TGS2600空气质量传感器(日本费加罗FIGARO)

合集下载

空气质量传感器(异味气体传感器)

空气质量传感器(异味气体传感器)

TGS2602特征应用对VOCS和有气味气体有很高的灵敏度空气清新机低功耗空气流通控制对于气态的空气污染有高的灵敏度空气质量监测长寿命低价位VOC 监控应用简单气味气体监控TGS2602传感器的感应元件由一个在氧化铝基板上的金属氧化物半导体层构成的传感芯片与一个和它集成在一起的加热器构成当存在可检测气体时传感器的半导体的电导率将随着空气中的被测气体浓度增加而增加一个简单的电路就可以将这种响应气体浓度的电导率的变化转换为一个输出信号TGS2602 对低浓度的有气味气体有很高的灵敏度如氨气及办公室和家庭的环境里的废品所产生的H2S TGS2602也对低浓度的VOCS有很高的灵敏度如从木制品和建筑物中所散发出来的甲苯气体FIGARO还提供一个微处理器他包含有一个特殊的应用软件可以作为设备的专用软件来处理传感器的信号下左图所示为TGS2602典型的灵敏度特征所有的数据都收集于标准的测试条件Y轴表示TGS2602传感器的电阻变化率RS/R0RS R0的定义如下RS=传感器在各种不同的气体的不同的浓度下的阻抗R0= 传感器在清新空气中的阻抗下右图所示的是TGS2602对温度与湿度的依赖特征Y轴代表的是传感器的阻抗变化率RS/R0RS R0的定义如下RS=传感器在清新空气中在各种温度/湿度条件下的阻抗R0=传感器在清新空气中在20C温度相对湿度65%下的阻值基本测量电路TGS2602传感器要求有两个输入加热电压VH 和线路电压VC 加热电压VH 加于与传感器集成在一起的加热器上以保持传感器在一个特定的温度使传感器工作在这个特定的最佳温度因为传感器有极性所以供电电压VC 必须是直流线路电压VC 用来通过一个与传感器串联的负载电阻RL 来测量电压VRL 可以用一个公共的电源来同时供给VH 和VC 来满足传感器的电气要求负载电阻RL 的选择要使报警门限电压最优化并使传感器的半导体的功耗小于15mw 的限定值当传感器暴露在气体中使得RS 的值与RL 的值相等时传感器的功耗最大规格书型号 TGS2602 传感元素类型 D1标准封装 TO-5金属容器目标气体空气中的污染物 典型的测量范围 1~10ppm H2加热电压 VH 5.00.2VDC/AC 线路电压 VC 5.00.2VDC PS 15mw标准线路条件 负载阻抗 RL 可变 PS 15mw 加热阻抗 RH 约59欧室温加热电流 IH 565Ma 加热功耗 PH 280mw 典型值传感器阻抗 RS 10~100K 空气在标准测试条件下的电器特征 灵敏度RS 的变化率 0.15~0.5 Rs 10ppm ETOH /RS 空气) 测试气体一般空气202C 655%RH 线路条件 VC=5.00.1VDC 标准测试条件 测试前条件周期 7天功耗PS 可以用下面的公式计算出来 传感器的阻抗值RS 可以用下面的公式 通过测量VRL 计算出来PS=VC-VRL 2/RS RS=VC-VRL /VRL *RL。

tgs2602.pdf tgs2000 系列传感器产品介绍,空气污染、臭味检测用说明书

tgs2602.pdf tgs2000 系列传感器产品介绍,空气污染、臭味检测用说明书

TGS2602 空气污染、臭味检测用特点: 应用:・低功耗 ・空气清新机、换气扇控制 ・对VOC 、氨气、硫化氢有高灵敏度 ・脱臭器控制・长寿命、低成本 ・室内空气监视器・可利用简单电路下图是典型的香烟烟雾灵感度特性。

香烟的根数是约10平米的房间吸烟情况下的数值。

这里的纵轴也用传感器电阻比Rs/Rs(Air)来表示, 这里的Rs 、Rs(Air)定义如下: Rs =香烟的烟雾存在时的传感器电阻值 Rs(Air) =清洁大气中的传感器电阻值 香烟灵敏度特性:敏感素子由集成的加热器以及在氧化铝基板上形成的金属氧化物半导体构成。

当可检知的气体存在时,空气中该气体的浓度越高,传感器的电导率就越高。

使用简单的电路就可以将这种电导率的变化变换为与气体浓度对应的输出信号。

TGS2602不仅对香烟的烟雾或烹调臭味有很高的灵敏度,而且对硫化氢、VOC 、氨气有高灵敏度。

这种传感器是利用相对值检知来实现更接近人类感觉的控制,即以空气清洁的时候为基准,通过传感器电阻值比空气清洁时变化了多少来检测空气的污染程度。

下图是典型的灵敏度特性,全部是在标准试验条件下得出的结果。

(请看背面) 纵轴以传感器电阻比Rs/Rs(Air)表示,Rs 、Rs(Air)的定义如下: Rs =各种浓度气体中的传感器电阻值Rs(Air)=清洁大气中的传感器电阻值灵敏度特性:规格: 结构及尺寸:型 号 TGS2602素子类型 26系列 标准封装 金属 对象气体氢气、酒精等检测范围 1 ~10 ppm标准回路加热器电压 VH 5.0±0.2V DC/AC 回路电压 VC 5.0±0.2V DC Ps 15mW ≦ 负载电阻 RL 可变Ps 15mW ≦标准试验加热器电阻 RH59 Ω(室温)加热器电流 IH 56mA 加热器功耗 PH 280mW VH =5.0V DC/AC 传感器电阻Rs10~100 K Ω(空气中) 灵敏度(Rs 的变化率)0.15~0.5Rs(乙醇:10 )Rs(Air)标准试验试验气体条件 20±2℃,65±5%RH 回路条件 VC =5.0±0.2V DCVH =5.0±0.2V DC/AC试验前预热时间 96小时以上功耗(Ps )值可用下式计算: 传感器电阻(Rs ),可根据VOUT测定值,用下式计算:为提高性能,本规格书将不事先预告而变更。

空气质量传感器TGS2600在空气质量监测中的应用

空气质量传感器TGS2600在空气质量监测中的应用

空气质量传感器TGS2600在空气质量监测中的应用引言近年来,空气质量监测越来越受到人们的重视,国内外的众多企业与研究机构在气体传感器研发领域取得了长足进步,目前气体传感器正向集成化、智能化、多参数检测的方向迅速发展。

日本FIGARO公司开发生产的系列半导体气体传感器代表了目前气体传感器领域最新的水平,为研究开发空气质量监测系统创造了有利条件,提供了一条简单而实用的途径。

1 半导体气敏传感器及其特性半导体气敏传感器是利用待测气体与半导体(主要是金属氧化物)表面接触时,产生的电导率等物性变化来检测气体。

半导体气敏器件被加热到稳定状态下,当气体接触器件表面而被吸附时,吸附分子首先在表面自由地扩散(物理吸附),失去其运动能量,其间的一部分分子蒸发,残留分子产生热分解而固定在吸附处(化学吸附)。

这时,如果器件的功函数小于吸附分子的电子亲和力,则吸附分子将从器件夺取电子而变成负离子吸附。

具有负离子吸附倾向的气体最典型的是O2,称为氧化型气体或电子接收性气体。

如果器件的功函数大于吸附分子的离解能,吸附分子将向器件释放电子,而成为正离子吸附。

具有这种正离子吸附倾向的气体有H2、CO、碳氢化合物和酒类等,称为还原型气体或电子供给性气体。

目前可用于检测气体的敏感元件有很多种,如SnO2,ZnO,Fe2O3和气敏元件等。

它们共同的特点是可以检测多种不同的气体,但对气体的选择性较差。

这种非单一选择性是由其敏感机理所决定的,虽然可以采用添加适量的贵重金属Pt、Pd等方法改善其选择性,但仍然会对其它气体有一定的敏感度。

2 半导体空气传感器TGS26002.1 TGS2600 构成和工作原理空气传感器是半导体气敏传感器中的一种,它构造简单,由传感器基板,气敏元件和传感器盖帽组成。

