《平行四边形》培优训练

合集下载

第四章:平行四边形培优训练试题

第四章:平行四边形培优训练试题

第四章:平行四边形培优训练试题一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列图形中,既是中心对称图形,又是轴对称图形的是( )2.平行四边形一边的长是12cm ,则这个平行四边形的两条对角线长可以是( ) A .4cm 或6cmB .6cm 或10cmC .12cm 或12cmD .12cm 或14cm3.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( ) A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠4.若用反证法证明:若0a b >>,则a b >,需假设( )A .a b <B .a b >C .a b ≤D .a b ≥5.如图,在平行四边形ABCD 中,M 是CD 的中点,2AB BC =,BM a =,AM b =,则CD 的长为( ) A .2+ab B .2b a +C .abD .22a b + 6.如图,在平行四边形ABCD 中,已知,,,过BC 的中点E 作,垂足为F ,与DC 的延长线相交于点H ,则的面积是( ) A .38B .312C .314D .3187.一个多边形除了一个内角外,其余各内角之和为,则这个内角的度数为( ) A. 0120 B.0130 C. 0135D.01508.如图,在平行四边形ABCD 中,延长CD 到E ,使DE =CD ,连接BE 交AD 于点F ,交AC 于点G .下列结论,①DE =DF ;②AG =GF :③AF =DF :④BG =GC ;⑤BF =EF ,其中正确的有( )个 A .1B .2C .3D .49.如图,四边形ABCD 中.,,BD 为的平分线,,,F 分别是BD ,AC 的中点,则EF 的长为( )A. 1 B .5.1 C. 2 D . 5.210.如图,已知在▱ABCD 中,分别以AB ,AD 为边分别向外作等边三角形ABE 和等边三角形ADF ,延长CB 交AE 于点G ,点G 在点A ,E 之间,连接CE ,CF ,EF ,则下列结论不一定正确的是( ) A .△CDF ≌△EBCB .∠CDF =∠EAFC .△ECF 是等边三角形D .CG ⊥AE二.填空题(本题共6小题,每题4分,共24分) 温馨提示:填空题必须是最简洁最正确的答案!11.一个多边形的内角和等于1800°,则该多边形的边数n 等于12.在平面直角坐标系中,若▱ABCD 的三个顶点坐标分别是A (m ,﹣n )、B (2,3)、C (﹣m ,n ),则点D 的坐标是13.用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中________ 14.在ABCD 中,BE AD ⊥于E ,BF CD ⊥于F ,若60EBF ︒∠=,且3AE =,2DF =,则EC =_______15.如图,在▱ABCD 中,对角线AC 与BD 相交于点E ,∠AEB =45°,BD =2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ′,则DB ′的长为________ 16.如图,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间________秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17(本题6分)如图,在ABCD 中,ABC ∠和BCD ∠的角平分线BE 与CE 相交于点E ,且点E恰好落在AD 上;(1)求证:222BE CE BC += ;(2)若2AB =,求ABCD 的周长.18(本题8分).如图,在四边形ABCD 中,AB =CD ,BF =DE ,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F . (1)求证:△ABE ≌△CDF ;(2)若AC 与BD 交于点O ,求证:AO =CO .19(本题8分)如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.20(本题10分)已知如图,四边形ABCD 为平行四边形,AD=a ,AC 为对角线,BM ∥AC ,过点D 作 DE ∥CM ,交AC 的延长线于F ,交BM 的延长线于E .(1)求证:△ADF ≌△BCM ;(2)若AC=2CF ,∠ADC=60°,AC ⊥DC ,求四边形ABED 的面积(用含a 的代数式表示).21.(本题10分)在平行四边形ABCD 中,点E 是AD 边上的点,连接BE . (1)如图1,若BE 平分∠ABC ,BC =8,ED =3,求平行四边形ABCD 的周长;(2)如图2,点F 是平行四边形外一点,FB =C D .连接BF 、CF ,CF 与BE 相交于点G ,若∠FBE +∠ABC=180°,点G 是CF 的中点,求证:2BG +ED =B C .22(本题12分)如图1,在平面直角坐标系中,点A 的坐标是(0,8),点B 的坐标是(6,0),点C 为AB 的中点,动点P 从点A 出发,沿AO 方向以每秒1个单位的速度向终点O 运动,同时动点Q 从点O 出发,以每秒2个单位的速度沿射线OB 方向运动;当点P 到达点O 时,点Q 也停止运动.以CP ,CQ 为邻边构造▱CPDQ ,设点P 运动的时间为t 秒. (1)点C 的坐标为 ,直线AB 的解析式为 . (2)当点Q 运动至点B 时,连结CD ,求证://CD AP .(3)如图2,连结OC ,当点D 恰好落在△OBC 的边所在的直线上时,求所有满足要求的t 的值.23.(本题12分)如图所示,在ABCD 中,对角线AC ,BD 相交于点O ,5cm OA =,E ,F 为直线BD 上的两个动点(点E ,F 始终在ABCD 的外面),且11,22DE OD BF OB ==,连结AE ,CE ,CF ,AF .(1)求证:四边形AFCE 为平行四边形.(2)若11,33DE OD BF OB ==,上述结论还成立吗?若11,DE OD BF OB n n==呢? (3)若CA 平分BCD ∠,60AEC ∠=,求四边形AECF 的周长.第四章:平行四边形培优训练试题答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:A解析:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、既不是轴对称图形,也又是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:A.2.答案:D解析:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B、∵AC=6cm,BD=10cm,∴OA=3cm,OB=5cm,∴OA+OB=8cm<12cm,不能组成三角形,故不符合;C、∵AC=12cm,BD=12cm,∴OA=6cm,OB=6cm,∴OA+OB=12cm=12cm,不能组成三角形,故不符合;D、∵AC=12cm,BD=14cm,∴OA=6cm,OB=7cm,∴OA+OB=13cm>12cm,能组成三角形,故符合;故选D.3.答案:B解析:A 、∵AE CF =, ∴AO=CO ,由于四边形ABCD 是平行四边形,则BO=DO , ∴四边形DEBF 是平行四边形;B 、不能证明四边形DEBF 是平行四边形;C 、∵四边形ABCD 是平行四边形, ∴AD=BC ,∠DAE=∠BCF ,又∠ADE=∠CBF , ∴△DAE ≌△BCF (ASA ),∴AE=CF ,同A 可证四边形DEBF 是平行四边形; D 、同C 可证:△ABE ≌△CDF (ASA ), ∴AE=CF ,同A 可证四边形DEBF 是平行四边形; 故选:B .4.答案:C解析:反证法证明“若a >b >0a b >a b ≤,故选:C .5.答案:D解析:∵M 为CD 中点, ∴CM=DM=12CD=12AB=BC=AD , ∴∠DAM=∠DMA ,∠CBM=∠CMB , ∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠C+∠D=180°,∴∠C=2∠DMA ,∠D=2∠CMB , ∴∠DMA+∠CMB=12(∠C+∠D )=90°, ∴∠AMB=180°-(∠DMA+∠CMB )=90°即△MAB为直角三角形,∵BM=a,AM=b,∴CD=AB=2222MA MB a b+=+,故选:D.6.答案:A解析:∵四边形ABCD是平行四边形,∴8==BCAD,CDAB//,6==CDAB,∵E为BC中点,∴4==CEBE,∵060=∠B,ABEF⊥,∴030=∠FEB,∴2=BF,由勾股定理得:32=EF,∵CDAB//,∴ECHB∠=∠,在BFE∆和CHE∆中,⎪⎩⎪⎨⎧∠=∠=∠=∠CEHBEFCEBEECHB∴△BFE≌△CHE(SAS),∴32==EHEF,2==BFCH,∵31621=⨯=∆FHDHSDHF,∴3821==∆∆DHFDEFSS.故选A.7.答案:B解析;设这是一个n边形,这个内角的度数为x度.∵()x n +=⨯-025701802,∴()0293018025701802-=-⨯-=n n x ,∵01800<<x ,∴00018029301800<-<n ,解得:2.172.16<<n ,又n 为正整数, ∴17=n ,所以多边形的内角和为()02700180217=⨯-,即这个内角的度数是00013025702700=-. 故选B .8.答案:B解析:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,即AB ∥CE , ∴∠ABF =∠E , ∵DE =CD , ∴AB =DE ,在△ABF 和△DEF 中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠DE AB DFE AFB E ABF , ∴△ABF ≌△DEF (AAS ), ∴AF =DF ,BF =EF ; 可得③⑤正确, 故选:B .9.答案:A解析:∵BC AC ⊥, ∴090=∠ACB ,∵4,3==AC BC , ∴5=AB , ∵BC AD //,∴DBC ADB ∠=∠,∵BD 为ABC ∠的平分线, ∴CBD ABD ∠=∠, ∴ADB ABD ∠=∠, ∴5==AD AB ,连接BF 并延长交AD 于G , ∵BC AD //∴BCA GAC ∠=∠, ∵F 是AC 的中点, ∴CF AF =,∵CFB AFG ∠=∠, ∴△AFG ≌△CFB(ASA), ∴3,===BC AG FG BF , ∴235=-=DG , ∵E 是BD 的中点, ∴121==DG EF . 故选:A .10.答案:D解析:(1)∵四边形ABCD 是平行四边形, ∴∠ADC=∠ABC ,AD=BC ,CD=AB , ∵△ABE 、△ADF 都是等边三角形, ∴AD=DF ,AB=EB ,∠ADF=∠ABE=60°, ∴DF=BC ,CD=BE ,∠CDF=360°-∠ADC-60°=300°-∠ADC ,∠EBC=360°-∠ABC-60°=300°-∠ABC , ∴∠CDF=∠EBC ,∴△CDF ≌△EBC (SAS ),故A 中结论正确; (2)∵在平行四边形ABCD 中,∠DAB=180°-∠ADC ,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC , 又∵∠CDF=300°-∠ADC , ∴∠CDF=∠EAF ,故B 中结论正确;(3)∵在△CDF和△EAF中,DF=AF,∠CDF=∠EAF,DC=AB=AE,∴△CDF≌△EAF,∴EF=CF,∵△CDF≌△EBC,∴CE=CF,∴EF=CE=CF,∴△ECF是等边三角形,故C正确;(4)∵△ABE是等边三角形,∴∠ABE=60°,∴当CG⊥AE时,∠ABG=30°,则此时∠ABC=180°-∠ABG=150°,∵由题中条件无法确定∠ABC的度数,∴D中结论不一定成立.故选D.四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:12解析:因为多边形的内角和公式为(n﹣2)•180°,所以(n﹣2)×180°=1800°,解得n=12.则该多边形的边数n等于12.故答案为:12.12.答案:(﹣2,﹣3)解析:∵A(m,﹣n),C(﹣m,n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,3),∴点D的坐标是(﹣2,﹣3).故答案为(﹣2,﹣3)13.答案:三角形中每一个内角都小于60°解析: 用反证法证明“三角形中必有一个内角不小于60°”时,应先假设三角形中每一个内角都小于60°.故答案为:三角形中每一个内角都小于60°14.解析:∵BE⊥AD,BF⊥CD,∴∠BFD=∠BED=∠BFC=∠BEA=90°,∵∠EBF=60°,∴∠D=120°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCD=∠A=60°,∵在△ABE中,∠ABE=30°,∴AB=2AE=2×3=6,∴CD=AB=6,=∴CF=CD-DF=6-2=4,∵在△BFC中,∠CBF=30°,∴BC=2CF=2×4=8,∴=15.答案:2解析:连结BB′.根据已知条件和折叠的性质易知△BB′E是等腰直角三角形且∠BEB′=90°.∵BD=2,所以BE=1,∴BB′=2.又∵BE=DE,B′E⊥BD,∴B ′E 是BD 的中垂线, ∴DB ′=BB ′=216.答案:2或143解析:由已知梯形,当Q 运动到E 和B 之间,设运动时间为t ,则得:162t 2-=6-t , 解得:t=143, 当Q 运动到E 和C 之间,设运动时间为t ,则得:162-2t=6-t , 解得:t=2, 故当运动时间t 为2或143秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 故答案为2或143三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17解析:()1BE CE 、分别平分ABC ∠和BCD ∠12EBC ABC ∴∠=∠,12ECB BCD ∠=∠ ABCD//AB CD ∴180ABC BCD ∴∠+∠=90EBC ECB ∴∠+∠=︒90BEC ∴∠=222BE CE BC ∴+=()2ABCD//,2AD BC CD AB ∴==EBC AEB ∴∠=∠BE 平分ABC ∠EBC ABE ∴∠=∠ AEB ABE ∴∠=∠AB AE =∴同理可证DE DC =122DE AE AD ===∴ ()24212ABCDC∴=⨯+=18.解析:(1)∵BF=DE , ∴BF EF DE EF -=-, 即BE=DF ,∵AE ⊥BD ,CF ⊥BD , ∴∠AEB=∠CFD=90°, 在Rt △ABE 与Rt △CDF 中,AB CDBE DF =⎧⎨=⎩, ∴Rt ABE Rt CDF ∆∆≌(HL ); (2)如图,连接AC 交BD 于O , ∵Rt ABE Rt CDF ∆∆≌, ∴ABE CDF ∠=∠, ∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形, ∴AO CO =.19.解析:(1)∵四边形ABCD 是平行四边形, ∴CDAB .∵BM AC DN AC ⊥⊥,, ∴DNBM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CDDM BN CD AB ==,,∥, ∴CM AN MCE NAF =∠=∠,. 又∵90CEM AFN ∠=∠=︒, ∴()CEM AFN AAS ≌, ∴5FN EM ==. 在Rt AFN 中,222212513AN AF FN =+=+=.20.解析:(1)在平行四边形ABCD 中,则AD =BC ,AD//BC , ∵AC ∥BM ,∴∠AFD =∠E ,∠DAF=∠ACB , ∵CM ∥DE ,∴∠BMC =∠E , ∴∠BMC =∠AFD , ∵AC ∥BM , ∴∠ACB=∠MBC , ∴∠FAD =∠MBC , 则在△ADF 与△BCM 中.BMC AFD FAD MBC AD BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△BCM (AAS ). (2)解:在△ACD 中, ∵AC ⊥CD ,∠ADC =60°, ∴CD =12AD =12a , 则AC, ∵AC=2CF , ∴, ∴AF =AC CF -=24a a -=4a , 又由△ADF ≌△BCM ,可得BM=4a , 又∵DE ∥CM ,BM ∥AC , ∴CFEM 为平行四边形, ∴, ∴, 又∵AC ⊥DC , ∴DC 为△ADF 高, 又∵△ADF ≌△BCM , ∴△ADF 的高的长度等于DC , S ABED =S △ADF +S ABEF =12•AF •CD +12(AF +BE )•CD =12×4a ×12 a +12(4aa )×12a=53a2.21.解析:(1)∵四边形ABCD是平行四边形,∴AD=BC=8,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵AE=AD﹣ED=BC﹣ED=8﹣3=5,∴AB=5,∴平行四边形ABCD的周长=2AB+2BC=2×5+2×8=26;(2)连接CE,过点C作CK∥BF交BE于K,如图2所示:则∠FBG=∠CKG,∵点G是CF的中点,∴FG=CG,在△FBG和△CKG中,∵FBG CKGBGF KGCFG CG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FBG≌△CKG(AAS),∴BG=KG,CK=BF=CD,∵四边形ABCD是平行四边形,∴∠ABC=∠D,∠BAE+∠D=180°,AB=CD=CK,AD∥BC,∴∠DEC=∠BCE,∠AEB=∠KBC,∵∠FBE+∠ABC=180°,∴∠FBE+∠D=180°,∴∠CKB+∠D=180°,∴∠EKC=∠D,∵∠BAE+∠D=180°,∴∠CKB=∠BAE,在△AEB和△KBC中,∵BAE CKBAEB KBCAB CK∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△KBC(AAS),∴BC=EB,∴∠KEC=∠BCE,∴∠KEC=∠DEC,在△KEC和△DEC中,∵KEC DECEKC DCK CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△KEC≌△DEC(AAS),∴KE=ED,∵BE=BG+KG+KE=2BG+ED,∴2BG+ED=BC.22.解析:(1)∵点A的坐标是(0,8),点B的坐标是(6,0),点C为AB的中点,∴点C(3,4),设直线AB的解析式为:y=kx+b,由题意可得:8068bk=⎧⎨=+⎩,解得:438kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为:y=﹣43x+8;故答案为:(3,4),y=﹣43x+8;(2)如图1,连接CD,∵四边形CBDP是平行四边形,∴CB//PD,BC=PD,∵点C为AB的中点,∴AC=BC,∴PD=AC,∴四边形ACDP是平行四边形,∴CD//AP;(3)如图2,过点D作DF⊥AO于F,过点C作CE⊥BO于E,∵四边形PCQD是平行四边形,∴CQ=PD,PD//CQ,∴∠QCP+∠DPC=180°,∵AO//CE,∴∠OPC+∠PCE=180°,∴∠FPD=∠ECQ,又∵∠PFD=∠CEQ=90°,∴△PDF≌△CQE(AAS),∴DF=EQ,PF=CE,∵点C(3,4),点P(0,8﹣t),点Q(2t,0),∴CE=PF=4,EQ=DF=2t﹣3,∴FO=8﹣t﹣4=4﹣t,∴点D(2t﹣3,4﹣t),当点D落在直线OB上时,则4﹣t=0,即t=4,当点D落在直线OC上时,∵点C(3,4),∴直线OC解析式为:y=43x,∴4﹣t=43(2t﹣3),∴t=24 11,当点D落在AB上时,∵四边形PCQD是平行四边形,∴CD与PQ互相平分,∴线段PQ的中点(t,82t-)在CD上,∴82t-=﹣43t+8,∴t=245;综上所述:t=4或2411或245.23.解析:(1)证明:四边形ABCD 是平行四边形,OA OC ∴=,OB OD =.12DE OD =,12BF OB =,DE BF ∴=,OE OF ∴=,∴四边形AFCE 为平行四边形.(2)13DE OD =,13BF OB =,DE BF ∴=,OE OF ∴=,∴四边形AFCE 为平行四边形. ∴上述结论成立,由此可得出结论:若1DE OD n =,1BF OB n =,则四边形AFCE 为平行四边形.(3)在ABCD 中,//AD BC ,DAC BCA ∴∠=∠. CA 平分BCD ∠,BCA DCA ∴∠=∠, DCA DAC ∴∠=∠, AD CD ∴=. OA OC =, OE AC ∴⊥,OE ∴是AC 的垂直平分线, AE CE ∴=.60AEC ∠=︒,ACE ∴∆是等边三角形,210AE CE AC OA cm ∴====,()()22101040AECF C AE CE cm ∴=+=⨯+=四边形.。

