.00m(三)塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设计值计算公式:当考虑偏心距较大时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=1.2×510.8=612.96kN;G──基础自重与基础上面的土的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc ×Bc×D) =1245kN;Bc──基础底面的宽度,取Bc=5.00m;W──基础底面的抵抗矩,W=Bc×Bc×Bc/6=20.83m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=5.00/2-882.00/(612.96+1245)=1.93m。

塔吊基础设计计算书

塔吊基础设计计算书

塔吊基础设计计算书四桩基础计算一、塔吊的基本参数信息塔吊型号:QTZ63,塔吊起升高度H=101.00m,塔吊倾覆力矩M=630.00kN.m,混凝土强度等级:C35,塔身宽度B=2.50m,基础以上土的厚度D=1.50m,自重F1=450.80kN,基础承台厚度Hc=1.00m,最大起重荷载F2=60.00kN,基础承台宽度Bc=4.00m,桩钢筋级别:II级钢,桩直径或者方桩边长=0.60m,桩间距a=3.50m,承台箍筋间距S=200.00mm,承台砼的保护层厚度=50.00mm。

二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F1=450.80kN,塔吊最大起重荷载F2=60.00kN,作用于桩基承台顶面的竖向力F=1.2×(F1+F2)=612.96kN,塔吊的倾覆力矩M=1.4×630.00=882.00kN。

三、矩形承台弯矩及单桩桩顶竖向力的计算图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算依据《建筑桩技术规范》JGJ94-94的第5.1.1条。

其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=612.96kN;G──桩基承台的自重G=1.2×(25×Bc×Bc×Hc/4+20×Bc×Bc×D/4)=1.2×(25×4.00×4.00×1.00+20×4.00×4.00×1.50)=1056.00kN;Mx,My──承台底面的弯矩设计值,取882.00kN.m;xi,yi──单桩相对承台中心轴的XY方向距离a/2=1.75m;Ni──单桩桩顶竖向力设计值(kN);经计算得到单桩桩顶竖向力设计值,最大压力:N=(612.96+1056.00)/4+882.00×1.75/(4×1.752)=543.24kN 。

塔吊基础计算书

塔吊基础计算书

塔机基础计算书一、参数信息塔吊型号 :QTZ63C (5510),塔吊起升高度 H=40.00m , 塔吊倾覆力矩 M=1552kN.m ,混凝土强度等级 :C35, 塔身宽度 B=1.6m ,最大起重荷载 F2=60kN 自重 F1=456kN , 基础承台厚度 h=1.35m , 基础承台宽度 Bc=5.00m , 二、塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第 5.2 条承载力计算。

计算模型简图如下图所示:当不考虑附着时的基础设计值计算公式:Pmax=F+GB c2+M W Pmin =F+GB c2−MW当考虑偏心矩较大时的基础设计值计算公式:P kmax=2(F +G )3B c a式中 F ──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载 F=(F1+ F2)× 1.2=619.2kN ;(恒载系数取 1.2 ) G ──基础自重与基础上面的土的自重:G=1.2x25.0xBcxBcxHc =750kN /907.5 kN ;(恒载系数取 1.2) Bc ──基础底面的宽度,取Bc=5.00m/5.5m ; W ──基础底面的抵抗矩,WM ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩 M=1.4×1552 =2172.80kN.m ;(安全系数取 1.4 ) a ──合力作用点至基础底面最大压力边缘距离(m) ,按下式计算:a= Bc / 2 - M / (F + G)=5/2-2172.8/(612.96+750)=0.906m a= Bc / 2 - M / (F + G)=5.5/2-2172.8/(612.96+907.5)=1.32 m 。

2经过计算得到 : 无附着的最大压力设计值Pmax=(612.96+750)/52+2172.8/20.83=158.83kPa ; Pmax=(612.96+907.5)/5.52+2172.8/27.7=128.7kPa;无附着的最小压力设计值Pmin=(612.96+750)/ 52-2172.8/20.83=-49.79kPa; Pmin=(612.96+907.5)/ 5.52-2172.8/27.7=-28.18kPa ;偏心矩较大时压力设计值Pkmax=2 x(612.96+750)/(3×5×0.906)=200.58kPa 。