气敏元件由一个以金属铝做衬底的金属氧化物敏感芯片和一个完整的加热器组成。

利用加热器加热,以侦测气体附着于金属氧化物表面而产生的电阻值的变化。

在检测气体时,传感器的传导率依赖于空气中气体浓度的变化。

空气质量传感器(异味传感器)TGS2600应用资料

空气质量传感器(异味传感器)TGS2600应用资料

1—30ppm H2
5.0±0.2VDC/AC(直/交流)
5.0±0.2 Ps≤15mW
V DC
变量
≥0.45kΩ
室温条件下大约 83 Ω
42±4mA
210mW VH=5.0V DC
10K-90 kΩ在空气中
0.3-0.6
RS (10 ppm,氢气) RS (空气)
在20±2°C, 65±5%RH的正常空气
TGS2600 —空气质量检测
特征: ★低功耗 ★对气态空气污染物灵敏度高 ★长寿命, 低成本 ★应用电路简单 ★尺寸小
应用: ★空气清新机 ★气流控制 ★空气质量检测
敏感元件由一个以金属铝做衬底的金属氧化物敏感芯片 和一个完整的加热器组成。在检测气体时, 传感器的传导率 依赖于空气中气体浓度的变化。 一个简单的电路能将该传导 比率的变化转化成对应于气体浓度变化的输出信号.
RS=清新空气中的传感器在不同 温、湿度条件下的阻值
R0=清新空气中的传感器在 20℃ 及 65%相对湿度下的阻值
灵敏度特性:
温湿度特性:
浓度(ppm)
环境温度(℃)
基本测量电路: 此传感器要求有两个电压输入:加热器电压 VH
和线路电压 VC。加热器电压 VH 加于集成加热器上 以保持传感器在一个特定的最佳感应温度。电路电压 VC 被加载以便于测量与感应元件串联的负载电阻电压 Vout。此传感器有极性所以电路电压 VC 必须是直流。 可以用一个公共的电源来同时供给 VH 和 VC 以满足传 感器的电气需求。负载电阻 RL 的选择要使报警门限电 压最优化,并使半导体器件的功耗小于 15mw。当目标 气体存在时,传感器功耗在 RS 与 RL 相等时最大。
VC = 5.0±0.01V DC VH = 5.0±0.05V DC

日本费加罗Figaro氧气传感器

日本费加罗Figaro氧气传感器

日本费加罗Figaro氧气传感器广州南创陈工FIGARO是一家专业生产半导体气体传感器的公司,1962年发明全球第一款半导体产品,目前全球第一。

FIGARO的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。

半导体气体传感器采用金属氧化物半导体烧结工艺,对被检测的检测气体具有灵敏度高、响应时间短、成本低、长期稳定性好等优点。

我们的产品包括可燃气体、有毒气体、空气质量、一氧化碳、二氧化碳、氨气、汽车尾气、酒精等传感器元件、传感模块等,以及各种气体传感器的配套产品。

目前已经被广泛应用于家用燃气报警器、工业有毒气体报警器、空气清新机、换气空调、空气质量控制、汽车尾气检测、蔬菜大棚、酒精检测、孵化机械等。

日本费加罗Figaro氧气传感器KE-25KE-50信息日本费加罗Figaro氧气传感器KE-25KE-50性能:测量范围:0-100%O2精度:氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)工作温度:5~40℃储存温度:-20~+60℃响应时间:KE-25:14±2秒;KE-50:60±5秒初始输出:KE-25:10.0–15.5mv;KE-50:47.0-65.0mv期望寿命:KE-25:5年;KE-50:10年日本费加罗Figaro氧气传感器KE-25KE-50特性:长寿命(KE-25-5年,KE-50-10年)不受CO2,CO,H2S,NOx,H2影响低成本,在常温下工作信号输出定,无需外部电源不需加热以上日本费加罗Figaro氧气传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12FIGARO广州南创传感器事业部检定规程》产品特性描述:氧气传感器KE-25KE-50属于半导体气体传感器不受CO2,CO,H2S,NOx,H2影响,氧气传感器KE-25KE-50低成本在常温下工作信号输出定,无需外部电源不需加热;精度氧气传。

日本费加罗FIGARO卤素气体传感器 TGS832

日本费加罗FIGARO卤素气体传感器 TGS832

Applications:Features:TGS 832-A00 - for the detection of ChlorofluorocarbonsThe figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows: Rs = Sensor resistance of displayed gases at various concentrations Ro = Sensor resistance at 100ppm of R-134a The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows: Rs = Sensor resistance at 100ppm of R-134a at various temperatures/humidities Ro = Sensor resistance at 100ppm of R-134a at 20°C and 65% R.H.The sensing element of Figaro gas sensors is a tin dioxide (SnO 2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.The TGS 832-A00 has high sensitivity to refrigerant gases commonly used in air conditioning systems and refrigerators such as R-134a, R-404a, R-407c, and R-410.TGS832-A00 has a gas diffusion hole in the sensor cap as well as in the sensor base. By using the sensor with a suction pump, response speed can be accelerated, making it suitable for portable gas leakage checkers.* Portable and fixed installation refrigerant leak detectors* High sensitivity to refrigerant gases * Quick response * Long term stability* Uses simple electrical circuitTemperature/Humidity Dependency:Sensitivity Characteristics:1.21.0Structure and Dimensions:1 Sensing Element: SnO2 is sintered to form a thick film on the surface of an alumina ceramic tubewhich contains an internal heater.2 Sensor Cap 3 Sensor Base: Nylon 664 Flame Arrestor: 100 mesh SUS316 double gauzeStandard Circuit Conditions:Pin Connection and Basic Measuring Circuit:The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (V RL ) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.Sensor Resistance (Rs) is calculated by the following formula:Power dissipation across sensor electrodes (Ps) is calculated by the following formula:Standard Test Conditions:TGS 832 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:Test Gas Conditions: 20°±2°C, 65±5%R.H.Circuit Conditions: V C = 10.0±0.1V (AC or DC), V H = 5.0±0.05V (AC or DC), R L = 10.0kΩ±1%Preheating period before testing: More than 7 days Electrical Characteristics:Basic Measuring Circuit:REV: 10/12Rs = ( -1) x R LV CV RLPs =V C 2 x Rs(Rs + R L )217 ± 0.59.516.5±0.56.5±0.51.0±0.563425145˚45˚um : mm。