数学平行四边形的专项培优练习题(及答案

数学平行四边形的专项培优练习题(及答案

一、选择题1.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DF 分别交AB 、AC 于点E 、G ,连解FG ,下列结论:(1)∠AGD =112.5°;(2)E 为AB 中点;(3)S △AGD =S △OCD ;(4)正边形AEFG 是菱形;(5)BE =2OG ,其中正确结论的个是( )A .2B .3C .4D .52.如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F ,若四边形DCFE 的周长为18cm ,AC 的长6cm ,则AD 的长为( )A .13cmB .12cmC .5cmD .8cm3.如图,△ABC 中,∠BAC =60°,∠B =45°,AB =2,点D 是BC 上的一个动点,点D 关于AB ,AC 的对称点分别是点E ,F ,四边形AEGF 是平行四边形,则四边形AEGF 面积的最小值是 ( )A .1B 6C 2D 34.如图,在矩形ABCD 中,把矩形ABCD 绕点C 旋转,得到矩形FECG ,且点E 落在AD 上,连接BE ,BG ,BG 交CE 于点H ,连接FH ,若FH 平分EFG ,则下列结论:①AE CH EH +=;②2DEC ABE ∠=∠;③BH HG =;④2CH AB =,其中正确的个数是( )A .1个B .2个C .3个D .4个5.正方形ABCD ,CEFG 按如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA PF =,且APF 90∠=︒,连接AF 交CD 于点M ,有下列结论:EC BP =①;BAP GFP ∠∠=②;2221AB CE AF 2+=③;APF ABCD CEFG S S 2S +=正方形正方形④.其中正确的是( )A .①②③B .①③④C .①②④D .①②③④6.如图,平行四边形ABCD 中,AB=18,BC =12,∠DAB =60°,E 在AB 上,且AE :EB =1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则下列结论正确的个数是( )(1)CE 平分∠BCD ;(2)AF=CE ;(3)连接DE 、DF ,则ADF CDE SS ∆=;(4)DP :DQ=23:13A .4个B .3个C .2个D .1个7.如图,在ABC ∆中,4BC =,BD 平分ABC ∠,过点A 作AD BD ⊥于点D ,过点D 作//DE CB ,分别交AB 、AC 于点E 、F ,若2EF DF =,则AB 的长为( )A .10B .8C .7D .68.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.以上结论中,你认为正确的有( )个.A .1B .2C .3D .49.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=,FO FC =,则下列结论:①FB OC ⊥,OM CM =;②EOB CMB ≅;③四边形EBFD 是菱形;④:3:2MB OE =.其中正确结论的个数是( )A .1B .2C .3D .410.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;②EOB CMB △≌△;③四边形EBFD 是菱形;④23MB =.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD的周长等于______________ .12.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.13.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.14.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.15.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).16.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.17.如图,在矩形ABCD 中,∠ACB =30°,BC =23,点E 是边BC 上一动点(点E 不与B ,C 重合),连接AE ,AE 的中垂线FG 分别交AE 于点F ,交AC 于点G ,连接DG ,GE .设AG =a ,则点G 到BC 边的距离为_____(用含a 的代数式表示),ADG 的面积的最小值为_____.18.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.19.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.20.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,AB =OB ,E 为AC 上一点,BE 平分∠ABO ,EF ⊥BC 于点F ,∠CAD =45°,EF 交BD 于点P ,BP =5,则BC 的长为_______.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.如图,矩形OBCD 中,OB =5,OD =3,以O 为原点建立平面直角坐标系,点B ,点D 分别在x 轴,y 轴上,点C 在第一象限内,若平面内有一动点P ,且满足S △POB =13S 矩形OBCD ,问:(1)当点P 在矩形的对角线OC 上,求点P 的坐标;(2)当点P 到O ,B 两点的距离之和PO +PB 取最小值时,求点P 的坐标.23.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.24.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM . 25.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =. (1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE : ①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.26.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)27.如图,锐角ABC ∆,AB AC =,点D 是边BC 上的一点,以AD 为边作ADE ∆,使AE AD =,EAD BAC ∠=∠.(1)过点E 作//EF DC 交AB 于点F ,连接CF (如图①)①请直接写出EAB ∠与DAC ∠的数量关系;②试判断四边形CDEF 的形状,并证明;(2)若60BAC ∠=,过点C 作//CF DE 交AB 于点F ,连接EF (如图②),那么(1)②中的结论是否任然成立?若成立,请给出证明,若不成立,请说明理由.28.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。

人教版八年级下学期期末复习 :《平行四边形》 培优训练(附答案)

人教版八年级下学期期末复习 :《平行四边形》 培优训练(附答案)