1#、2#、5#塔吊基础计算书

1#、2#、5#塔吊基础计算书

矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值塔身自重G0(kN) 540起重臂自重G1(kN) 83起重臂重心至塔身中心距离R G1(m) 25小车和吊钩自重G2(kN) 5.1小车最小工作幅度R G2(m) 15最大起重荷载Q max(kN) 60最大起重荷载至塔身中心相应的最大距离R Qmax(m) 20.2最小起重荷载Q min(kN) 15最大吊物幅度R Qmin(m) 60最大起重力矩M2(kN·m) Max[60×20.2,15×60]=1212k承台底标高(m) -2.7基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=3.6×3.6×(1.4×25+0×19)=453.6kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×453.6=544.32kN桩对角线距离:L=(a b2+a l2)0.5=(2.12+2.12)0.5=2.97m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(849.5+453.6)/4=325.775kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(849.5+453.6)/4+(1792+73.297×1.4)/2.97=963.725kN Q kmin=(F k+G k)/n-(M k+F Vk h)/L=(849.5+453.6)/4-(1792+73.297×1.4)/2.97=-312.175kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(1019.4+544.32)/4+(2588.716+102.616×1.4)/2.97=1310.97kN Q min=(F+G)/n-(M+F v h)/L=(1019.4+544.32)/4-(2588.716+102.616×1.4)/2.97=-529.11kN 四、桩承载力验算桩身周长:u=πd=3.14×0.7=2.199m桩端面积:A p=πd2/4=3.14×0.72/4=0.385m2R a=ψuΣq sia·l i+q pa·A p=0.8×2.199×(2.2×20+4.9×20+5.5×25+12.4×30)+0×0.385=1146.179kNQ k=325.775kN≤R a=1146.179kNQ kmax=963.725kN≤1.2R a=1.2×1146.179=1375.414kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=-312.175kN<0按荷载效应标准组合计算的桩基拔力:Q k'=312.175kN桩身位于地下水位以下时,位于地下水位以下的桩自重按桩的浮重度计算,桩身的重力标准值:G p=l t A p(γz-10)=25×0.385×(25-10)=144.317kNR a'=ψuΣλi q sia l i+G p=0.8×2.199×(0.6×2.2×20+0.7×4.9×20+0.5×5.5×25+0.5×12.4×30)+14 4.317=759.629kNQ k'=312.175kN≤R a'=759.629kN满足要求!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=12×3.142×202/4=3770mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1310.97kNψc f c A p+0.9f y'A s'=(0.75×17×0.385×106 + 0.9×(360×3769.911))×10-3=6177.353kN Q=1310.97kN≤ψc f c A p+0.9f y'A s'=6177.353kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Q min=529.11kNf y A S=360×3769.911×10-3=1357.168kNQ'=529.11kN≤f y A S=1357.168kN满足要求!4、桩身构造配筋计算A s/A p×100%=(3769.911/(0.385×106))×100%=0.98%≥0.65%满足要求!五、承台计算承台配筋承台底部长向配筋HRB400 Φ25@150承台底部短向配筋HRB400 Φ25@150承台顶部长向配筋HRB400 Φ25@150承台顶部短向配筋HRB400 Φ25@150暗梁配筋承台梁上部配筋HRB400 6Φ25承台梁腰筋配筋HRB400 4Φ20承台梁底部配筋HRB400 6Φ25承台梁箍筋配筋HRB400 Φ10@200承台梁箍筋肢数n 4 暗梁计算宽度l'(m) 0.91、荷载计算塔身截面对角线上的荷载设计值:F max=F/4+M/(20.5B)=1019.4/4+2588.716/(20.5×2)=1170.099kNF min=F/4-M/(20.5B)=1019.4/4-2588.716/(20.5×2)=-660.399kN剪力图(kN)弯矩图(kN·m)V max=1126.34kN,M max=43.781kN·m,M min=-79.97kN·m2、受剪切计算截面有效高度:h0=h-δc-D/2=1400-50-25/2=1337mm受剪切承载力截面高度影响系数:βhs=(800/1337)1/4=0.88塔吊边至桩边的水平距离:a1b=(a b-B-d)/2=(2.1-2-0.7)/2=-0.3ma1l=(a l-B-d)/2=(2.1-2-0.7)/2=-0.3m 计算截面剪跨比:λb'=a1b/h0=-0.3/1.337=-0.224,取λb=0.25;λl'= a1l/h0=-0.3/1.337=-0.224,取λl=0.25;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.25+1)=1.4αl=1.75/(λl+1)=1.75/(0.25+1)=1.4βhsαb f t l'h0=0.88×1.4×1570×0.9×1.337=2326.169kNβhsαl f t l'h0=0.88×1.4×1570×0.9×1.337=2326.169kNV=1126.34kN≤min(βhsαb f t bh0,βhsαl f t lh0)=2326.169kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=2+2×1.337=4.674ma b=2.1m≤B+2h0=4.674m,a l=2.1m≤B+2h0=4.674m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台梁底部配筋αS1= M min/(α1f c l'h02)=79.97×106/(1.03×16.7×900×13372)=0.003ζ1=1-(1-2αS1)0.5=1-(1-2×0.003)0.5=0.003γS1=1-ζ1/2=1-0.003/2=0.999A S1=M min/(γS1h0f y1)=79.97×106/(0.999×1337×360)=167mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A1=max(A S1, ρlh0)=max(167,0.002×900×1337)=2407mm2梁底部实际配筋:A S1'=2946mm2≥A S1=2407mm2满足要求!(2)、承台梁上部配筋αS2= M max/(α2f c l'h02)=43.781×106/(1.03×16.7×900×13372)=0.002ζ2=1-(1-2αS2)0.5=1-(1-2×0.002)0.5=0.002γS2=1-ζ2/2=1-0.002/2=0.999A S1=M max/(γS2h0f y2)=43.781×106/(0.999×1337×360)=92mm2最小配筋率:ρ=max(0.2,45f t/f y2)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁上部需要配筋:A2=max(A S2, ρl'h0)=max(92,0.002×900×1337)=2407mm2 梁上部实际配筋:A S2'=2946mm2≥A S2=2407mm2满足要求!(3)、梁腰筋配筋梁腰筋按照构造配筋4Φ20(4)、承台梁箍筋计算箍筋抗剪计算截面剪跨比:λ'=(L-20.5B)/(2h0)=(3.6-20.5×2)/(2×1.337)=0.289取λ=1.5混凝土受剪承载力:1.75f t l'h0/(λ+1)=1.75×1.57×0.9×1.337/(1.5+1)=1.322kN V max=1126.34kN>1.75f t l'h0/(λ+1)=1.322kNnA sv1/s=4×(3.142×102/4)/200=1.571V=1126.34kN≤0.7f t l’h0+1.25f yv h0(nA sv1/s)=0.7×1.57×900×1337+1.25×360×1337×1.571=2267.496 kN满足要求!配箍率验算ρsv=nA sv1/( l's)=4×(3.142×102/4)/(900×200)=0.175%≥p sv,min=0.24f t/f yv=0.24×1.57/360=0.105%满足要求!(5)、板底面长向配筋面积板底需要配筋:A S1=ρbh0=0.002×3600×1337=9627mm2承台底长向实际配筋:A S1'=12272mm2≥A S1=9627mm2满足要求!(6)、板底面短向配筋面积板底需要配筋:A S2=ρlh0=0.002×3600×1337=9627mm2承台底短向实际配筋:A S2'=12272mm2≥A S2=9627mm2满足要求!(7)、板顶面长向配筋面积承台顶长向实际配筋:A S3'=12272mm2≥0.5A S1'=0.5×12272=6136mm2 满足要求!(8)、板顶面短向配筋面积承台顶长向实际配筋:A S4'=12272mm2≥0.5A S2'=0.5×12272=6136mm2 满足要求!(9)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书一、编制依据2.1、《塔式起重机使用说明书》2.2《岩土工程勘察报告》2.3《建筑地基基础设计规范》(GB50007-2002)2.6《地基与基础施工及验收规范》(GBJ202-83)2.7《混凝土结构设计规范》(GB50010-2002)2.8《混凝土结构工程施工及验收规范》(GB50204-92)二、工程概况一、计算系数塔吊型号:广西QTZ80(TCT5512)工作幅度:50m;塔吊起升高度:128.50m;塔身宽度B:1.7m;标准节长度b:5.0m; 塔吊自重(包括压重)G:777KN,最大起重荷载Q:60KN。