空气净化器中传感器的应用

空气净化器中传感器的应用

空气净化技术中的传感器应用作为普通家电得到消费者认知之后,空气净化器开始被要求具有多种多样的功能,因此,近几年来通过传感器叏得了长足的技术迚步。

第1 是用于抓叏空气污物的“气流控制”,第2 是用于在污物扩散之前将其吸入的“传感器”,第3 是“加湿功能”。

通过这些技术迚步实现了“瘦身型、紧凑型”设计。

以往空气净化器的主要工作是去除香烟的烟气及异味等飘浮在空气中的物质。

丌过,自花粉症病例开始增加,去除“花粉”开始受到重视。

之后,在室内饲养宠物的家庭增多,近年来,作为儿童过敏原(引起过敏的病原物质)的“房间灰尘”成了需要解决的问题。

不粒子较小、较轻、飘浮在空气中的气味物质丌同,房间灰尘的粒子较大、较重。

因此,房间灰尘飘浮在室内的较低位置,过一殌时间便会沉积在地板上,即便暂时净化了室内的空气,只要居住者迚入室内、迚行活动,房间灰尘又会飘扬起来。

单叶片的机型是气流向斜上方吹出,因此,当气流碰到天花板、到达对面一侧的房间角落时,势头已经衰减。

其结果是,积存的花粉及房间灰尘被吸引到空气净化器迚风口的途中,有一少部分会残留在房间的角落里。

但是,配备了“双叶片”的今年的机型由于气流是向前方低处吹出,因此,能在较低位置产生循环的强气流,从而能够将灰尘吸入空气净化器。

“传感器技术”迚步的历叱不人们对于“空气质量(空气污染的种类和程度)”的认识以及时代需求的发迁密切相关。

气味传感器1980 年代,空气净化器追求的主要功能是“去除烟味”。

在传感器之中,空气净化器首先配备的是“气味传感器”。

气味传感器的功能是检测空气中漂浮着的“气味”物质的浓度。

当用金属氧化物半导体制成的传感器的表面吸附到气味分子后,电传导率将会增大,电阻值降低。

传感器通过检测电阻值的发化判断气味物质的浓度。

目前空气净化器市场上主流品牌常用的气味传感器主要是日本FIGARO的气味传感器TGS2600,比如:飞利浦、美的、亚都、Buleair、松下等。

灰尘传感器灰尘传感器的对象是比气味物质更大的颗粒。

日本Figaro传感器

日本Figaro传感器

日本Figaro传感器广州南创陈工FIGARO是一家专业生产半导体气体传感器的公司,1962年发明全球第一款半导体产品,目前全球第一。

FIGARO的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。

半导体气体传感器采用金属氧化物半导体烧结工艺,对被检测的检测气体具有灵敏度高、响应时间短、成本低、长期稳定性好等优点。

我们的产品包括可燃气体、有毒气体、空气质量、一氧化碳、二氧化碳、氨气、汽车尾气、酒精等传感器元件、传感模块等,以及各种气体传感器的配套产品。

目前已经被广泛应用于家用燃气报警器、工业有毒气体报警器、空气清新机、换气空调、空气质量控制、汽车尾气检测、蔬菜大棚、酒精检测、孵化机械等。

日本Figaro传感器KE-25 KE-50信息日本Figaro传感器KE-25 KE-50性能:测量范围:0-100%O2精度:氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)工作温度:5~40℃储存温度:-20~+60℃响应时间:KE-25:14±2秒;KE-50:60±5秒初始输出:KE-25:10.0–15.5mv;KE-50:47.0-65.0mv期望寿命:KE-25:5年;KE-50:10年日本Figaro传感器KE-25 KE-50特性:长寿命(KE-25-5年,KE-50-10年)不受CO2,CO,H2S,NOx,H2影响低成本,在常温下工作信号输出定,无需外部电源不需加热以上日本Figaro传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12FIGARO广州南创传感器事业部检定规程》产品特性描述:氧气传感器KE-25 KE-50属于半导体气体传感器不受CO2,CO,H2S,NOx,H2影响,氧气传感器KE-25 KE-50低成本在常温下工作信号输出定,无需外部电源不需加热;精度氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)。

TGS2600中文

TGS2600中文

TGS2600 空气污染检测用特点: 应用:・5V 固定电压、低功耗 ・空气清新机控制 ・对香烟、烹调臭味高灵敏度 ・换气扇控制 ・长寿命、低成本 ・室内空气监视器 ・可利用简单电路敏感素子由集成的加热器以及在氧化铝基板上形成的金属氧化物半导体构成。

当可检知的气体存在时,空气中该气体的浓度越高,传感器的电导率就越高。

使用简单的电路就可以将这种电导率的变化变换为与气体浓度对应的输出信号。

TGS2600对香烟的烟雾或烹调臭味有很高的灵敏度。

这种传感器是利用相对值检知来实现更接近人类感觉的控制,即以空气清洁的时候为基准,通过传感器电阻值比空气清洁时变化了多少来检测空气的污染程度。

加热器电流很小,只有42mA ,因为使用DC5V 的固定电压,所以是使用非常方便的传感器,广泛用于空气清新机等的控制中。

下图是典型的灵敏度特性,全部是在标准试验条件下得出的结果。

(请看背面) 纵轴以传感器电阻比Rs/Rs(Air)表示,Rs 、Rs(Air)的定义如下:Rs =各种浓度气体中的传感器电阻值Rs(Air)=清洁大气中的传感器电阻值灵敏度特性:下图是典型的香烟烟雾灵感度特性。

香烟的根数是约10平米的房间吸烟情况下的数值。

这里的纵轴也用传感器电阻比Rs/Rs(Air)来表示, 这里的Rs 、Rs(Air)定义如下: Rs =香烟的烟雾存在时的传感器电阻值 Rs(Air) =清洁大气中的传感器电阻值 香烟的灵敏度特性:规格: 结构及尺寸:1:加热器电极2:传感器电极(-)3:传感器电极(+)4:加热器电极型 号 TGS2600素子类型 26系列 标准封装 金属 对象气体氢气、酒精等 检测范围 1 ~10 ppm标准回路加热器电压 VH 5.0±0.2V DC/AC回路电压 VC 5.0±0.2V DCPs ≦15mW负载电阻 RL 可变 Ps ≦15mW标准试验加热器电阻 RH83Ω(室温)加热器电流 IH 42mA 加热器功耗 PH 210mW VH =5.0V DC/AC 传感器电阻Rs10~90 K Ω(空气中) 灵敏度(Rs 的变化率)0.3~0.6Rs(H2:10ppm)Rs(Air)标准试验试验气体条件 20±2℃,65±5%RH 回路条件 VC =5.0±0.2V DCVH =5.0±0.2V DC/AC 试验前预热时间 36小时以上功耗(Ps)值可用下式计算: 传感器电阻(Rs ),可根据VOUT测定值,用下式计算:为提高性能,本规格书将不事先预告而变更。

费加罗检测空气质量VOC传感器TGS2600

费加罗检测空气质量VOC传感器TGS2600
检测B麲空气质量V O <C传感器TG S2600
特征: ★低 功耗,5V供电 ★对气态空气污染物灵敏度高 ★长寿命, 低成本 ★小尺寸, 应用电路简单
应用: ★ 空气净化器 ★ 新风系统,智能家居 ★ 空气质量检测 ★ 1807*0430*980,zheng_xinghui@163.com
敏感元件由一个以金属铝做衬底的金属氧化物敏感芯片 和一个完整的加热器组成。在检测气体时, 传感器的传导率 依赖于空气中气体浓度的变化。 一个简单的电路能将该传导 比率的变化转化成对应于气体浓度变化的输出信号.
条件
VH = 5.0±0.05V DC
测试前器阻抗通过以下公式计算:
引脚连接: (1) 加热极 (2) 传感电极(-) (3) 传感电极(+) (4) 加热极
所有显示在这个表格里的传感器特性代表着传感器的典型特性。实际特性传感器与传感器之间 又有所不同。唯一可以保证的特性就是上述规格表里的那些。
模块型号tgs2600b00传感元件类型d1标准封装to5金属目标气体空气污染物典型检测范围130ppmh2标准电路条件加热电压vh5002vdcac直交流电路电压vc5002dcps15mw负载阻抗rl变量045标准测试条件下的电气特性加热器阻rh室温条件下大约83ih424ma加热器消耗功率ph210mwvh50vdc传感器阻rs10k90k?在空气中灵敏度0306空气氢气标准测试条件测试气体条件在202c655rh的正常空气电路条件vc50001vdcvh50005vdc测试前化时间功率消耗通过以下公式计算
下图所示为典型灵敏度特性。所有数 据都采集于标准测试条件下 Y 轴表示传感 器电阻变化率(RS/R0),RS 、R0 定义如 下: RS=传感器在不同气体浓度下的阻值 R0= 传感器在清新空气中的阻值