八年级下学期期末复习:《平行四边形》培优训练一.选择题1.在▱ABCD中,已知AB=6,AD为▱ABCD的周长的,则AD=()A.4 B.6 C.8 D.102.在平行四边形ABCD中,AE与DE交于点E,若AE平分∠BAD,AE⊥DE,则()A.∠ADE=30°B.∠ADE=45°C.∠ADC=2∠ADE D.∠ADC=3∠ADE 3.下列说法中能判定四边形是矩形的是()A.有两个角为直角的四边形B.对角线互相平分的四边形C.对角线相等的四边形D.四个角都相等的四边形4.如图,菱形ABCD的面积为96,正方形AECF的面积为72,则菱形的边长为()A.10 B.12 C.8 D.165.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=26°,则∠BDC的度数是()A.26°B.38°C.42°D.52°6.如图,在正方形ABCD中,G为CD的中点,连结AG并延长,交BC边的延长线于点E,对角线BD交AG于点F,已知AE=12,则线段FG的长是()A.2 B.4 C.5 D.67.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.2cm B.4cm C. cm D.2cm8.将正方形ABCD与正方形BEFG如图摆放,点G恰好落在线段AE上.已知AB=,AG=1,连接CE,则CE长为()A.B.C.D.3.59.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2 B.3 C.3或5 D.4或510.如图,正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,且AB=AE,过点A 作AF⊥BE,垂足为F,交BD于点G.点H在AD上,且EH∥AF.若正方形ABCD的边长为2,下列结论:①OE=OG;②EH=BE;③AH=2﹣2;④AG•AF=2.其中正确的有()A.1个B.2个C.3个D.4个二.填空题11.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.12.如图,CE、BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为.13.如图,矩形ABCD中,DE⊥AC于点F,交BC边于点E,已知AB=6,AD=8,则CE的长为.14.如图,在▱ABCD中,AD=2AB,点F是BC的中点,作AE⊥CD于点E,点E在线段CD上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF =S△AEF;④∠BFE=3∠CEF.其中一定正确的是.15.如图,在平行四边形ABCD中,∠ABC=45°,AB=4,BC=9,直线MN平分平行四边形ABCD的面积,分别交边AD、BC于点M、N,若△BMN是以MN为腰的等腰三角形,则BN =.16.如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE 交AB的延长线于点F,若AF=8,则正方形ABCD的边长为.17.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是.18.如图,将边长为13的菱形ABCD沿AD方向平移至DCEF的位置,作EG⊥AB,垂足为点G,GD的延长线交EF于点H,已知BD=24,则GH=.19.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD与于点M,过点D 作DN⊥AB于点N,在DB的延长线上取一点P,PM=DN,若∠BDC=70°,则∠PAB的度数为.20.如图,正方形ABCD中,点E、F分别在AB、CD上,DG⊥EF于点H,交BC于点G,点P 在线段BG上.若∠PEF=45°,AE=CG=5,PG=5,则EP=.三.解答题21.如图,已知△ABC 是等边三角形,点D 、F 分别在线段BC 、AB 上,DC =BF ,以BF 为边在△ABC 外作等边三角形BEF .(1)求证:四边形EFCD 是平行四边形.(2)△ABC 的边长是6,当点D 是BC 三等分点时,直接写出平行四边形CDEF 的面积.22.如图,正方形ABCD 边长为4,点O 在对角线DB 上运动(不与点B ,D 重合),连接OA ,作OP ⊥OA ,交直线BC 于点P .(1)判断线段OA ,OP 的数量关系,并说明理由.(2)当OD =时,求CP 的长.(3)设线段DO ,OP ,PC ,CD 围成的图形面积为S 1,△AOD 的面积为S 2,求S 1﹣S 2的最值.23.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CE=12,∠FCE=60°,∠AFE=90°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD 长为半径做弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△CFE的亲密菱形;(2)求四边形ACDB的面积.24.问题探究:如图①,在正方形ABCD中,点E在边AD上,点F在边CD上,且AE=DF.线段BE与AF相交于点G,GH是△BFG的中线.(1)求证:△ABE≌△DAF.(2)判断线段BF与GH之间的数量关系,并说明理由.问题拓展:如图②,在矩形ABCD中,AB=4,AD=6.点E在边AD上,点F在边CD上,且AE=2,DF=3,线段BE与AF相交于点G.若GH是△BFG的中线,则线段GH的长为.25.老师布置了一个作业,如下:已知:如图1▱ABCD的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的,请你解答下列问题:(1)能找出该同学错误的原因吗?请你指出来;(2)请你给出本题的正确证明过程.26.如图,在△ABC中,AB=AC,D是BC上任一点,AD=AE且∠BAC=∠DAE.(1)若ED平分∠AEC,求证:CE∥AD;(2)若∠BAC=90°,且D在BC中点时,试判断四边形A DCE的形状,并说明你的理由.27.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+FC.28.如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD=60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.参考答案一.选择题1.解:∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC,∵AD=(AB+BC+CD+AD),∴AD=(2AD+12),解得:AD=8,∴BC=8;故选:C.2.解:∵平行四边形ABCD,∴AB∥CD,∴∠BAD+∠CDA=180°,∵AE⊥DE,∴∠DAE+∠ADE=90°,∴∠BAE+∠EDC=90°,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠ADE=∠EDC,即∠ADC=2∠ADE,故选:C.3.解:A、有3个角为直角的四边形是矩形,故错误;B、对角线互相平分的平行四边形是矩形,故错误;C、对角线相等的平行四边形,故错误;D、四个角都相等的四边形是矩形,故正确;故选:D.4.解:连接EF、BE、DF.∵四边形AECF是正方形,∴∠AEC=90°,∠AEF=45°.又△ABE≌△CBE(SSS),∴∠AEB=∠CEB=(360°﹣90°)÷2=135°.∴∠AEB+∠AEF=180°,∴B、E、F三点共线.同理可证D、F、E三点共线,∴BD过点E、F.∵AC2=72,∴AC=12.又AC•BD=96,∴BD=16.则菱形的边长为=10.故选:A.5.解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=26°,∴∠BDC=∠A+∠DCA=26°+26°=52°.故选:D.6.解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=,∴FG=AF,∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AG=AE=6,∴FG=AG=2.故选:A.7.解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴AC=BD,AO=OC=×8=4cm,BO=OD,∴AO=BO=4cm,∴△ABO是等边三角形,∴AB=AO=4cm,故选:B.8.解:如图1所示,分别过点A、C作EB的垂线,交EB的延长线于点K、M,过点B作BH垂直AE,交AE于点H,设BH=GH=a,则有a2+(1+a)2=()2,解得a=1,∴BG=,AE=3,∴AK=EK=,BK=,∵∠AKB=∠M=90°,∠MBC=∠BAK,BC=AB,∴△ABK≌△BCM(AAS),∴CM=,EM=,∴CE=故选:A.9.解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADB=∠MBC,且∠FBM=∠MBC∠ADB=∠FBM∴BF=DF=12cm∴AD=AF+DF=18cm=BC,∵点E是BC的中点∴EC=BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∴PF=EQ∴6﹣t=9﹣2t,或6﹣t=2t﹣9∴t=3或5故选:C.10.解:①∵四边形ABCD是正方形,∴AC⊥BD,OA=OB,∴∠AOG=∠BOE=90°,∵AF⊥BE,∴∠FGB=90°,∴∠OBE+∠BGF=90°,∠FAO+∠AGO=90°,∵∠AGO=∠BGF,∴∠FAO=∠EBO,在△AFO和△BEO中,,∴△AGO≌△BEO(ASA),∴OE=OG.②∵EH⊥AF,AF⊥BE,∴EH⊥BE,∴∠BEH=90°,如图1,过E作MN∥CD交AD于M,交BC于N,则MN⊥AD,MN⊥BC,∵四边形ABCD是正方形,∴∠ACB=∠EAM=45°,∴△ENC是等腰直角三角形,∴EN=CN=DM,∵AD=BC,∴AM=EM=BN,∵∠NBE+∠BEN=∠BEN+∠HEM=90°,∴∠NBE=∠HEM,∴△BNE≌△EMH(ASA),∴EH=BE,故②正确;③如图2,Rt△ABC中,AB=BC=2,∴AC=2,∴EC=AC﹣AE=2﹣2,∵AC=AB=AE,∴∠AEB=∠ABE,∴∠EBC=∠AEH,由②知:EH=BE,∴△BCE≌△EAH(SAS),∴AH=CE=2﹣2;故③正确;④Rt△AME中,AE=2,∠EAM=45°,∴AM=BN=,∵∠NBE=∠BAF,∠AFB=∠ENB=90°,∴△ABF∽△BEN,∴,∴AF•BE=AF•AG=AB•BN=2,故④正确;本题正确的有:①②③④,4个,故选:D.二.填空题(共10小题)11.解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵点D、E、F是三边的中点,∴DE=AC,DF=AB,EF=BC,∴△DEF的周长=DE+EF+DF=AC+AB+BC=(AC+AB+BC)=(3+4+5)=6,故答案为:6.12.