主弦杆材料:角钢/方钢;宽度/直径C:120mm;定额起重力矩Me:885K N·M;基础所受水平力:30KN;基础形式:桩承台;承台宽度Bc:3.60m;承台高度Hc:1.0m;承台砼强度等级:C30;承台钢筋级别:HPB235,HRB400;所处城市:广西玉林市,基本风压W0:0.25kn/㎡;地面粗糙度类别:C类有密集建筑群的城市郊区,风荷载高度变化系数Hz:1.7。

二、塔吊对基础中心作用力的计算按受力最大的塔吊自由高度44m计算1、塔吊竖向力计算:塔吊自重G: G=523KN塔吊最大起重荷载Q:Q=60KN作用于塔吊基础的竖向力Fk: Fk=Q+G=60+523=583KN2、塔吊风荷载计算:依据《建筑结构荷载规范》(GB5009-2001)中风荷载体型系数:地处广西玉林市,基本风压力W0=0.25KN/㎡查表得风荷载高度变化系数μz: μz=1.178挡风系数计算ψ=[3B+2b+(4B2+b2/4)1/2].C/B.b=[3×1.7+2×5+(4×1.72+52/4) 1/2]×0.12/1.7×5=0.273塔吊主材料是角钢/方钢,体形系数μs =2.481风振系数βz:βz=1.0风荷载设计值为:W=0.8βz×μs×μz×W0=0.8×1.0×2.481×1.178×0.25=0.585KN/㎡3、塔吊基础所受弯矩的计算:风荷载对塔吊基础产生的弯矩计算Mw=W×ψ×B×H×H×0.5=0.585×0.273×1.7×44×44×0.5=262.81KN-mMkmax=Mw+Mc+P×hc=261.81KN.m+989 KN.m+30 KN×1.0m=1280.81 KN.m三、承台内暗置挑梁配筋计算暗梁宽度b: 500mm, 暗梁高度h: 1000mm作用于桩基承台顶面的竖向力F: F=1.2Fk=1.2×583kn=699.6 kn作用于桩基承台顶面的弯矩M: M=Mw+M c=261.81 KN.m +989 KN.m =1250.81 KN.m暗梁端承受的竖向力Fh: Fh=F/4=699.6kn/4=174.9 KN暗梁端承受的弯矩Mv: Mv=M/2=1250.81 KN.m /2=625.41 KN.m圆桩直径1250mm等效为方桩a: a=1250mm×0.8=1000mm计算简图:不考虑梁另一端竖向力产生的反向力弯矩作用,偏于安全,梁计算截面处的弯矩M1:M1=(Mv+Fn×0.19m)=(625.41 KN.m +174.9 KN×0.19m)=658.641 KN.m1、梁截面配筋计算依据《砼结构设计规范》(GB50010-2002)第7.5条受弯构件承载力计算,采用双排配筋。

塔吊基础计算书

塔吊基础计算书

塔吊分项参数计算塔吊是施工场地最重要的施工机械之一,其使用贯穿了整个工程。

在这过程中间隔时间长,不可预见性因素多,为确保塔吊的安全,以下计算都按极限苛刻条件下能保证塔吊正常工作计算。

即:塔吊设置在最大开挖深度处;型钢柱与混凝土灌注桩连接按光滑面锚固。

(计算详值见计算表格) 1. 基础竖向极限承载力计算F=F1+ F2F ——基础竖向极限承载力kn F1——塔吊自重(包括压重)kn F2最大起吊重量kn 2.单桩抗压承载力、抗拔力计算桩顶竖向力的计算(依据《建筑桩技术规范》JGJ94-94的第条)F 十。

iV V-A- M =1.2 —±士 弱尹2" Z* ("+”计算结果为抗压,“-”为抗拔)其中 N i ——单桩桩顶竖向力设计值kNn 单桩个数,n=4;F ——作用于桩基承台顶面的竖向力设计值TG ——塔吊基础重量KNMx,My 承台底面的弯矩设计值kN.mxi,yi 单桩相对承台中心轴的XY 方向距离mM ——塔吊的倾覆力矩kN.m3.桩长以及桩径计算 桩采用钻孔灌注桩R =f A +U £ f l >R = N xgk 实际 ppp s ii1U P =n d其中Rk 实际一一实际钻孔灌注桩承载能力KN桩端面承载能力KN桩侧摩擦阻力总和IUp£fsliKNR——单桩轴向承力安全值KN孔一一桩安全系数取2d桩直径m4.桩抗拔验算Ok=入RQk八k实际5.桩配筋计算桩身配筋率可取0.20%〜0.65% (计算取上限0.65%),抗压主筋不应少于6①10,箍筋采用不少于①6@3mm的螺旋箍筋,在桩顶5倍桩身直径范围内箍筋①6@1mm,每隔2m设一道2①12焊接加强箍筋。