日本FIGARO 费加罗KE-25氧气传感器5年寿命 KE-50长寿命10年氧气检测探头

日本FIGARO 费加罗KE-25氧气传感器5年寿命  KE-50长寿命10年氧气检测探头

Sensitivity characteristics (typical values under std.test conditions)Response time (typical)The GS Oxygen Sensor KE series (KE-25 and KE-50) is a unique galvanic cell type oxygen sensor which was developed in Japan in 1985. Its most notable features are long life expectency, excellent chemical durability, and it is not influenced by CO 2. The KE series oxygen sensor is ideal to meet the ever-increasing demand for oxygen monitoring in various fields such as combustion gas monitoring, the biochemical field, medical applications, domestic combustion appliances, etc.Features:* Long lifeKE-25 - 5 years / KE-50 - 10 years in ambient air * Virtually no influence from CO 2, CO, H 2S, NOx, H 2* Low cost* Operates in normal ambient temperatures * Stable output signal* No external power supply required for sensoroperation* No warmup time is requiredGS Oxygen SensorsApplications:* Medical - Anesthetic instruments, respirators,oxygen-enrichers* Biotechnology - Oxygen incubators* Food industry - Refrigeration, greenhouses* Safety - Air conditioners, oxygen detectors, firedetectorsREV: 08/03SpecificationsNotes:1) When calibrated at both 0% and 100% of O 2, accuracy in the range from 0-100% O 2 shall be within ±1% of full scale for KE-25 and ±2% of full scale for KE-50.2) Va = output voltage at 21% O 2 V 0 = output voltage at 0% O 2V 100 = output voltage at 100% O 23) Va = output voltage at 25˚C V H = output voltage at 40˚C V L = output voltage at 5˚C4) Sensors should be used under conditions where the air exchange is greater than 200~300ml per minute in order to obtain the response speed as specified in Table 1.22.7±0.5KE-25/KE-50 standard versionKE-25F1 (w/o flange)KE-25F3 (threaded top)KE-25F4 (O-ring top)22.7±0.522.7±0.5。

TGS2600烟雾传感器

TGS2600烟雾传感器

TGS2600 —空气质量检测特征: 应用:★低功耗★空气清新机★对气态空气污染物有灵敏度高★气流控制★长寿命, 低成本★空气质量检测★应用电路简单★尺寸小敏感元件由一个以金属铝做衬底的金属氧化物敏感芯片和一个完整的加热器组成。

在检测气体时, 传感器的传导率依赖于空气中气体浓度的变化。

一个简单的电路能将该传导比率的变化转化成对应于气体浓度变化的输出信号.TGS2600对空气中的低浓度香烟污染物,像H2、CO等有较高得敏感度. 传感器能检测到在几个ppm级H2含量.Figaro提供了一款包含处理控制传感器信号的特殊软件的微处理器( FIC02667)因为采用小型化芯片,TGS2600的加热器所需电流仅为42mA,并且安置于标准TO-5封装中。

下图所示为典型灵敏度特性。

所有数据都采集于标准测试条件下Y轴表示传感器电阻变化率(RS/R0),RS 、R0定义如下:RS=传感器在不同气体浓度下的阻值R0= 传感器在清新空气中的阻值下图所示为典型的温、湿度依赖特性。

同样,Y轴表示传感器电阻变化率(RS/R0),RS、R0定义如下:RS=清新空气中的传感器在不同温、湿度条件下的阻值R0=清新空气中的传感器在20℃及65%相对湿度下的阻值基本测量电路此传感器要求有两个电压输入:加热器电压V H和线路电压V C 。

加热器电压V H 加于集成加热器上 以保持传感器在一个特定的最佳感应温度。

电路电压 V C 被加载以便于测量与感应元件串联的负载电阻电压 V out 。

此传感器有极性所以电路电压V C 必须是直流。

可以用一个公共的电源来同时供给V H 和V C 以满足传 感器的电气需求。

负载电阻R L 的选择要使报警门限电 压最优化,并使半导体器件的功耗小于15mw 。

当目标 气体存在时,传感器功耗在R S 与R L 相等时最大。

功率消耗通过以下公式计算: 传感器阻抗通过以下公式计算:所有显示在这个表格里的传感器特征代表着传感器的典型特性。

TGS传感器通用资料.

TGS传感器通用资料.

使用 TGS 传感器进行有毒及爆炸性气体泄漏检测的技术资料。

I S O 9001企业费加罗 TGS 传感器是厚膜金属氧化物半导体型的。

它成本低、寿命长, 利用简单电路即可对待检测气体具有良好的敏感特性。

尤其适合应用在有毒和爆炸性气体的泄漏检测器上。

页工作原理……………………………………………………….. 2传感器特性 .氧气分压的影响……………………………………….…... 3 气敏特性……………………………………………….…... 3 传感器响应…………………………………………….…... 3 初始动作………………………………………………….... 4 温湿度影响…………………………………………….…... 4 长期稳定性…………………………………………….…... 4 加热电压影响………………………………………….…... 4 传感器使用注意事项…………………………………………... 5 回路负载电阻(RL ………………………………………………. 6 信号处理……………………………………………….…... 6 温度补偿回路…………………………………………….... 7 加热器突入电流……………………………………….…... 8 传感器加热器断路检测回路………………………….. ….8 防止初始动作报警……………………………………….... 8 蜂鸣器延迟回路………………………………………….... 8 检测器设计回路…………………………………………………….…... 9 检测器外壳…………………………………………….…... 9 样机评审测验…………………………………………….... 9 检测器制造生产设备传感器 /检测器预通电设备…………………….. 10 气体测试箱……………………………………... 10 工厂环境………………………………………... 10 制造工艺传感器贮存............................................. 10 传感器预通电.......................................... 10 PCB 装配................................................ 10 传感器装配............................................. 10 PCB 预通电............................................. 10 浓度设定................................................ 11 最终装配................................................ 11 最终装配的预通电.................................... 11 气体测试 (11)重新设定................................................ 11 最终成品的贮存....................................... 11 质量控制.. (11)2003年 6月再版 11. 工作原理TGS 气体传感器的敏感材料是金属氧化物 , 最具代表性的是 SnO 2。

费加罗传感器

费加罗传感器

费加罗传感器广州南创陈工FIGARO是一家专业生产半导体气体传感器的公司,1962年发明全球第一款半导体产品,目前全球第一。

FIGARO的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。

半导体气体传感器采用金属氧化物半导体烧结工艺,对被检测的检测气体具有灵敏度高、响应时间短、成本低、长期稳定性好等优点。

我们的产品包括可燃气体、有毒气体、空气质量、一氧化碳、二氧化碳、氨气、汽车尾气、酒精等传感器元件、传感模块等,以及各种气体传感器的配套产品。

目前已经被广泛应用于家用燃气报警器、工业有毒气体报警器、空气清新机、换气空调、空气质量控制、汽车尾气检测、蔬菜大棚、酒精检测、孵化机械等。

费加罗传感器KE-25KE-50信息费加罗传感器KE-25KE-50性能:测量范围:0-100%O2精度:氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)工作温度:5~40℃储存温度:-20~+60℃响应时间:KE-25:14±2秒;KE-50:60±5秒初始输出:KE-25:10.0–15.5mv;KE-50:47.0-65.0mv期望寿命:KE-25:5年;KE-50:10年费加罗传感器KE-25KE-50特性:长寿命(KE-25-5年,KE-50-10年)不受CO2,CO,H2S,NOx,H2影响低成本,在常温下工作信号输出定,无需外部电源不需加热以上费加罗传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12FIGARO广州南创传感器事业部检定规程》产品特性描述:氧气传感器KE-25KE-50属于半导体气体传感器不受CO2,CO,H2S,NOx,H2影响,氧气传感器KE-25KE-50低成本在常温下工作信号输出定,无需外部电源不需加热;精度氧气传。