解:连接EG、FG,∵CE,BF分别是△ABC的高线,∴∠BEC=90°,∠BFC=90°,∵G是BC的中点,∴EG=FG=BC=5,∵D是EF的中点,∴ED=EF=3,GD⊥EF,由勾股定理得,DG==4,故答案为:4.13.解:∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=8,∠B=∠ADC=∠DCE=90°,∴AC==10,∵DE⊥AC,∴∠CFE=90°,∵∠DCF=∠ACD,∴△CDF∽△CAD,∴=,∴CF===3.6,∵∠ECF=∠ACB,∴△CEF∽△CAB,∴=,∴CE==4.5;故答案为:4.5.14.解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠DAF,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF =S△A FM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故答案为:①②④.15.解:如图,过点C作CE⊥AD于E,过点N作NF⊥AD于F,过点B作BG⊥AD,与DA的延长线交于点G.∵直线MN平分平行四边形ABCD的面积,∴AM=CN,设AM=CN=x,则EF=x,BN=9﹣x∵∠ABC=45°,AB=4,∴GB=GA=4,DE=4,∴MF=5﹣2x,在Rt△BGM中,BM2=42+(4+x)2,在Rt△NFM中,MN2=42+(5﹣2x)2,∵△BMN是以MN为腰的等腰三角形,∴①当MN=MB时,易证Rt△MFN≌Rt△MGB(HL),MF=MG,即5﹣2x=x+4,解得x=,即CN=,∴BN=BC﹣CN=9﹣=②当MN=BN时,MN2=BN2,∴42+(5﹣2x )2=(9﹣x )2,解得x 1=4,x 2=﹣(不符合题意,舍去),MN 2=42+(5﹣2x )2=16+(5﹣2×4)2=25,∴MN =5,∴BN =5故答案为或5.16.解:如图所示:过点E 作EM ⊥BC ,EN ⊥AB ,分别交BC 、AB 于M 、N 两点,且EF 与BC 相交于点H .∵EF ⊥CE ,∠ABC =90°,∠ABC +∠HBF =180°,∴∠CEH =∠FBH =90°,又∵∠EHC =∠BHF ,∴△ECH ∽△BFH (AA ),∴∠ECH =∠BFH ,∵EM ⊥BC ,EN ⊥AB ,四边形ABCD 是正方形,∴四边形ENBM 是正方形,∴EM =EN ,∠EMC =∠ENF =90°,在△EMC 和△ENF 中∴△EMC ≌△ENF (AAS )∴CM =FN ,∵EM ∥DC ,∴△BEM ∽△BDC ,∴.又∵DE=4BE,∴=,同理可得:,设BN=a,则AB=5a,CM=AN=NF=4a,∵AF=8,AF=AN+FN,∴8a=8解得:a=1,∴AB=5.故答案为:5.17.解:由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为16,∴AF=BF=AB=4,在Rt△ABG中,∠1=30°,∴BG=AB=2,AG=BG=2,∴AE=2AG=4,∴菱形ABEF的面积=BF×AE=×4×4=8;故答案为:8.18.解:连接DE,连接AC交BD于O,如图所示:∵四边形ABCD和四边形DCEF是菱形,∴OA=OC,OB=OD=B D=12,AC⊥BD,AB∥CD∥EF,AB=AD=CD=DF=CE=13,AD∥CE,∴OA===5,∠GAD=∠F,四边形ACED是平行四边形,∴DE=AC=2OA=10,在△ADG和△FDH中,,∴△ADG≌△FDH(ASA),∴DG=DH,∵EG⊥AB,∴∠BGE=∠GEF=90°,∴DE=DG=DH,∴GH=2DE=20,故答案为:20.19.解:在平行四边形ABCD中,∵AB=CD,∵BD=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴∠AMB=∠DNB=90°,在△ABM与△DBN中,∴△ABM≌△DBN(AAS),∴AM=DN,∵PM=DN,∴△AMP是等腰直角三角形,∴∠MAP=∠APM=45°,∵AB∥CD,∴∠ABD=∠CDB=70°,∴∠PAB=∠ABD﹣∠P=25°,故答案为:25°20.解:过点F作FM⊥AB于点M,连接PF、PM,如图所示:则FM=AD,AM=DF,∠FME=∠MFD=90°,∵DG⊥EF,∴∠MFE=∠CDG,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=DC=AD,∴FM=DC,在△MFE和△CDG中,,∴△MFE≌△CDG(ASA),∴ME=CG=5,∴AM=DF=10,∵CG=PG=5,∴CP=10,∴AM=CP,∴BM=BP,∴△BPM是等腰直角三角形,∴∠BMP=45°,∴∠PMF=45°,∵∠PEF=45°=∠PMF,∴E、M、P、F四点共圆,∴∠EPF=∠FME=90°,∴△PEF是等腰直角三角形,∵∠BEP+∠BPE=90°,∠BPE+∠CPF=90°,∴∠BEP=∠CPF,在△BPE和△CFP中,,∴△BPE≌△CFP(AAS),∴BE=CP=10,∴AB=AE+BE=15,∴BP=5,在Rt△BPE中,由勾股定理得:EP===5;故答案为:5.三.解答题(共8小题)21.证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)解:过E作EH⊥BC交CB的延长线于H,∵△ABC和△BEF是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D是BC三等分点,∴当CD=BC=2时,平行四边形CDEF的面积=2×=2,当CD=BC=4时,平行四边形CDEF的面积=4×2=8,综上所述,平行四边形CDEF的面积为2或8.22.解:(1)OA=OP,理由是:如图1,过O作OG⊥AB于G,过O作OH⊥BC于H,∵四边形ABCD是正方形,∴∠ABO=∠CBO,AB=BC,∴OG=OH,∵∠OGB=∠GBH=∠BHO=90°,∴四边形OGBH是正方形,∴BG=BH,∠GOH=90°,∵∠AOP=∠GOH=90°,∴∠AOG=∠POH,∴△AGO≌△PHO(ASA),∴OA=OP;(2)如图2,过O作OQ⊥CD于Q,过O作OH⊥BC于H,连接OC,∴∠OQD=90°,∵∠ODQ=45°,∴△ODQ是等腰直角三角形,∵OD=,∴OQ=DQ=1,∵AD=CD,∠ADO=∠CDO,OD=OD,∴△ADO≌△CDO(SSS),∴AO=OC=OP,∵OH⊥PC,∴PH=CH=OQ=1,∴PC=2;(3)如图3,连接OC,过O作OG⊥BC于G,OH⊥CD于H,设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,由(2)知:△AOD≌△COD,∴S△AOD =S△COD,∴S1﹣S2=S1﹣S△COD=S△POC===﹣x2+4x=﹣(x﹣2)2+4,当x=2时,S1﹣S2有最大值是4.23.证明:(1)∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA,∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形(2)过点A作AG⊥CE于G∵四边形ACDB是菱形∴AB=AC,AB∥CD∴∠FAB=∠FCE=60°∴∠E=∠FBA=30°∴CE=2CF AB=2AF∵CE=12∴CF=6,CA=4在Rt△ACG中,可得AG=,∴菱形ACDB的面积=CD▪AG=4×=24.(1)证明:∵四边形ABCD是正方形,∴∠BAD=∠D=90°,AB=DA,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS);(2)解:BF=2GH;理由如下:∵△ABE≌△DAF,∴∠ABE=∠DAF,∵∠DAF+∠BAG=∠BAD=90°,∴∠ABE+∠BAG=90°,∴∠BGF=∠ABE+∠BAG=90°,在Rt△BFG中,GH是边BF的中线,∴BF=2GH;问题拓展:解:∵tan ∠ABE ===,tan ∠DAF ===,∴∠ABE =∠DAF , ∵∠DAF +∠BAG =∠BAD =90°,∴∠ABE +∠BAG =90°,∴∠AGB =90°,∴∠BGF =90°,在Rt △BFG 中,GH 是边BF 的中线,∴BF =2GH ,∵四边形ABCD 是矩形,∴∠C =90°,BC =AD =6,CD =AB =4,∴CF =CD ﹣DF =1,∴BF ===,∴GH =BF =;故答案为:. 25.解:(1)能;该同学错在AC 和EF 并不是互相平分的,EF 垂直平分AC ,但未证明AC 垂直平分EF ,需要通过证明得出;(2)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠FAC =∠ECA .∵EF 是AC 的垂直平分线,∴OA =OC .∵在△AOF 与△COE 中,∴△AOF ≌△COE (ASA ).∴EO =FO .∴AC 垂直平分EF .∴EF 与AC 互相垂直平分.∴四边形AECF是菱形.26.解:(1)证明:∵AD=AE,∴∠ADE=∠AED.又∵ED平分∠AEC,∴∠DEC=∠AED.∴∠ADE=∠DEC.∴CE∥AD;(2)四边形ADCE是正方形,理由如下:∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADC=90°.又∵∠DAE=∠BAC=90°,∴∠ADC+∠DAE=180°.∴AE∥CD.又∵∠BAC=90°且D是BC的中点,∴AD=CD.∴AE=AD.∴AE=CD∴四边形ADCE是平行四边形.∵∠ADC=90°,∴四边形ADCE是正方形.27.(1)解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE==2,∴△AEF的周长=AE+EF+AF=2++3=2+4;(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AF H=90°,在△ABE和△AFH中,,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,FG=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.28.解:延长AH、BC相交于点M,∵▱ABCD∴CD=AB=4,CD∥AB∵CH=2∴DH=CD=2∵CD∥AB∴∠MHC=∠MAB,∠MCH=∠MBA∴△MCH∽△MBA∴∴=∴MH=AH,BM=2BC∵△ABO为等边三角形∴∠AOB=∠OAB=∠OBA=60°,OA=AB=4∴∠DO H=∠AOB=60°∴∠ODH=∠OBA=60°,∠OHD=∠OAB=60°∴∠DOH=∠ODH=∠OHD∴△DOH是等边三角形∴OH=OD=DH=2∴MH=AH=OA+OH=4+2=6,EM=OE+OH+MH=10 ∵OD=OE=2∴AE=OA﹣OE=4﹣2=2∴点E是OA的中点∵△ABO为等边三角形∴BE⊥OA,∠ABE=30°∴BE=AE=2在Rt△BEM中,∠BEM=90°∴BE2+EM2=BM2∴(2)2+102=BM2∴BM=4∴BC=2(2)∵△ABO为等边三角形∴AB=OB由(1)知,AE=OE=OD∵BD=OB+OD∴BD=AB+AE。