As = S桩截面*配筋率n = 4As/ (n 巾2)其中n ——竖筋根数根As ——钢筋总截面积m①一一竖筋直径m6.桩上部钢支柱计算钢支柱采用 hxbxtwxt = 350 * 350 x 12 x 19, H 型钢。

塔吊专项方案计算书

塔吊专项方案计算书

一、工程概况本工程位于我国某城市,项目名称为“XX住宅小区”。

该住宅小区占地面积约12万平方米,总建筑面积约30万平方米,包含多层住宅、小高层住宅和配套设施等。

为确保施工过程中的垂直运输需求,本项目拟采用QTZ80型塔吊进行施工。

二、塔吊选型及基础设计1. 塔吊选型:根据施工现场实际情况,塔吊型号选为QTZ80型,其主要参数如下:- 起重量:80t- 起升高度:120m- 跨度:60m2. 基础设计:- 基础类型:独立基础- 基础尺寸:长×宽×高= 6m×6m×1.5m- 混凝土强度等级:C30- 混凝土用量:约18.6m³三、计算依据1. 《建筑地基基础设计规范》(GB50007-2011)2. 《塔式起重机设计规范》(GB/T5031-2010)3. 《混凝土结构设计规范》(GB50010-2010)四、计算内容1. 地基承载力计算:- 根据地质勘察报告,地基承载力特征值fak=180kPa。

- 基础底面积A = 6m×6m = 36m²。

- 基础埋深d = 0.75m。

- 计算基础承载力Fk = fak × A = 180kPa × 36m² = 6480kN。

2. 塔吊基础配筋计算:- 基础顶面配筋:主筋4Φ20,箍筋Φ10@150。

- 基础底面配筋:主筋4Φ20,箍筋Φ10@150。

- 计算混凝土受压区高度x:- 混凝土强度等级C30,f'c = 14.3N/mm²。

- 抗拉强度设计值f_t = 1.43N/mm²。

- 计算混凝土截面面积A = 6m×6m = 36m²。

- 计算配筋率ρ = (4×4×3.14×20²×1.43) / (36×1000) = 0.033。

- 计算受压区高度x = (0.5 × 14.3 × 36 × 0.033) / (1.43 × 20²) = 0.26m。

塔吊基础、承台承载力计算书

塔吊基础、承台承载力计算书

塔吊基础、承台承载力计算书一、概况根据本工程的情况采用一台江苏正兴建设机械有限公司生产的QTZ40B型塔式起重机负责整个工程的货物垂直运输,该型号的塔机的技能参数及技术指标如下:(详细塔吊性能见使用说明书)。

最大工作幅度:40m起升高度:50m额定起重力矩:400kN最大重力力矩:400KN基础承受的荷载:二、桩基础,承台栽力计算1、单桩验算本工程塔吊基础采用4ф600四根灌注桩,桩长l=20m,按下图布置:桩顶偏心竖向作用下:N max=(F+G)/n+M x y max/Σy i2+M y x max/Σx i=630/4+453*1.25/(1.252+1.252)+453*1.1/2.2=157.5+181.2+249.15=587.85KN所以单桩的竖向承载力应满足R≥1.2N max=1.2*587.85=705.42KN桩身暂按构造筋配置取8Ф16R=ф(f c A+f y’A s’)=0.36*(15*3.14*3002+210* 3.14*82*8)=1647KN ≥705.42KN符合要求当塔吊大臂方向移至与基础成45度斜角时,为单桩承受最大荷载处此时:Q=(F+G)/n=1.2*(240+24*3.6*3.6*1.25)/4=188.64KN ≤R=1556KNQmax=Q+M*Xmax/ Σx i2=188.64+453*1.54/1.542=482.8kN≤R=1647KNQmin= Q-M*Xmax/ Σx i2=188.64-294.2=-105.36kN≤R=1647KN2、承台强度验算承台采用C30混凝土,轴心抗压强度设计值fc=15N/mm2,Ⅱ级钢筋,fy=310/mm21、h=1250mm,h0=1250-50=1200mm2、各桩均在破坏锥体范围内,不必作冲切验算3、抗剪强度验算:V=0.006f c b m h0=0.006*10*3600*1200=2592KN≥R=1647KN4、承台配筋:As=M/(0.9h0fy)=453*106/0.9*1200*310=1354mm2单位长度内的配筋面积:As=1354/3.6=376 mm2选Φ12 @ 120双向双层布置5、水平剪力H=βd2(1.5d2+0.5d)1/5(1+Q min/(2.1γf t A)=3.6*0.62(1.5*0.62+0.5*0.6)1/5(1+0/2.1*453*3.14*0.32) =1.32kN<10/4=2.5kN所以需配抗弯钢筋As=M/fy(h0-As’)=2.5*4.0*106/(210*(550-402)) =318mm2600桩实配钢筋:主筋13Ф16,间距145mm,长20米。

塔吊基础计算书(CFG桩复合地基)

塔吊基础计算书(CFG桩复合地基)