日本费加罗FIGARO可燃气体传感器 TGS813

日本费加罗FIGARO可燃气体传感器 TGS813

Technical Information for Combustible Gas SensorsFigaro TGS 8-series sensors are a type of sintered bulk metal oxide semiconductor wh ich offer low cost, long life, and good sensitivity to target gases while utilizing a simple electrical circuit. Th e TGS813 displays h igh selectivity and sensitivity to LP Gas and methane.PageSpecificationsFeatures..........................................................................2 Applications...................................................................2 Structure..........................................................................2 Basic measuring circuit....................................................2 Circuit & operating conditions.........................................3 Specifications..............................................................................3 Dimensions...............................................................................3Basic Sensitivity Characteristics Sensitivity to various gases................................................4 Temperature and humidity dependency............................5 Heater voltage dependency..........................................................6 Gas response....................................................................................6 Initial action........................................................................7 Long term characteristics.............................................................7Cautions . (8)See also Technical Brochure ‘Technical Information on Usage of TGSSensors for Toxic and Explosive Gas Leak Detectors’.IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WH EN CUSTOMER’S TARGET GASES ARE NOT LISTED H EREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.a n I S O 9001 c o m p a n y1. Specifications 1-1 Features * General purpose sensor for a wide range of combustible gases* High sensitivity to LP gas and methane * Low cost * Long life* Uses simple electrical circuit1-2 Applications* Domestic gas leak detectors and alarms * Recreational vehicle gas leak detectors * Portable gas detectors1-3 StructureFigure 1 shows the structure of TGS813. This sensor is a sintered bulk semiconductor composed mainly of tin dioxide (SnO 2). The semiconductor material and electrodes are formed on an alumina ceramic tube. A heater coil, made of 60 micron diameter wire, is located inside the ceramic tube. Lead wires from the sensor electrodes are a gold alloy of 80 microns in diameter. Heater and lead wires are spotwelded to the sensor pins which have been arranged to fit a 7-pin miniature tube socket.The sensor base and cover are made of Nylon 66, conforming to UL 94H B (Authorized Material Standard). The deformation temperature for this material is in excess of 240˚C. The upper and lower openings in the sensor case are covered with a flameproof double layer of 100 mesh stainless steel gauze (SUS316). Independent tests confirm that this mesh will prevent a spark produced inside the flameproof cover from igniting an explosive 2:1 mixture of hydrogen/oxygen.1-4 Basic measuring circuitFigure 2 shows the basic measuring circuit for use with TGS813. Circuit voltage (Vc) is applied across the sensor element which has a resistance between the sensor’s two electrodes and the load resistor (R L ) connected in series. The sensor signal (V RL ) is measured indirectly as a change in voltage across the R L . The Rs is obtained from the formula shown at the right.Fig. 1 - Sensor structureFig. 2 - Basic measuring circuitVc- V RLV RLRs = x R LFormula to determine RsSensor elementFig. 3 - Sensor dimensions1-5 Circuit & operating conditionsThe ratings shown below should be maintained at all times to insure stable sensor performance:1-6 Specifications NOTE 1Mechanical Strength:The sensor shall have no abnormal findings in its structure and shall satisfy the above electrical specifications after the following performance tests:Withdrawal Force - Vibration - Shock -withstand force > 5kg in eachdirectionfrequency-1000c/min., totalamplitude-4mm, duration-one hour, direction-verticalacceleration-100G, repeated 5timesNOTE 1: Sensitivity characteristics are obtained under the following standard test conditions:(Standard test conditions)Temperature and humidity: 20 ± 2˚C, 65 ± 5% RH Circuit conditions:Vc = 10.0±0.1V AC/DC V H = 5.0±0.05V AC/DC R L = 4.0kΩ ± 1%Preheating period: 7 days or more under standard circuit conditions17ø±0.516.5±0.56.5±0.59.5ø1ø±0.0545˚45˚132645u/m:mm1-7 DimensionsTop viewSide viewBottom view2. Basic Sensitivity Characteristics 2-1 Sensitivity to various gasesFigure 4 shows the relative sensitivity of TGS813 to various gases. The Y-axis shows the ratio of the sensor resistance in various gases (Rs) to the sensor resistance in 1000ppm of methane (Ro).Using the basic measuring circuit illustrated in Figure 2, these sensitivity characteristics provide the sensor output voltage (V RL ) change as shown in Figure 5.NOTE :All sensor characteristics in this technical brochure represent typical sensor characteristics. Since the Rs or output voltage curve varies from sensor to sensor, calibration is required for each sensor (for additional information on calibration, please refer to the Technical Advisory ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’).12-2 Temperature and humidity dependencyFigure 6 shows the temperature and humidity dependency of TGS813. The Y-axis shows the ratio of sensor resistance in 1000ppm of methane under various atmospheric conditions (Rs) to the sensor resistance in 1000ppm of methane at 20˚C/65%RH (Ro).under various ambient conditionsTable 1 - Temperature and humidity dependency(typical values of Rs/Ro for Fig. 6)Table 1 shows a chart of values of the sensor’s resistance ratio (Rs/Ro) under the same conditions as those used to generate Figure 6.Figure 7 shows the sensitivity curve for TGS813 to methane under several ambient conditions. While temperature may have a large influence on absolute Rs values, this chart illustrates the fact that effect on the slope of sensor resistance ratio (Rs/Ro) is not significant. As a result, the effects of temperature on the sensor can easily be compensated.For economical circuit design, a thermistor can be incorporated to compensate for temperature (for additional information on temperature compensation in circuit designs, please refer to the Technical Advisory ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’).1010Rs (kΩ)102-6 Initial actionclean air.process is called “Initial Action”.circuit be incorporated into the detector’s design (TGS Sensors for Toxic and Explosive Gas Leak Detectors’). This is especially recommended for intermittent-operating devices such as portable gas detectors.2-7 Long-term characteristicsFigure 13 shows long-term stability of TGS813 as measured for more than 8 years. The sensor is first energized in normal air. Measurement for confirming sensor characteristics is conducted under ambient air conditions rather than in a temperature/humidity controlled environment. The cyclic change in sensitivity corresponds to the seasonal changes of temperature/humidity in Japan (peak T/H conditions occur in July, as corresponds with the sensitivity peaks in this chart ). The Y-axis represents the ratio of sensor resistance in 1000ppm of methane on the date tested (Rs) to sensor resistance in 1000ppm of methane at the beginning of the test period (Ro).As this chart illustrates, TGS813 shows stable characteristics over a very long period of time.Fig. 12 - Long term stability(Ro = Rs on day 1)3 Cautions3-1 Situations which must be avoided1) Exposure to silicone vaporsIf silicone vapors adsorb onto the sensor’s surface, the sensing material will be coated, irreversibly inhibiting sensitivity. Avoid exposure where silicone adhesives, hair grooming materials, or silicone rubber/putty may be present.2) Highly corrosive environmentHigh density exposure to corrosive materials such as H2S, SOx, Cl2, HCl, etc. for extended periods may cause corrosion or breakage of the lead wires or heater material.3) Contamination by alkaline metalsSensor drift may occur when the sensor is contam-inated by alkaline metals, especially salt water spray.4) Contact with waterSensor drift may occur due to soaking or splashing the sensor with water.5) FreezingIf water freezes on the sensing surface, the sensing material would crack, altering characteristics.6) Application of excessive voltageIf higher than specified voltage is applied to the sensor or the heater, lead wires and/or the heater may be damaged or sensor characteristics may drift, even if no physical damage or breakage occurs.7) Application of voltage on lead wiresOn six-pin type sensors, if a voltage is applied on the lead wires between pins 1 and 3 and/or pins 4 and 6, this would cause breakage of the lead wires.8) Operation in zero/low oxygen environment TGS sensors require the presence of around 21% (ambient) oxygen in their operating environment in order to function properly and to exhibit characteristics described in Figaro’s product literature. TGS sensors cannot properly operate in a zero or low oxygen content atmosphere.3-2 Situations to be avoided whenever possible1) Water condensationLight condensation under conditions of indoor usage should not pose a problem for sensor performance.H owever, if water condenses on the sensor’s surface and remains for an extended period, sensor characteristics may drift.2) Usage in high density of gasSensor performance may be affected if exposed to a high density of gas for a long period of time, regardless of the powering condition.3) Storage for extended periodsWhen stored without powering for a long period, the sensor may show a reversible drift in resistance according to the environment in which it was stored. The sensor should be stored in a sealed bag containing clean air; do not use silica gel. Note that as unpowered storage becomes longer, a longer preheating period is required to stabilize the sensor before usage. 4) Long term exposure in adverse environment Regardless of powering condition, if the sensor is exposed in extreme conditions such as very high humidity, extreme temperatures, or high contamination levels for a long period of time, sensor performance will be adversely affected.5) VibrationExcessive vibration may cause the sensor or lead wires to resonate and break. Usage of compressed air drivers/ultrasonic welders on assembly lines may generate such vibration, so please check this matter.6) ShockBreakage of lead wires may occur if the sensor is subjected to a strong shock.7) SolderingIdeally, sensors should be soldered manually. For soldering conditions of 8-series gas sensors, refer to Technical Advisory for Soldering 8-type Gas Sensors. 8) PolarityIf the polarity of Vc is reversed during powering, sensor characteristics may temporarily become unstable.15 24 36Figaro USA Inc. and the manufacturer, Figaro Engineering Inc. (together referred to as Figaro) reserve the right to make changes without notice to any products herein to improve reliability, functioning or design. Information contained in this document is believed to be reliable. H owever, Figaro does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.Figaro’s products are not authorized for use as critical components in life support applications wherein a failure or malfunction of the products may result in injury or threat to life.。