数学数学平行四边形的专项培优练习题(附解析

数学数学平行四边形的专项培优练习题(附解析

数学数学平行四边形的专项培优练习题(附解析一、解答题1.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.2.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长.3.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系. 4.已知在ABC 和ADE 中, 180ACB AED ∠+∠=︒,CA CB =,EA ED =,3AB =. (1)如图1,若90ACB ∠=︒,B 、A 、D 三点共线,连接CE :①若522CE =,求BD 长度; ②如图2,若点F 是BD 中点,连接CF ,EF ,求证:2CE EF =; (2)如图3,若点D 在线段BC 上,且2CAB EAD ∠=∠,试直接写出AED 面积的最小值.5.猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF ,使B ,C ,G 三点在一条直线上,CE 在边CD 上.连结AF ,若M 为AF 的中点,连结DM ,ME ,试猜想DM 与ME 的数量关系,并证明你的结论.拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__________________;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]① ②6.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP=CQ;(2)若BP=13PC,求AN的长;(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.7.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.(1)求证:△ACN≌△CBM;(2)∠CPN= °;(给出求解过程)(3)应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN= °;(直接写出答案)(4)图③中∠CPN= °;(直接写出答案)(5)拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN= °(用含n 的代数式表示,直接写出答案).8.已知正方形ABCD与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点E 在上,点在的延长线上,求证:DM =ME ,DM ⊥.ME简析: 由是的中点,AD ∥EF ,不妨延长EM 交AD 于点N ,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, 在DC 的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM= ;若点E 在直线BC 上,则DM= .9.在直角梯形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm 。

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。

平行四边形培优

平行四边形培优

FEDCBA平行四边形综合提高一 利用平行四边形的性质进行角度、线段的计算1、如图,在ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若∠EAF =60o ,则∠B =_______;若BC =4cm ,AB =3cm ,则AF =___________,□ABCD 的面积为_________.2、已知ABCD 的周长为32cm,对角线AC 、BD 交于点O ,△AOB 的周长比△BOC 的周长多4cm ,求这个四边形的各边长。

二、利用平行四边形的性质证线段相等3、如图,在ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么?三 直接利用平行四边形的判定和性质 4、如图在ABCD 中,E 、F 分别是AD 、BC 的中点,AF 与EB 交于点G ,CE 与DF 交于点H ,试说明四边形EGFH 的形状。

5、如图,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于点F ,求证:四边形AECF 为平行四边形。

四 构造平行四边形解题HGABDCE6、如图2-33所示.Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,BG 平分∠ABC ,EF ∥BC 且交AC 于F . 求证:AE=CF .7、已知,如图,AD 为△ABC 的中线,E 为AC 上一点,连结BE 交AD 于点F ,且AE=FE ,求证:BF=AC[能力提高]1、如图2-39所示.在平行四边形ABCD 中,△ABE 和△BCF 都是等边三角形. 求证:△DEF 是等边三角形.2、如图2-32所示.在ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:EF 与MN 互相平分.3、 如图2-34所示.ABCD 中,DE ⊥AB 于E ,BM=MC=DC .求证:∠EMC=3∠BEM .FABC E D4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.[创新思维]1、以△ABC的三条边为边在BC的同侧作等边△ABP、等边△ACQ、等边△BCR,求证:四边形PAQR为平行四边形。

平行四边形培优

平行四边形培优

平行四边形性质培优一:角的题型。

1、在▱ABCD中,∠A:∠B:∠C:∠D可能是()A.1:2:3:4B.2:3:2:3C.2:2:1:1D.2:3:3:22.▱ABCD中,∠B=5∠A,则∠C的度数为3.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是4.在▱ABCD中,∠A﹣∠B=40°,则∠C的度数为5.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为二:周长题型。

1.如图,平行四边形ABCD的周长为8,△AOB的周长比△BOC的周长多2,求:AB边的长。

2.在▱ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若▱ABCD的周长为22cm,则△CDE的周长为3、如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为4.如图,EF过▱ABCD的对角线的交点O,交AD于点E,交BC于点F.若▱ABCD的周长为10,OE=1,线则四边形EFCD的周长为5、如图所示,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45∘,且AE+AF=32求平行四边形ABCD的周长。