塔吊桩基础计算书一. 参数信息塔吊型号: 中联QTZ80(5610)自重(包括压重): F1=694.3kN最大起重荷载: F2=60.00kN 塔吊倾覆力距: M=630.00kN.m塔吊起重高度: H=105.60m 塔身宽度: B=1.60m桩混凝土等级: C20 承台混凝土等级: C30 保护层厚度: 50mm 矩形承台边长: 6.00m承台厚度: Hc=1.350m 承台箍筋间距: S=200mm承台钢筋级别: Ⅱ级承台预埋件埋深: h=0.50m承台顶面埋深: D=5.000m 桩直径: d=0.400m桩间距: a=4.000m 桩钢筋级别: Ⅱ级桩入土深度: 23.0m 桩型与工艺: 干作业钻孔灌注桩二. 基础最小尺寸计算基础的最小厚度取:H=1.35m基础的最小宽度取:Bc=6.00m三. 塔吊基础承载力计算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。

计算简图:由于偏心距 e=M/(F×1.2+G×1.2)=882.00/(904.8+5778.00)=0.13≤B/6=1.00所以按小偏心计算,计算公式如下:当考虑附着时的基础设计值计算公式:式中 F──塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=754.3kN;G──基础自重与基础上面的土的自重,G=25.0×B c×B c×H c+20.0×B c×B c×D =4815.00kN;B c──基础底面的宽度,取B c=6.00m;W──基础底面的抵抗矩,W=B c×B c×B c/6=36.00m3;M──倾覆力矩,包括风荷载产生的力距和最大起重力距,M=1.4×630.00=882.00kN.m;经过计算得到:最大压力设计值 P max=1.2×(754.3+4815.00)/6.002+882.00/36.00=210.14kPa最小压力设计值 P min=1.2×(754,3+4815.00)/6.002-882.00/36.00=161.14kPa有附着的压力设计值 P k=1.2×(754.3+4815.00)/6.002=185.64kPa四. 地基基础承载力验算Quk =Qsk + Q pk = u ∑qsik l i + q pk * Ap=1.257 (0.35*35+1.5*40+1.8*50+6.4*70+3*50+9.95*60) +2500*0.126=2021.06kN按规范安全系数标准计算单桩竖向承载力特征值Ra = Quk/2 =1010.53 kN复合地基承载力计算桩间距4m,采用正方形或矩形布桩m =0.0157取β=0.80fsp,k=m*Ra/Ap+β*(1-m)*fs,k= 0.0157*1010.53/0.1256+0.8*(1-0.0157)*120= 218.81kPa> P K偏心荷载作用:1.2×fsp,k=262.57 kPa >P kmax=210.14kPa满足要求。

塔吊基础计算书

塔吊基础计算书

塔吊基础计算书一、塔吊基本参数(按起重臂下自由高度40m计算)1.塔帽、驾驶室、转盘等合计:G1=90KN2.起重臂重合计:G2=75KN3.平衡臂重合计:G3=60KN4.配重合计:G4=120KN5.标准节14节合计:G5=168KN6.起重量1.3—6吨:即Q1=13—60KN7.起升速度:V=1m/秒8.起重机旋转速度:n=0.6r/min9.制动时间:按0.2秒计算10.起重机倾斜按3‰考虑11.Q2 基础自重:5*5*1.35*2450kg*10=827kN12.根据建设单位提供的地质勘察报告地基承载力满足要求二、工作状态下稳定性验算:(倾覆点O1)1、起重机重力矩M1=G4*16.5+G3*9.5+(G1+G5)*2.5-G2*20=120*16.5+60*9.5+(90+168)*2.5+960*2.5-75*20=4095KN.m2、起重力矩M2=870KN.m3、工作力矩M3=M2V/gt=870*1/(900-40*0.62)=770KN.m4、旋转力矩M4=M2n2h/(900-Hn2)=870*0.62*40/(900-40*0.62)=14.14KN.m5、风压力矩M5=10.2*20+5*40=404KN.m6、倾斜力矩M6=(G1+G2+G3+G4+G5+Q2)*3‰*∑G/(Q2+∑G)*40=(90+75+60+120+168+827)*3‰*513/(827+513)*40=61.56KN.m K=(M1-M3-M4-M5-M6)/M2=(4095-770-14.1-404-61.56)/870=3.27>1.15 稳定三、工作状态(倾覆点Q2)1、M=(G1+G5+Q2)*2.5+G2*25-G3*4.5-G4*11.5=2937.5KN.m2、其余同第二节K=(M-M3-M4-M5-M6)/M2=(2937.5-637-14.14-404-61.56)/870=2.09>1.15 稳定四、非工作状态(倾覆点O2)1.M1=2850—2937.5KN.m 取M1=2850KN.m(最低高度)2.M5按0.6KN/m2计算:N1=40.8KN M5=40.8*14.14=576.9KN.m3.M6=61.56KN.m4.K=M1/(M5+M6)=2850/(576.9+61.56)=4.46>1.15 稳定。