空气传感器TGS2600在空气质量监测中的应用

空气传感器TGS2600在空气质量监测中的应用

and the testing results.

Key wor ds: air sensor ; TGS2600; monitor ing of air quality; air pollution

引言
近年来, 空气质量监测越来越受到人们的重视, 国内外的众多企业与研究机构在气体传感器研发领 域取得了长足进步, 目前气体传感器正向集成化、智 能化、多参数检测的方向迅速发展。日 本 FIGARO 公 司开发生产的系列半导体气体传感器代表了目前气 体传感器领域最新的水平, 为研究开发空气质量监测 系统创造了有利条件, 提供了一条简单而实用的途
参考文献 [1]黄贤武, 郑莜 霞.传 感器 原 理 与应 用.成 都: 电 子 科 技大 学 出 版 社,1995 [2]TGS 2600 - for the detection of Air Contaminants, FIGRO GROUP, 2004 [3]Technical Information for Air Quality Control Module AM- 1, FIGRO GROUP, 2004 [4]郑 爱 红,周 仲. 温 度 控 制 系 统 的 信 号 采 样 放 大 及 A/D 转 换 电 路设计[ J] .微计算机信息, 2005,7:142- 145
器件的功函数大于吸附分子的离解能, 吸附分子将向 气敏元件由一个以金属铝做衬底的金属氧化物敏感
器件释放电子, 而成为正离子吸附。具有这种正离子 芯片和一个完整的加热器组成。利用加热器加热, 以
吸附倾向的气体有 H2、CO、碳 氢化合物和 酒类等, 称 侦 测 气 体 附 着 于 金 属 氧 化 物 表 面 而 产 生 的 电 阻 值 的
中图分类号: TP212.9

费加罗检测空气质量VOC传感器TGS2600

费加罗检测空气质量VOC传感器TGS2600
TGS2600 对空气中的低浓度香烟污染物,像 H2、CO 等 有较高得敏感度. 传感器能检测到在几个 ppm 级 H2 含量. Figaro 提供了一款包含处理控制传感器信号的特殊软件的微 处理器( FIC02667)
因为采用小型化芯片,TGS2600 的加热器所需电流仅为 42mA,并且安置于标准 TO-5 封装 中。
检测B麲空气质量V O <C传感器TG S2600
特征: ★低 功耗,5V供电 ★对气态空气污染物灵敏度高 ★长寿命, 低成本 ★小尺寸, 应用电路简单
应用: ★ 空气净化器 ★ 新风系统,智能家居 ★ 空气质量检测 ★ 1807*0430*980,zheng_xinghui@163.com
敏感元件由一个以金属铝做衬底的金属氧化物敏感芯片 和一个完整的加热器组成。在检测气体时, 传感器的传导率 依赖于空气中气体浓度的变化。 一个简单的电路能将该传导 比率的变化转化成对应于气体浓度变化的输出信号.
标准测试 抗
条件下的 加热器电 IH 42±4mA
电气特性 流
加热器消 PH 210mW VH=5.0V DC
耗功率
传感器阻 RS 10K-90 kΩ在空气中

灵敏度 测试气体条件
0.3-0.6
RS (10 ppm,氢气) RS (空气)
在20±2°C, 65±5%RH的正常空气
标准测试 电路条件
VC = 5.0±0.01V DC
RS=清新空气中的传感器在不同 温、湿度条件下的阻值
R0=清新空气中的传感器在 20℃ 及 65%相对湿度下的阻值
灵敏度特性:
温湿度特性:
浓度(ppm)
环境温度(℃)
基本测量电路: 此传感器要求有两个电压输入:加热器电压 VH

TGS2600空气质量传感器(日本费加罗FIGARO)

TGS2600空气质量传感器(日本费加罗FIGARO)

TGS2600 用于空气污染物检测的气体传感器* 低功耗* 对污染空气有高灵敏度* 使用寿命长、成本低 * 应用电路简单* 体积小特点:应用:* 空气清新机控制* 通风控制* 空气质量监测敏感素子由集成的加热器以及在氧化铝基板上的金属氧化物半导体构成。

如果空气中存在对象检测气体,该气体的浓度越高传感器的电导率也会越高。

仅用简单的电路,就可以将电导率的变化转换成与该气体浓度相对应的信号输出。

TGS2600对极其微弱的空气污染气体具有很高的灵敏度。

像香烟烟雾中存在的氢气或一氧化碳,此传感器可检测到几个ppm 的氢气。

由于实现了小型化,加热器电流仅需42mA ,外壳采用标准的TO-5金属封装。

下图所示为典型的灵敏度特性曲线,均在我公司的标准试验条件下(参见背面)测出。

纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下:Rs = 各种浓度气体中的传感器电阻值Ro = 清洁空气中的传感器电阻值下图所示为受温度、湿度影响的典型特性曲线。

纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下:Rs = 传感器在清洁空气中各种温/湿度下的电阻值Ro = 传感器在清洁空气中, 温/湿度为20°C / 65% R.H.时的电阻值灵敏度特性:温/湿度特性:Rs/Ro Rs/RoR s /R os /R o规格:结构以及尺寸:管脚连接: 1: 加热器2: 传感器电极 (-) 3: 传感器电极 (+) 4: 加热器功耗值(P S )可通过下式求出:传感器电阻(R S )可根据V OUT (V RL )的测定值用下式求出:(V C - V RL )2R SV C V RLR S = (- 1) x R L P S =在此产品规格书中所显示的都是传感器的典型特性,实际的传感器特性因产品不同而不同,详情请参阅各传感器唯一对应的规格表。

: mm。

空气质量传感器TGS2600应用开发资料

空气质量传感器TGS2600应用开发资料

污染判定向ON方向切换时
饱和定时器运转 中,空气进 一步污染时, Rs减小,污 染判定为向 大的方向。 这时,立即 把饱和定时 器中止,服 从此判定。
<图5>饱和定 时器计时中 途,因污染 判定向ON 方向切换, 中止定时器 →再开始
污染判定向OFF方向切换时
饱和定时器运 转中,空气变得 清洁时,Rs增大, 污染判定为向小 的方向。这时, 立即把饱和定时 器中止,服从此
其中,污染等级为 0有两种情况: 或是根据传感器信号成为清净状态的情况(OFF 判定); 或是根据饱和判定返回污染等级为 0的情况。
污染等级判定
每2sec计算一次 Rs/
MAXR、及 K,根据下表的判定 值进行汚染判定。 *其中,上表的判定值为标准的 灵敏度设定的情况,如果是高灵 敏度设定时,
则需在 G1~G6中 加上G7 Rs/MAXR ≦ K – Gn + G7 ( n =1~6)
Rs/R2 ≦G9 * 做出复位判定后,再次启动饱和定时器。(再开始) ④ 饱和定时器的中止
实际产品对比
汚れ判定レ ヘ ゙ル 0(:清,1:弱,2:中,3:強)
セ ンサ 抵抗値(kΩ)
100
10
1
0
100
10
1 0
10
9
(FG )セ ンサ 抵抗値
(FG )汚れ判定レベル
8
7
6
5
4
3
2
1
0
6
12
18
(3) ↓ (2) ↓ (1) ↓ (0)
污染等级判定
判定值为负时,不进行污染判定。 ON判定值为负、OFF判定为正时,只要没有 做出ON判定,就不可能有OFF判定。所以, ON判定优先。