6、如图所示,在平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处,若△FDE的周长为12,△FCB的周长为22,则FC的长为_________.三:面积题型。

1、如图,□ABCD的两条对角线相交于点O,E,F分别是边CD,BC的中点,图中与△BCE面积相等的三角形(不包括△BCE)共有_______个.2,如图,E是□ABCD中AB边上的任意一点,连接CE、DE,DE与对角线AC 相交于点F,则下列结论中不正确的是()A.S△ADE=S△BCEB.S△ACD=S△ABCB..S△CDE=S△ABC D.S△CDE=S△ADE+S△BCE3、如图,四边形ABCD、BEFD、EGHD均为平行四边形,其中C.F两点分别在EF、GH上。

平行四边形培优训练题 (1)

平行四边形培优训练题 (1)

平行四边形培优训练题 (1)长所形成的四边形为平行四边形?1、在平行四边形ABCD中,ADFE也是平行四边形,且AE和DC相交于点P,BC和EF在同一条直线上。

当点P从点C出发向点D运动时(点P不与点C,D重合),则△ACP的面积与△PEF的面积差的变化情况是什么?2、在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm。

点P和Q分别从A和C两点同时出发,P以1m/s的速度由A向D运动,Q以2m/s的速度由C向B运动。

问几秒钟后四边形ABQP是平行四边形?3、在直角三角形ABC中,∠A=90°,∠B=60°,AB=4.以B为坐标原点,BC所在直线为x轴,BC的垂线为y轴建立直角坐标系。

则以A、B、C为其中三个顶点的平行四边形的第四个顶点坐标为什么?4、在四边形ABCD中,AD∥BC,且AD<BC,AD=6cm,BC=10cm。

动点P和Q分别从A和C同时出发,点P以1cm/秒的速度由A向D运动,点Q以2cm/秒的速度由C向B运动。

其中一动点达到端点时,另一动点随之停止运动。

1)若四边形PDCQ的面积为四边形ABCD面积的一半,此时运动时间为多少秒?2)多少秒钟后,P、Q与四边形的两个顶点所形成的四边形是一个平行四边形?5、在四边形ABCD中,∠B=45°,AB=4,BC=42.动点P 从点B出发,沿着射线BA以每秒3个单位的速度移动,直线l从CD出发,沿着CB方向,以每秒2个单位的速度平移,分别交BC、AC于点G、H。

当G与B重合时,运动停止。

当t为多少秒时,以P、G、H、A为顶点的四边形为平行四边形。

1、在平行四边形ABCD中,ADFE也是平行四边形,且AE和DC相交于点P,BC和EF在同一条直线上。

当点P从点C出发向点D运动时,△ACP的面积与△PEF的面积差的变化情况是什么?2、在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm。

点P和Q分别从A和C两点同时出发,P以1m/s 的速度由A向D运动,Q以2m/s的速度由C向B运动。

八年级下期数学培优思维训练(平行四边形)

八年级下期数学培优思维训练(平行四边形)

八年级下期数学培优思维训练三、平行四边形 (一)知识梳理: (二)方法归纳: (三)范例精讲:1.如图,△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点,S △ABC =4cm 2,求阴影部分的面积.2.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是( )A. B.C.D.3.如图,在□ABCD 中,过对角线BD 上一点P ,作EF∥BC,HG∥AB,若四边形AEPH 和四边形CFPG 的面积分别为S 1和S 2,则S 1与S 2的大小关系为( ) A.S 1>S 2B. S 1=S 2C.S 1<S 2D.不能确定4.如图,一个平行四边形被分成面积为S1,S2,S3,S4的四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,14S S 与23S S 的大小关系为( )A.1423S S S S >B.1423S S S S <C.1423S S S S =D.不能确定5.在□ABCD 中,点A 1,A 2,A 3,A 4和C 1,C 2,C 3,C 4分别AB 和CD 的五等分点,点B 1,B 2,和D 1,D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 面积为( )A.2B.3/5C.5/3D.156.如图,在△ABC 中,AB=AC .M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连接DN 、EM .若AB=13cm ,BC=10cm ,DE=5cm ,则图中阴影部分的面积是_____________.7.如图,四边形ABCD是一块某地示意图,EFG是流经这块菜地的水渠,水渠东边的地属张家承包,西边的地属李家承包,现村委会在田园规划中需将流经菜地的水渠取直,并要保持张、李两家的承包土地面积不变,请你设计一个挖渠的方案,就在给出的图形上画出设计示意图,并说明理由.8.已知等边△ABC的边长为a,P为△ABC内任意一点,且PD∥AB,PE∥BC,PF∥AC. 则,PD+PE+PF的值是一个定值吗?如果是,求出这个定值.9.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点. 求证:四边形EGFH是平行四边形.10.如图,以△ABC的三条边为边向BC的同侧作等边△ABP、等边△ACQ,等边△BCR.求证:四边形PAQR是平行四边形.11.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G. (1)探索AG与GD的数量关系,并证明你的结论.(2)求△DFG与四边形AEFG的面积比.12.如图,四边形ABCD中,对角线AC、BD相交于点O,AC=BD,M、N分别是AB、CD 的中点,MN分别交BD、AC于E、F. 求证:△OEF是等腰三角形.13.如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)求证:FG=12(AB+BC+AC).(2)如图(2),BD、CE分别是△ABC的内角平分线,探索线段FG与△ABC三边的数量关系?并证明你的结论.(3)如图(3),BD为△ABC的内角平分线,CE为△ABC的外角平分线.探索线段FG 与△ABC三边的数量关系?并证明你的结论.(四)思维训练:1.如图,小红作出了边长为1的第1个正三角形△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2、B 2、C 2,作出了第二个正三角形△A 2B 2C 2,算出第2个正△A 2B 2C 2的面积,用同样的方法作出了第3个正△A 3B 3C 3,算出第3个正△A 3B 3C 3的面积,依此方法作下去,由此可得第n 次作出的正△A n B n C n 的面积是 _________ .2.如图,四边形ABCD 中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、B 2、C 2、D 2,得到四边形A 2B 2C 2D 2,…,依此类推,得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为 ______ .3.如图所示,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长.4.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线分别交直线MN于E、F.求证:∠DEN=∠F.5.如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.6.如图所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN 分别交AB,AC于P,Q.求证:AP=AQ.7.如图:AD是△ABC的高,M、N、E分别是AB、AC、BC边上的中点.(1)求证:ME=DN;(2)若BC=AD=12,AC=13,求四边形DEMN的面积.8.如图所示,M、N分别为平行四边形ABCD边BC、CD上的点,且MN∥BD,则△AND的面积△ABM的面积有什么关系?说明理由.9.如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE绕A点顺时针旋转60°到△ABF的位置(如图2),连接DF、EF.①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;②试判断四边形CDFE的形状,并说明理由.10.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△AB C”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).11.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,∥此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(3)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)12.平行四边形ABCD中,AB=2 cm,BC=12 cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2 cm,点Q在边AD上,由点D向点A运动,速度为每秒1 cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为y cm2,用含t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是□ABCD面积的四分之三?13.在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.14.已知在□ABCD中,AE⊥BC于E,DF平分∠ADC 交线段AE于F.(1)如图1,若AE=AD,∠ADC=60°,请直接写出线段CD与AF+BE之间所满足等量关系;(2)如图2,若AE=AD,你在(1)中得到的结论是否仍然成立,若成立,对你的结论加以证明,若不成立,请说明理由;15.已知:如图,在梯形ABCD中,AD∥BC,AD=24 cm,BC=30cm,点P自点A向D以1 cm/s的速度运动,到D点即停止.点Q自点C向B以2 cm/s 的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?16.如图a、b,在□ABCD中,∠BAD,∠ABC的平分线AF,BG分别与线段CD两侧的延长线(或线段CD)相交于点F,G,AF与BG相交于点E.(1)在图a中,求证:AF⊥BG,DF=CG;(2)在图b中,仍有(1)中的AF⊥BG,DF=CG成立.请解答下面问题:①若AB=10,AD=6,BG=4,求FG和AF的长;②是否能给□ABCD的边和角各添加一个条件,使得点E恰好落在CD边上且△ABE为等腰三角形?若能,请写出所给条件;若不能,请说明理由.17.小刘遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小刘是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小刘同学的思路回答:(1)图2中AH的长等于_________.(2)如果AC=a,EF=b,则AH的长等于_________.18.如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由..。

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版八年级数学下册第18章平行四边形培优练习(含答案)一、单选题(共有9道小题)1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()…A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AD=2,则AC的长是()《A.2 B.4 C..4.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形,D.对角互补的平行四边形是矩形5.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形6.在Rt△ABC中,∠ACB=90°,AC=BC,CD是斜边AB的中线,若AB=,则点D到BC的距离为()D.27.下列命题是真命题的有()①对顶角相等;%ODBA②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

A .1个 B .2个 C .3个 D .4个8.如图,已知点P 是矩形ABCD 内一点(不含边界),设1=PADθ∠,2=PBA θ∠,3=PCB θ∠,4=PDC θ∠,若∠APB =80°,∠CPD =50°,则( )A .1423()()30+-+=θθθθ︒B .2413()()40+-+=θθθθ︒>C .1234()()70+-+=θθθθ︒D .1234()()180+++=θθθθ︒9.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形; ④四边形BCDF 的周长为532; ⑤AE 的长为145cm.|A .2个B .3个个D .5个二、填空题(共有8道小题)10.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.11.如图,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是__。