塔吊桩基础的计算书

塔吊桩基础的计算书

塔吊桩基础的计算书一. 参数信息塔吊型号: QTZ(QTZ80)-TC6013 自重(包括压重):F1= 最大起重荷载: F2=塔吊倾覆力距: M= 塔吊起重高度: H= 塔身宽度:B=桩混凝土品级: C35 承台混凝土品级:C30 爱惜层厚度: 50mm矩形承台边长: 承台厚度: Hc= 承台箍筋间距: S=180mm承台钢筋级别: Ⅱ级承台预埋件埋深:h= 承台顶面埋深: D=桩直径: d= 桩间距: a= 桩钢筋级别: Ⅱ级桩入土深度: 桩型与工艺: 预制桩桩空心直径:塔吊最大起重力矩: 塔吊总高度: H= 大体风压: Wk=塔吊主弦杆截面宽度: b= 塔身最大水平力:Vh=97kN 水平力作用高度: h=31m标准节数: n=22 二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=2. 塔吊最大起重荷载F2=作用于桩基承台顶面的竖向力 F=F1+F2= 塔吊的倾覆力矩M=×=三. 矩形承台弯矩的计算计算简图:图中x轴的方向是随机转变的,设计计算时应依照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩基础技术标准》JGJ94-2020的第条)其中n──单桩个数,n=4;Fk──作用于承台顶面的竖向力,Fk=;Gk──桩基承台和承台上土自重标准值,Gk=×Bc×Bc×Hc+×Bc×Bc×D=;Mxk,Myk──荷载效应标准组合下,作用于承台底面,绕通过桩群形心的 x、y 轴的力矩xi,yi──单桩相对承台中心轴的XY方向距离(m);Nik──荷载效应标准组合偏心竖向力作用下,第i基桩或复合基桩的竖向力(kN)。

经计算取得:桩顶竖向力设计值: 最大压力:N=×+/4+××2)/[2××2)2]= 最大拔力:N=+/××2)/[2××2)2]= 桩顶竖向力标准值: 最大压力:N=+/4+××2)/[2××2)2]= 最大拔力:N=+/××2)/[2××2)2]=2. 矩形承台弯矩的计算(依据《建筑桩基础技术标准》JGJ94-2020的第条)其中Mx,My──别离为绕X轴和绕Y轴方向计算截面处的弯矩设计值; xi, yi──垂直Y轴和X轴方向自桩轴线到相应计算截面的距离(m);Ni──在荷载效应大体组合下的第i基桩净反力,Ni=Ni-G/n。

塔吊天然基础计算书

塔吊天然基础计算书

塔吊天然基础计算书一、参数信息塔吊型号:QTZ40,自重(包括压重)Fι=168.560kN,最大起重荷载Fz=40.OOOkN, 塔吊倾覆力距M=400.OOOkN.in,塔吊起重高度H=40~60m,塔身宽度B=l.45-1.85m, 混凝土强度等级:C35,基础埋深D=L200m,基础最小厚度h=1.2m,基础最小宽度Bc=4.600m,二、基础最小尺寸计算基础的最小厚度H=l.2m基础的最小宽度Bc=4.600m三、塔吊基础承载力计算依据《建筑地基基础设计规范》(61350007-2002)第5.2条承载力计算。

计算简图:当不考虑附着时的基础设计值计算公式:当考虑附着时的基础设#值计算公式:当考虑偏心距较大时的或础设计值计算公式:2(F+G)塔吊基础平面图塔吊基础剖面图3B c a式中F——塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=l.2X208.56=250.27kN;G—基础自重与基础上面的土的自重,G=I.2X(25.O×Bc×Bc×Hc+20.O×Bc×Bc×D)=3359.23kN;Bc——基础底面的宽度,取Bc=7.200m;W——基础底面的抵抗矩,W=Bc×Bc×Bc∕6=62.21m3;M——倾覆力矩,包括风荷载产生的力距和最大起重力距,M二400.000=560.OOOkN.m400.000=560.OOOkN.m;a—合力作用点至基础底面最大压力边缘距离(In),按下式计算:a=7.200/2-(560.000/(250.27+3359.23))=3.445。

经计算得:无附着的最大压力设计值Pmax=(250.27+3359.23)/7.200^2+560.000/62.21=78.63kpa无附着的最小压力设计值Pmin=(250.27+3359.23)/7.200^2-560.000/62.21=60.63kpa有附着的压力设计值P=(250.27+3359.23)/7.200^2=69.63kpa偏心距较大时压力设计值PkmaxPkmax=2(250.27+3359.23)/(3×7.200X3.445)=97.Olkpa四、地基基础承载力验算地基基础承载力特征值计算依据《建筑地基基础设计规范》GB50007-2002第5.2.3条。

塔吊基础计算书

塔吊基础计算书
5.00
配重高度hp(m)
0.70
基础混凝土强度
C35
3、计算简图
二、计算过程:
1. 修正地基承载力设计值:(本基础设计不考虑上部覆土)
f = fk+ηb×r×( b-3)+ηd×rm×( d-0.5)=
208.12
kN/m2
其中:
基础宽度的地基承载力修正系数ηb=
0.3
基础深度的地基承载力修正系数ηd=
fy为钢筋的抗拉、抗压强度设计值查规范
fy=
300
N/mm2
最小配筋面积
Asmin=ρbh=
9375
mm2
其中:
ρ为基础最小配筋率
0.0015
查表得配筋
Φ28 @ 125双向
截面积As(mm2)
13816
mm2
满足要求
冲击承载力Fl≤0.7βhpft×bm×ho=
3512507
N
其中:
βhp为受冲切承载力截面高度影响系数
0.94
ft为混凝土的抗拉强度设计值查表得ft=
1.57
N/mm2
c的取值:
1.6
m
bm为冲切破坏最不利一侧计算长度
bm=(c+bb)/2=
2.81
m
bb==c+2h0=
4.02
m
h0为截面有效高度h0=h-as=
Pmax=2×(F2+G1+G2+G3)/(3×l×a)=
165.01
kN/m2
Pmax

1.2f=
249.75
kN/m2
基础底面处的平均压力值Pk
Pk=Pmax/2=
82.50

塔吊基础设计计算书

塔吊基础设计计算书

5.塔吊基础设计计算书塔吊基础的受力过程:塔吊→整板基础→钢格构柱→桩基5.1. 整板基础平台计算复核5.1.1塔吊技术参数(以6028塔吊为例)垂直压力:133.49t倾覆力矩:285t·m扭矩:48t·m水平力:6.5t5.1.2整板基础设计5.1.2.1塔吊基础采用整板基础,板厚h=1300mm,基础底比结构板高500mm,平面尺寸为4000×4000mm。