Figaro 2600系列技术信息:TGS2611甲烷气体传感器说明书

Figaro 2600系列技术信息:TGS2611甲烷气体传感器说明书

Technical Information for Methane Gas SensorsThe Figaro 2600 series is a new type thick f ilm metal oxide semiconductor, screen printedgas sensor which o f f ers miniaturization and lower power consumption. The TGS2611displays high selectivity and sensitivity to methane.PageSpecificationsFeatures.....................................................................................2Applications...................................................................2Structure...................................................................................2Basic Measuring Circuit................................................................2Circuit & Operating Conditions.....................................................3Specifications.......................................................................................3Dimensions.......................................................................................3Basic Sensitivity CharacteristicsSensitivity to Various Gases..........................................................4Temperature and Humidity Dependency......................................5Heater Voltage Dependency...................................................................6Cautions on Sensor Power Consumption.................................................6Gas Response..............................................................................................7Initial Action....................................................................................7Long Term Characteristics....................................................................8ReliabilityCorrosion Test..........................................................................................9Ignition Test....................................................................................9Effect of Air Flow..............................................................................9Heater Resistance Durability........................................................10HMDS Test............................................................................................11Lighter Gas Exposure Test..........................................................................11Cautions (12)See also Technical Brochure ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’.a n I S O 9001 a n d 14001 c o m p a n yIMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS.FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH A SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.Both TGS2611-C00 and -E00 are UL recognized components in accordance with the requirements of component recognition testing has confirmed long term stability in 60ppm of methane; other characteristics shown in this brochure have not been confirmed by UL as part of component recognition.TGS2611 is available in two different models with different external housings but identical sensitivity to methane gas. TGS2611-C00 possesses small size and quick gas response, making it suitable for gas leakage checkers, while TGS2611-E00 uses filter material in its housing to eliminate the influence of interference gases such as alcohol, resulting in highly selective response to methane gas. Both models are capable of meeting the requirements of EN50194 and UL1484.1. Specifications1-1 Features*High selectivity to methane*Low power consumption*Small size*Long life and low cost*Uses simple electrical circuit1-2 Applications* Residential gas alarms* Portable gas detectors* Gas leak detectors for gas appliances1-3 StructureFigure 1 shows the structure of TGS2611. Using thick film techniques, the sensing material (SnO2) is printed on electrodes (noble metal) which have been printed onto an alumina substrate. One electrode is connected to pin No.2 and the other is connected to pin No.3. The sensor element is heated by RuO2 material printed onto the reverse side of the substrate and connected to pins No.1 and No.4.Lead wires are Pt-W alloy and are connected to sensor pins which are made of Ni-plated Ni-Fe 50%.The sensor base is made of Ni-plated steel. The caps of both TGS2611-C00 and TGS2611-E00 are stainless steel. The upper opening in both caps is covered with a double layer of 100 mesh stainless steel gauze (SUS316). The TGS2611-E00 utilizes a charcoal filter inside the cap for reducing the influence of interference gases.1-4 Basic measuring circuitFigure 2 shows the basic measuring circuit. Circuit voltage (Vc) is applied across the sensor element which has a resistance (Rs) between the sensor’s two electrodes and the load resistor (R L) connected in series. When DC is used for Vc, the polarity shown in Figure 2 must be maintained. The Vc may be applied intermittently. The sensor signal (V RL) is measured indirectly as a change in voltage across the R L. The Rs is obtained from the formula shown at the right.Fig. 1 - Sensor structureVc - V RLV RLRs = x R LFormula to determine RsFig. 2 - Basic measuring circuitNOTE: In the case of V H, there is no polarity, so pins 1 and 4 can be considered interchangeable. However, in the case of V C, when used with DC power, pins 2 and 3 must be used as shown in theFigure above.TGS2611-E00Sensingelement1-5 Circuit & operating conditionsThe ratings shown below should be maintained at all times to insure stable sensor performance:1-6 Specifications NOTE 1Mechanical Strength:The sensor shall have no abnormal findings in its structure and shall satisfy the above electrical specifications after the following performance tests:Withdrawal Force - (pin from base) Vibration - Shock -withstand force of 5kg in each directionfrequency-1000cycles/min.,total amplitude-4mm, duration-one hour, direction-verticalacceleration-100G, repeated 5timesNOTE 1: Sensitivity characteristics are obtained under the following standard test conditions:(Standard test conditions)Temperature and humidity: 20 ± 2˚C, 65 ± 5% RH Circuit conditions:Vc = 5.0±0.01V DCV H = 5.0±0.05V DC R L = 10.0k Ω ± 1%Preheating period: 7 days or more under standard circuit conditions.1-7 DimensionsFig. 3 - Sensor dimensionsAll sensor characteristics shown in this brochure represent typical characteristics.Actual characteristics vary from sensor to sensor and from production lot to production lot. The only characteristics warranted are those shown in the Specification table above.TGS2611-C00 TGS2611-E00Pin connection: 1: Heater2: Sensor electrode (-) 3: Sensor electrode (+) 4: Heater2-1 Sensitivity to various gasessensor resistance in 5000ppm of methane (Ro).sensitivity to methane.and with a matched R Lvoltage (V RL) change as shown in Figure 5. NOTE:calibration is required for each sensor (for Toxic and Explosive Gas Leak Detectors’).under various ambient conditionsTable 1 - Temperature and humidity dependency(typical values of Rs/Ro for Fig. 6)Table 1 shows a table of values of the sensor’s resistance ratio (Rs/Ro) under the same conditions as those used to generate Figure 6.Figure 7 shows the sensitivity curve for TGS2611 to methane under several ambient conditions. While temperature may have a large influence on absolute Rs values, this chart illustrates the fact that effect on the slope of sensor resistance ratio (Rs/Ro) is not significant. As a result, the effects of temperature on the sensor can easily be compensated.For economical circuit design, a thermistor can be incorporated to compensate for temperature (for additional information on temperature compensation in circuit designs, please refer to the Technical Advisory ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’).2-3 Heater voltage dependencyratio according to variations in heater voltage (V typical characteristics shown in this brochure.2-4 Cautions on sensor power consumptionFigure 9relationship is referred to as V-I characteristics.basic measuring circuit (see Figure 2and can be calculated according as follows:Ps =where :R L : Load resistor value (k Ω)V RL : Sensor output voltage (v)Vc : Circuit voltage (v)Ps : Power consumption (mW)Vc 2/(4 x R L damage to the sensor due to Joule heat.minimum R L voltage.Table 2 - Minimum suggested R L valuesV RL x (Vc-V RL )R L2-7 Long-term characteristics3000ppm of ethanol.were powered under standard test conditions. 1000ppm of iso-butane.to a stable level within three days of energizing.As the charts presented in this section illustrate, the sensor shows stable long term characteristics.3. Reliability3-1 Corrosion testFigure 15 shows the effect on TGS2611 of corrosivegases specified in Item 43.15 of the UL 1484 standard.Sensor resistance prior to corrosive gas exposure wasmeasured. Unenergized sensors were then placedinto an environment of 23˚±2˚C and 95%RH. In thisenvironment, two separate tests were conducted: onein 0.1% H2S, the other in a combination of 0.5% SO2and 1.0% CO2, with each test exposure lasting 10days. After this exposure, the sensor was re-energized in normal air prior to measuring sensorresistance after removal from corrosive gases.As this data would suggest, sensor characteristics aretemporarily influenced by exposure to corrosive gasconcentrations specified by Sec. 43.15 of UL 1484,TGS2611 has been successfully tested against theignition test requirements of the UL1484 standard.The sensor did not initiate ignition of a propaneFigure 16 shows how the sensor signal (V RL) isaffected by air flow. The test procedure involvessituating the sensor in an air stream of 3.1 meters persecond, with the air flow vertical/horizontal to theflameproof stainless steel double gauze of theThe decrease in sensor signal shown in Figure 16resulted from the decrease in sensor elementtemperature caused by the air flow. As a result, directFig. 16 - Effect of air flow on TGS2611-C00Fig. 17 - Test procedure for heater durability3-4 Heater resistance durabilityFigure 17 illustrates the procedure for testing the effects of excess voltage applied to the heater. Heater resistance was measured while the heater was unpowered and at room temperature.The results of this test are shown in Figure 18 which shows the change in resistance of the heater when various heater voltages (rather than the standard 5.0V) are applied in the absence of gases.As this section demonstrates, the heater shows good durability against increased heater voltage.However, since excessive heater voltage will cause the sensor’s heater resistance to drift upwards,excessive heater voltage should still be avoided.standard circuit conditions. After returning the sensorexposure as shown in Figure 20.The result of the above test is shown in Fig. 20. A 10% iso-butane exposure for 60 seconds appears to cause an increase in Rs in gas. Furthermore, sensor to its original value after energizing in normal air.may cause a permanent change in the sensor’sdone, it must be carefully administered to avoid sensor damage.NOTE: To achieve the optimal level of accuracy in gas detectors, each TGS2611 sensor should be individually calibrated by matching it with a load resistor (R L) in an environment containing the target gas concentration for alarming (refer to Fig. 2).For the convenience of users, TGS2611 is classified into 24 groups according to the each sensor’s Rs in methane. ID numbers marked on the sensor’s body indicate the sensor’s grouping. Individual sensor calibration can be eliminated by matching the sensor with the recommended R L for each sensor ID. However, because group calibration is used instead of individual calibration, an average of 10% less accuracy would result for detectors using group calibration. Please refer to “Application Notes for TGS2611” for more information.4 Cautions on Usage of Figaro Gas Sensors4-1 Situations which must be avoided1) Exposure to silicone vaporsIf silicone vapors adsorb onto the sensor’s surface, the sensing material will be coated, irreversibly inhibiting sensitivity. Avoid exposure where silicone adhesives, hair grooming materials, or silicone rubber/putty may be present.2) Highly corrosive environmentHigh density exposure to corrosive materials such heater material.3) Contamination by alkaline metalsSensor drift may occur when the sensor is contaminated by alkaline metals, especially salt water spray.4) Contact with waterSensor drift may occur due to soaking or splashing the sensor with water.5) FreezingIf water freezes on the sensing surface, the sensing material would crack, altering characteristics.6) Application of excessive voltageIf higher than specified voltage is applied to the sensor or the heater, lead wires and/or the heater may be damaged or sensor characteristics may drift, even if no physical damage or breakage occurs. 7) Operation in zero/low oxygen environment TGS sensors require the presence of around 21% (ambient) oxygen in their operating environment in order to function properly and to exhibit characteristics described in Figaro’s product literature. TGS sensors cannot properly operate in a zero or low oxygen content atmosphere.8) Excessive exposure to alcoholIF TGS2611-E00 is exposed to high concentrations of alcohol (such as 10,000ppm or more) for a long period of time, the filter may become saturated. In this case,Figaro USA Inc. and the manufacturer, Figaro Engineering Inc. (together referred to as Figaro)reserve the right to make changes without notice to any products herein to improve reliability,functioning or design. Information contained in this document is believed to be reliable. However, Figaro does not assume any liability arising out of the application or use of any product or circuit describedherein; neither does it convey any license under its patent rights, nor the rights of others.Figaro's products are not authorized for use as critical components in life support applications wherein a failure or malfunction of the products may result in injury or threat to life.the sensor would show a lower resistance in alcohol than that indicated in Figure 4a.4-2 Situations to be avoided whenever possible 1) Water condensationLight condensation under conditions of indoor usage should not pose a problem for sensor performance.However, if water condenses on the sensor’s surface and remains for an extended period, sensor characteristics may drift.2) Usage in high density of gasSensor performance may be affected if exposed to a high density of gas for a long period of time,regardless of the powering condition.3) Storage for extended periodsWhen stored without powering for a long period, the sensor may show a reversible drift in resistance according to the environment in which it was stored.The sensor should be stored in a sealed bag containing clean air; do not use silica gel. Note that as unpowered storage becomes longer, a longer preheating period is required to stabilize the sensor before usage .4) Long term exposure in adverse environmentRegardless of powering condition, if the sensor is exposed in extreme conditions such as very highhumidity, extreme temperatures, or high contamination levels for a long period of time, sensor performance will be adversely affected.5) VibrationExcessive vibration may cause the sensor or lead wires to resonate and break. Usage of compressed air drivers/ultrasonic welders on assembly lines may generate such vibration, so please check this matter.6) ShockBreakage of lead wires may occur if the sensor is subjected to a strong shock.7) SolderingIdeally, sensors should be soldered manually.However, wave soldering can be done under the following conditions:a) Suggested flux: rosin flux with minimal chlorine b) Speed: 1-2 meters/min.c) Preheating temperature: 100±20˚C d) Solder temperature: 250±10˚Ce) Up to two passes through wave soldering machine allowedResults of wave soldering cannot be guaranteed if con-ducted outside the above guidelines since some flux vapors may cause drift in sensor performance similar to the effects of silicone vapors.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TGS2600 用于空气污染物检测的气体传感器
* 低功耗
* 对污染空气有高灵敏度* 使用寿命长、成本低 * 应用电路简单* 体积小
特点:
应用:
* 空气清新机控制* 通风控制
* 空气质量监测
敏感素子由集成的加热器以及在氧化铝基板上的金属氧化物半导体构成。