八下数学《平行四边形》培优试卷-(A4含答案)

八下数学《平行四边形》培优试卷-(A4含答案)

《平行四边形》竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题3分,满分27分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.(填一个即可)3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是_________;(2)当△ABC满足条件_________时,四边形ADEF为菱形;(3)当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE 的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题(共9小题,每小题3分,满分27分)10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.28415题16题16.如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形"这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共10小题,满分66分)19.如图,在△ADC中,∠BAC=90°,AD⊥BC,BE、AF分别是∠ABC、∠DAC的平分线,BE和AD 交于G,求证:GF∥AC.20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.如图,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M 为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>”“=”或“<”).(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC 的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。

平行四边形专项培优训练

平行四边形专项培优训练

平行四边形专项培优训练介绍该培优训练旨在提高学生在平行四边形方面的解题能力和应用能力。

通过系统的学习和练习,学生将能够更好地理解平行四边形的性质和相关定理,并能够灵活运用这些知识解决实际问题。

培优目标深入理解平行四边形的定义和基本性质。

熟练应用平行四边形的相关定理,如对角线互补、同位角等。

解决与平行四边形相关的问题,包括面积、周长、角度等。

培养逻辑思维和问题解决能力。

培优内容1.平行四边形的定义和基本性质什么是平行四边形?其特点是什么?平行四边形的对角线互补性质。

平行四边形的同位角性质。

2.平行四边形的相关定理平行四边形的对角线等分性质。

平行四边形的对边相等性质。

平行四边形的对角线比例性质。

3.平行四边形的问题解决根据给定条件证明某个四边形为平行四边形。

根据平行四边形的性质计算其面积和周长。

解决与平行四边形角度的问题,如寻找缺失角度、计算角度和角度之间的关系等。

4.综合应用训练综合运用平行四边形的性质与定理解决实际问题。

提供多道综合应用题,并进行讲解和讨论。

培优方法通过理论讲解和示例引导学生理解与记忆。

设计练习题,巩固学生对平行四边形的理解和技巧运用。

提供实际场景的问题,让学生综合应用所学知识解决问题。

鼓励学生自主学习与思考,并提供必要的指导和支持。

定期进行测评,检查学生的学习进展和掌握情况。

培优效果评估定期组织测试,检验学生对平行四边形的理解和应用能力。

观察学生在课堂练习、讨论与实际问题解决中的表现。

收集学生的反馈及建议,改进培优训练内容和方法。

结语通过平行四边形专项培优训练,学生将能够掌握平行四边形的性质和相关定理,并能够熟练运用这些知识解决实际问题。

希望通过这个训练,能够提高学生的数学能力和解题能力,为他们的学习打下坚实的基础。

数学平行四边形的专项培优练习题含详细答案

数学平行四边形的专项培优练习题含详细答案

F 点移动到 F'的距离是 10 t,
在 Rt△ F'NF 中, NF = 1 , NF 3
∴ FN=t,F'N=3t, ∵ MH'=FN=t, EM=NG'=15﹣F'N=15﹣3t,
在 Rt△ DMH'中,
MH 4 , EM 3
∴ t 4, 15 3t 3
∴ t=4,
∴ EM=3,MH'=4,
CD DM
设 AM=x,则 x a , a bx
整理得:x2﹣bx+a2=0, ∵ b>2a,a>0,b>0, ∴ △ =b2﹣4a2>0, ∴ 方程有两个不相等的实数根,且两根均大于零,符合题意, ∴ 当 b>2a 时,存在∠ BMC=90°, (3)不成立. 理由:若∠ BMC=90°, 由(2)可知 x2﹣bx+a2=0, ∵ b<2a,a>0,b>0, ∴ △ =b2﹣4a2<0, ∴ 方程没有实数根, ∴ 当 b<2a 时,不存在∠ BMC=90°,即(2)中的结论不成立. 考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质
(1)试猜想 AE 与 GC 有怎样的关系(直接写出结论即可);
(2)将正方形 DEFG 绕点 D 按顺时针方向旋转,使点 E 落在 BC 边上,如图 2,连接 AE 和
CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.
(3)在(2)中,若 E 是 BC 的中点,且 BC=2,则 C,F 两点间的距离为
(2)将正方形 EFGH 沿射线 FB 的方向以每秒 10 个单位的速度匀速平移,得到正方形
E1F1G1H1,在平移过程中边 F1G1 始终与 y 轴垂直,设平移的时间为 t 秒(t>0). ①当点 F1 移动到点 B 时,求 t 的值; ②当 G1,H1 两点中有一点移动到直线 DE 上时,请直接写出此时正方形 E1F1G1H1 与△ APE 重叠部分的面积.