5.1.2.2 砼强度等级C30 fy=16.5N/mm2 fc=15N/mm2 ft=1.5N/mm25.1.2.3 Ⅱ级钢筋fy=310N/mm2 Ⅰ级钢筋fy=210N/mm25.1.3 荷载计算5.1.3.1基础自重G=4×4×1.3×25=520kN荷载值 520×1.2=624kN5.1.3.2 基础顶部荷载中心轴向力:133.49×10=1334.9kN弯矩:285×10=2850kN·m扭矩:48×10=480kN·m5.4配筋计算:5.4.1基础自重均布荷载:q=520/4=120kN/m由自重引起的弯矩:M=qL2/8=120×42/8=240kN·m5.4.2 As=M/fyr ho= (2850+240) ×106/(310×0.9×1270)=8720mm2((ho=h-70=1300-70=1230mm) 选27ф25@150As=27×490.9=13230mm2>8720mm25.5 抗剪强度验算V≤0.07fcAA=4×103×1300=5.2×106mm2V=1334.9+624=1958 kN07fcA=0.07×15×5.2×106=5.46×106N=5.46×103kNV<0.07 fcA5.6 抗冲切验算:FL≤0.6 fcbm hoFL=1334.9kN ho=1230mmbm=(2100+2100+1230×2)/2=3330mmFL=1340kN<0.6×1.5×3330×1230×10-3=3686.3kN5.7 综合所述,塔吊平台基础设计为:截面尺寸:4m* 4m*1.3m砼等级:C30商品砼配筋:底筋:双向27ф25@150(HRB335);面筋:双向27ф25@150(HRB335);中部构造筋:双向ф12@200(HRB335)5.2 钢格构柱计算复核单根格构柱钢平面积:4L180*18=4*69.3*100=27720mm2四根格构柱钢平面积:27720*4=110880mm2四根格构柱钢可承受压力:110880*210=23284800≈2.33*104KN竖直力:133.49*10+4*4*1.3*24=1834KN竖直力远远小于四根格构柱可承受压力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 种塔吊基础计算目录一、单桩基础计算二、十字交叉梁基础计算三、附着计算四、天然基础计算五、三桩基础计算书六、四桩基础计算书七、塔吊附着计算一、塔吊单桩基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=50.00m,塔身宽度B=1.60m混凝土强度:C35,钢筋级别:Ⅱ级,混凝土的弹性模量 Ec=14500.00N/mm2桩直径或方桩边长 d=2.50m,地基土水平抗力系数 m=8.00MN/m4桩顶面水平力 H0=100.00kN,保护层厚度:50mm二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 桩身最大弯矩计算计算简图:1. 按照m法计算桩身最大弯矩:计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.4.5条,并参考《桩基础的设计方法与施工技术》。

(1) 计算桩的水平变形系数(1/m):其中 m──地基土水平抗力系数;b0──桩的计算宽度,b0=3.15m。

E──抗弯弹性模量,E=0.67Ec=9715.00N/mm2;I──截面惯性矩,I=1.92m4;经计算得到桩的水平变形系数:=0.271/m(2) 计算 D v:D v=100.00/(0.27×840.00)=0.45(3) 由 D v查表得:K m=1.21(4) 计算 M max:经计算得到桩的最大弯矩值:M max=840.00×1.21=1018.87kN.m。

由 D v查表得:最大弯矩深度 z=0.74/0.27=2.78m。

四.桩配筋计算依据《混凝土结构设计规范》(GB50010-2002)第7.3.8条。

沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件,其截面受压承载力计算:(1) 偏心受压构件,其偏心矩增大系数按下式计算:式中 l0──桩的计算长度,取 l0=4.00m;h──截面高度,取 h=2.50m;h0──截面有效高度,取 h0=2.50m;1──偏心受压构件的截面曲率修正系数:解得:1=1.00A──构件的截面面积,取 A=4.91m2;2──构件长细比对截面曲率的影响系数,当l0/h<15时,取1.0,否则按下式:解得:2=1.00经计算偏心增大系数=1.00。

(2) 偏心受压构件应符合下例规定:式中 A s──全部纵向钢筋的截面面积,取 A s;r──圆形截面的半径,取 r=1.25m;r s──纵向钢筋重心所在圆周的半径,取 r s=1.20m;e0──轴向压力对截面重心的偏心矩,取 e0=2.78m;e a──附加偏心矩,取 e a=0.08m;──对应于受压区混凝土截面面积的圆心角与2的比值,取=0.53;t──中断纵向受拉钢筋截面面积与全部纵向钢筋截面面积的比值,当>0.625时,取t=0:由上两式计算结果:只需构造配筋!五.桩竖向极限承载力验算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.2.2-3条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=366.00kN桩竖向极限承载力验算应满足下面的公式:其中 Q uk──最大极限承载力标准值;Q sk──单桩总极限侧阻力标准值;Q pk──单桩总极限端阻力标准值;q sik──桩侧第i层土的极限侧阻力标准值,按下表取值;q pk──极限端阻力标准值,按下表取值;u──桩身的周长,u=7.854m;A p──桩端面积,取A p=4.91m2;l i──第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下:序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土类别1 2 22 500 粘性土或粉土2 2 13 500 粘性土或粉土3 0 61 675 砂土或碎石类土由于桩的入土深度为4m,所以桩端是在第2层土层。