如果空气中存在对象检测气体,该气体的浓度越高传感器的电导率也会越高。

仅用简单的电路,就可以将电导率的变化转换成与该气体浓度相对应的信号输出。

TGS2600对极其微弱的空气污染气体具有很高的灵敏度。

像香烟烟雾中存在的氢气或一氧化碳,此传感器可检测到几个ppm 的氢气。

由于实现了小型化,加热器电流仅需42mA ,外壳采用标准的TO-5金属封装。

下图所示为典型的灵敏度特性曲线,均在我公司的标准试验条件下(参见背面)测出。

纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下:
Rs = 各种浓度气体中的传感器电阻值Ro = 清洁空气中的传感器电阻值
下图所示为受温度、湿度影响的典型特性曲线。

纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下:
Rs = 传感器在清洁空气中各种温/湿度下的电阻值Ro = 传感器在清洁空气中, 温/湿度为20°C / 65% R.H.时的电阻值
灵敏度特性:
温/湿度特性:
Rs/Ro Rs/Ro
R s /R o
s /R o
规格:
结构以及尺寸:
管脚连接: 1: 加热器
2: 传感器电极 (-) 3: 传感器电极 (+) 4: 加热器
功耗值(P S )可通过下式求出:
传感器电阻(R S )可根据V OUT (V RL )的
测定值用下式求出:
(V C - V RL )2
R S
V C V RL
R S = (
- 1) x R L P S =
在此产品规格书中所显示的都是传感器的典型特性,实际的传感器特性因产品不同而不同,详情请参阅各传感器唯一对应的规格表。

: mm。

相关文档
最新文档