最大压力验算:R=7.85×(2×22×1.00+2×13×1.00)+0.75×500.00×4.91=2395.76kN上式计算的R的值大于最大压力366.00kN,所以满足要求!二、塔吊十字交叉梁基础计算书一. 参数信息塔吊型号:QT60,自重(包括压重)F1=245.00kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=600.00kN.m,塔吊起重高度H=37.00m,塔身宽度B=1.6m混凝土强度:C35,钢筋级别:Ⅱ级,桩直径或方桩边长 d=0.50m桩间距=3000mm交叉梁的宽度=300mm,交叉梁的高度=500mm,保护层厚度:50mm二. 塔吊对交叉梁中心作用力的计算1. 塔吊自重(包括压重)F1=245.00kN2. 塔吊最大起重荷载F2=60.00kN作用于塔吊的竖向力 F=1.2×(F1+F2)=366.00kN塔吊的倾覆力矩 M=1.4×600.00=840.00kN.m三. 交叉梁最大弯矩和桩顶竖向力的计算计算简图:十字交叉梁计算模型(最大弯矩M方向与十字交叉梁平行)。

两段梁四个支点力分别为R A=N/4-3M/2L R B=N/4+3M/2LR C=N/4 R D=N/4两段梁的最大弯矩分别为M1=N(L-b)2/16L+M/2 M2=N(L-b)2/16L得到最大支座力为 R max=R B,最大弯矩为 M max=M1。

桩顶竖向力 R max:R max=N/4+3M/2L=(366.00+38.18)/4+3×840.00/(2×4.24)=398.07kN交叉梁得最大弯矩 M max:M max=N(L-b)2/16L+M/2=(366.00+38.18)×(4.24-2.26)2/(16×4.24)+840.00/2=443.34kN.m 四. 交叉梁截面主筋的计算依据《混凝土结构设计规范》(GB50010-2002)第7.2条受弯构件承载力计算。

式中1──系数,当混凝土强度不超过C50时,1取为1.0,当混凝土强度等级为C80时,1取为0.94,期间按线性内插法确定;f c──混凝土抗压强度设计值;h0──交叉梁的有效计算高度。

f y──钢筋受拉强度设计值,f y=300N/mm2。

经过计算得s=443.34×106/(1.00×16.70×300.00×450.002)=0.437=1-(1-2×0.437)0.5=0.645s=1-0.645/2=0.677A sx= A sy=443.34×106/(0.677×450.00×300.00)=4847.21mm2。

五.桩承载力验算桩承载力计算依据《建筑桩技术规范》(JGJ94-94)的第4.1.1条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=398.07kN桩顶轴向压力设计值应满足下面的公式:其中0──建筑桩基重要性系数,取1.0;f c──混凝土轴心抗压强度设计值,f c=16.70N/mm2;A──桩的截面面积,A=0.165m2。

经过计算得到桩顶轴向压力设计值满足要求,只需构造配筋!七.桩竖向极限承载力验算及桩长计算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-94)的第5.2.2-3条根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=398.07kN桩竖向极限承载力验算应满足下面的公式:最大压力:其中 R──最大极限承载力;Q sk──单桩总极限侧阻力标准值:Q pk──单桩总极限端阻力标准值:s ,p──分别为桩侧阻群桩效应系数,桩端阻群桩效应系数,承台底土阻力群桩效应系数;s ,p──分别为桩侧阻力分项系数,桩端阻抗力分项系数,承台底土阻抗力分项系数;q sk──桩侧第i层土的极限侧阻力标准值,按下表取值;q pk──极限端阻力标准值,按下表取值;u──桩身的周长,u=1.571m;A p──桩端面积,取A p=0.16m2;l i──第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下:序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土名称1 2 24 825 粘性土2 3 86.5 1900 粘性土3 4 64 4350 砂类土中挤土群桩由于桩的入土深度为3m,所以桩端是在第2层土层。

最大压力验算:R=1.57×(2×24×0.8+1×86.5×0.8)/1.65+1.64×1900.00×0.16/1.65=413.91kN 上式计算的R的值大于最大压力398.07kN,所以满足要求!三、塔吊附着计算塔机安装位置至建筑物距离超过使用说明规定,需要增长附着杆或附着杆与建筑物连接的两支座间距改变时,需要进行附着的计算。

主要包括附着杆计算、附着支座计算和锚固环计算。

一、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。

附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载取值 q=0.10kN/m塔吊的最大倾覆力矩 M=500kN.mqM10.0m 10.0m 10.0m 20.0m计算结果: N w=68.394kN二、附着杆内力计算计算简图:计算单元的平衡方程为:其中:三、第一种工况的计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。

将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着最大的轴压力和轴拉力:杆1的最大轴向压力为:91.96 kN杆2的最大轴向压力为:0 kN杆3的最大轴向压力为:60.54 kN杆1的最大轴向拉力为:44.82 kN杆2的最大轴向拉力为:24.85 kN杆3的最大轴向拉力为:76.25 kN四、第二种工况的计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。

将上面的方程组求解,其中=45,135,225,315, Mw=0,分别求得各附着最大的轴压力和轴拉力。

杆1的最大轴向压力为:68.29 kN杆2的最大轴向压力为:0 kN杆3的最大轴向压力为:52.45 kN杆1的最大轴向拉力为:43.90 kN杆2的最大轴向拉力为:0.00 kN杆3的最大轴向拉力为:62.75 kN五、附着杆强度验算1.杆件轴心受拉强度验算验算公式:=N/A n≤f其中 N──为杆件的最大轴向拉力,取N=76.25kN;──为杆件的受拉应力;A n──为杆件的的截面面积,本工程选取的是14号工字钢,查表可知 A n=2150mm2;经计算,杆件的最大受拉应力=76.25×1000/2150=35.47N/mm2。

相关文档
最新文档