数学数学平行四边形的专项培优练习题(附解析

数学数学平行四边形的专项培优练习题(附解析

一、选择题1.如图,在边长为5的正方形ABCD 中,以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形的个数为( )A .3B .4C .5D .62.在边长为2的正方形ABCD 中,P 为AB 上的一动点,E 为AD 中点,PE 交CD 延长线于Q ,过E 作EF PQ ⊥交BC 的延长线于F ,则下列结论:①APE DQE ∆≅∆;②PQ EF =;③当P 为AB 中点时,2CF =;④若H 为QC 的中点,当P 从A 移动到B 时,线段EH 扫过的面积为12,其中正确的是( )A .①②B .①②④C .②③④D .①②③3.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上的一点,且AB=AE ,过点A 作AF ⊥BE ,垂足为F ,交BD 于点G ,点H 在AD 上,且EH ∥AF.若正方形ABCD 的边长为2,下列结论:①OE=OG ;②EH=BE ;③AH=222-,其中正确的有( )A .0个B .1个C .2个D .3个4.如图,P 为ABCD 内一点,过点P 分别作AB ,AD 的平行线,交 ABCD 的四边于E 、F 、G 、H 四点,若BHPE 面积为6,GPFD 面积为4,则APC △的面积为( )A.23B.32C.1 D.25.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的番号是()A.①②④⑤B.①②③④⑤C.①②④D.①④6.如图,四边形ABCD是正方形,直线L1、L2、L3,若L1与L2的距离为5,L2与L3的距离7,则正方形ABCD的面积等于()A.70 B.74 C.144 D.1487.如图,在ABC中,AB=AC=6,∠B=45°,D是BC上一个动点,连接AD,以AD为边向右侧作等腰ADE,其中AD=AE,∠ADE=45°,连接CE.在点D从点B向点C运动过程中,CDE△周长的最小值是()A.62B.626C.92D.9268.如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A .2个B .3个C .4个D .5个9.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD S AB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②△APD 一定是等腰三角形;③AP ⊥EF ;④2PD=EF .其中正确结论的番号是( )A .①③④B .①②③C .①③D .①②④二、填空题11.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.12.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.13.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.14.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.15.已知在矩形ABCD 中,3,3,2AB BC ==点P 在直线BC 上,点Q 在直线CD 上,且,AP PQ ⊥当AP PQ =时,AP =________________.16.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.如图,在ABC 中,D 是AB 上任意一点,E 是BC 的中点,过C 作//CF AB ,交DE 的延长线于F ,连BF ,CD ,若30FDB ∠=︒,45ABC ∠=︒,22BC =,则DF =_________.19.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.20.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 23.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.24.如图,在正方形ABCD 中,点M 是BC 边上任意一点,请你仅用无刻度的直尺,用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在如图(1)的AB 边上求作一点N ,连接CN ,使CN AM =;(2)在如图(2)的AD 边上求作一点Q ,连接CQ ,使CQ AM .25.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C 作CG ON ⊥,垂足为点G则90CGB ∠=90GCB CBG ∴∠+∠= 又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .26.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .(1)如图,当点E 在线段BC 上时,∠BDF=α.①按要求补全图形;②∠EBF =______________(用含α的式子表示);③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.27.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.28.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长; (III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.29.如图,ABCD 中,60ABC ∠=︒,连结BD ,E 是BC 边上一点,连结AE 交BD 于点F .(1)如图1,连结AC ,若6AB AE ==,:5:2BC CE =,求ACE △的面积; (2)如图2,延长AE 至点G ,连结AG 、DG ,点H 在BD 上,且BF DH =,AF AH =,过A 作AM DG ⊥于点M .若180ABG ADG ∠+∠=︒,求证:3BG GD AG +=.30.如图,ABC ∆是边长为3的等边三角形,点D 是射线BC 上的一个动点(点D 不与点B 、C 重合),ADE ∆是以AD 为边的等边三角形,过点E 作BC 的平行线,交直线AC 于点F ,连接BE .(1)判断四边形BCFE 的形状,并说明理由;(2)当DE AB ⊥时,求四边形BCFE 的周长;(3)四边形BCFE 能否是菱形?若可为菱形,请求出BD 的长,若不可能为菱形,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别以3为底和以3为腰构造等腰三角形即可.注意等腰三角形的大小不同.【详解】①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可,此时三角形为腰为3的等腰三角形;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可理由如下:∵四边形ABCD为正方形,∴∠BAC=∠DAC=45°,∵EF⊥AC∴△AEH与△AHF为等腰直角三角形∴EF=EH+FH=AH+AH=3.且AE=AF=2AH故△AEF为底为3的等腰三角形;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC 一个点,连接即可,此时三角形为腰为3的等腰三角形;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;理由如下:与②同理可证EF=3,且EC=FC,在△DEC和△DFC中,∵AC=AC,∠ACE=∠ACF,EC=FC∴△DEC≌△DFC∴AE=AF,故△AEF为底为3的等腰三角形.⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可根据垂直平分线上的点到线段两端距离相等,三角形为底为3的等腰三角形.故满足条件的所有图形如图所示:故选C.【点睛】本题考查作图——应用与设计作图, 等腰三角形的性质与判定, 勾股定理, 正方形的性质. 明确等腰三角形的性质是解答本题的关键.2.B解析:B【分析】利用正方形的性质、全等三角形的性质、勾股定理等知识依次判断即可;【详解】解:①∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=90°,∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,∴△AEP≌△DEQ,故①正确,②作PG⊥CD于G,EM⊥BC于M,∴∠PGQ=∠EMF=90°,∵EF⊥PQ,∴∠PEF=90°,∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF,∵PG=EM,∴△EFM≌△PQG,∴EF=PQ,故②正确,③连接QF.则QF=PF,PB2+BF2=QC2+CF2,设CF=x,则(2+x)2+12=32+x2,∴x=1,故③错误,④当P在A点时,Q与D重合,QC的中点H在DC的中点S处,当P运动到B时,QC的中点H与D重合,故EH扫过的面积为△ESD的面积=12,故④正确,则正确的是①②④,故选B.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,难度较大.3.D解析:D【分析】根据正方形的性质及全等三角形的判定与性质即可分别求证判断.【详解】在正方形ABCD中,AO=BO,∠AOG=∠BOE,AC⊥BD∵AF⊥BE,∴∠EAF+∠BEO=∠BEO+∠OBE=90°,∴∠OAG=∠OBE,∴△OAG≌△OBE,故OE=OG,①正确;∵AB=AE,∴∠ABE=∠AEB,∵EH∥AF∴HE⊥BE,∴∠AEF+∠AEH=∠ABE+∠CBE,∴∠AEH=∠CBE又∵AE=AB=CB,∠HAE=∠ECB=45°,∴△AEH≌△CBE,∴EH=BE,②正确;∵△AEH≌△=∴AH=CE=AC-AE=,③正确.故选D【点睛】此题主要考查正方形的性质与线段的证明,解题的关键是熟知正方形的性质定理及全等三角形的判定与性质.4.C解析:C【分析】根据平行四边形的性质得到四个平行四边形,且S△ AEP=S△ AGP,S△PHC=S△ PFC,S△ABC= S△ADC,利用面积比较的关系即可求出答案.【详解】由题意知:四边形BHPE、四边形AEPG、四边形HCFP、四边形GPFD均为平行四边形,∴S△ AEP=S△ AGP,S△PHC=S△ PFC,S△ABC= S△ADC,又S△ABC=S△AEP+S四边形BHPE+S△PHC-S△APC①,S△ADC=S△AGP+S四边形GPFD+S△PFC+S△APC②,②-①得,0=S四边形BHPE -S四边形GPFD+2S△APC,即2S△APC=6-4=2,S△APC=1.故选:C.【点睛】此题考查平行四边形的性质,平行四边形一条对角线将平行四边形的面积平分.5.A解析:A【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得EC.【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,①∴AP=EF;∠PFE=∠GAP∴④∠PFE=∠BAP,②延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴2EC.∴其中正确结论的序号是①②④⑤.故选:A.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.6.B解析:B【分析】先作出1l 与2l ,2l 与的3l 距离AE 、CF ,证明△ABE ≌△BCF ,得到BF=AE ,再利用勾股定理即可得到答案.【详解】过点A 作AE ⊥2l ,过点C 作CF⊥2l ,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE 和△BCF 中,BAE CBF AEB BFC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△BCF ,∴BF=AE=5,在Rt △BCF 中,CF=7,BF=5,∴222225774BC BF CF =+=+=,∴正方形ABCD 的面积=274BC =,故选:B.【点睛】此题考查正方形的性质,三角形全等的判定及性质定理,平行线之间的距离处处相等,题中证明两个三角形全等是解题的关键,由此将两个距离5和7变化到一个直角三角形中,由此利用勾股定理解决问题.7.B解析:B【分析】如图(见解析),先根据等腰直角三角形的判定与性质可得90,62,2BAC DAE BC DE AD ∠=∠=︒==,再根据三角形全等的判定定理与性质可得BD CE =,从而可得CDE △周长为2BC AD +,然后根据垂线段最短可求出AD 的最小值,由此即可得.【详解】在ABC 中,6,45AB AC B ==∠=︒,ABC ∴是等腰直角三角形,2290,62BAC BC AB AC ∠=︒=+=,在ADE 中,,45AD AE ADE =∠=︒,ADE ∴是等腰直角三角形,2290,2DAE DE AD AE AD ∠=︒=+=, 90BAD CAD CAE CAD ∴∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,BD CE ∴=,CDE ∴周长为622CD CE DE CD BD DE BC DE AD ++=++=+=+, 则当AD 取得最小值时,CDE △的周长最小,由垂线段最短可知,当AD BC ⊥时,AD 取得最小值,AD ∴是BC 边上的中线(等腰三角形的三线合一),1322AD BC ∴==(直角三角形斜边上的中线等于斜边的一半), CDE ∴周长的最小值为62232626+⨯=+,故选:B .【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、垂线段最短等知识点,正确找出两个全等三角形是解题关键.8.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt △ABG ≌Rt △AFG ;根据角的和差关系求得∠GAF =45°;在直角△ECG 中,根据勾股定理可证CE =2DE ;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=35GCE S∆即可得出结论.【详解】①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:∵∠BAG=∠FAG,∠DAE=∠FAE.又∵∠BAD=90°,∴∠EAG=45°;③正确.理由:设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG=12GC•CE=12×6×8=24.∵S△FCG=35GCES∆=3245⨯=725.故选D.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.9.D解析:D【分析】求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△BCD中,斜边上的中线DE=斜边BC的一半,即可得到AD=BC=2DE,进而得到AB=DE;依据OE是中位线,即可得到OE∥CD,因为两平行线间的距离相等,进而得到S△CDE=S△OCD,再根据OC是△BCD的中线,可得S△BOC=S△COD,即可得到S△CDE=S△BOC.【详解】∵∠BCD=60°,四边形ABCD是平行四边形,∴∠ADC=180°-∠BCD=120°,BC//AD,BC=AD,∵DE平分∠ADC,∴∠CDE=∠CED=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD= AD= BC,∴E是BC的中点,∴DE=BE,∴∠BDE=∠CED=30°,∴∠CDB=90°,即CD⊥BD,∴S▱ABCD=CD•BD=AB•BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠ADB=30°=∠BDE,∴DB平分∠CDE,故②正确;∵△CDE是等边三角形,∴DE=CD=AB,故③正确;∵O是BD的中点,E是BC的中点,∴OE是△CBD的中位线,∴OE∥CD,∴S△OCD=S△CDE,∵OC是△BCD的中线,∴S△BOC=S△COD,∴S△CDE=S△BOC,故④正确,故选D.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、三角形中位线、平行线间的距离相等、直角三角形斜边上的中线等于斜边的一半等,综合性较强,熟练掌握和灵活运用相关性质与定理是解题的关键.10.C解析:C【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE 后即可证明①AP=EF;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,,即可得到答案.DP2=DF2+PF2=EC2+EC2=2EC2DP EC【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,∴AP=EF;故①正确;延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;故③正确;∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故②错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,2,故④错误.EC∴正确的选项是①③;故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.二、填空题11.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴2CE=22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322,当AC=2,CP=CB=5时,OC=22×(2+5)=722,∴当P从点D出发运动至点B停止时,点O的运动路径长=722-322=22.故答案为22.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.12.(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE,设CE=x,则BE=8-x,然后根据折叠的性质,可得EF=8-x,根据勾股定理可得2224(8)x x+=-,解得x=3,则OF=6,所以OC=10,由此可得点E的坐标为(-10,3).故答案为:(-10,3)13.102-【分析】连结AC,取OC中点M,连结 MB,MG,则MB,MG为定长,利用两点之间线段最短解决问题即可.【详解】连接AC,交EF于O,∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵AE=CF,∴△AEO≌△CFO(ASA),∴OA=OC,∴O是正方形的中心,∵AB=BC=4,∴AC=2OC=2,取OC中点M,连结 MB,MG,过点M作MH⊥BC于H,∵MC=12OC2,∴MH=CH=1,∴BH=4−1=3,由勾股定理可得MB2231+10在Rt △GOC 中,M 是OC 的中点,则MG =12OC∵BG≥BM−MG ,当B ,M ,G 三点共线时,BG ,.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E ,F 运动到AD ,BC 的中点时,MG 最小是解决本题的关键.14.24【分析】由菱形的性质可得OD =OB ,∠COD =90°,由直角三角形的斜边中线等于斜边的一半,可得OH =12BD =OB ,可得∠OHB =∠OBH ,由余角的性质可得∠DHO =∠DCO ,即可求解. 【详解】 【解答】解:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∠DAB =∠DCB =48°,∵DH ⊥AB ,∴OH =12BD =OB , ∴∠OHB =∠OBH ,又∵AB ∥CD ,∴∠OBH =∠ODC , 在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO =12∠DCB =24°, 故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH 是BD 的一半,和∠DHO =∠DCO 是解决本题的关键.15【分析】 根据点P 在直线BC 上,点Q 在直线CD 上,分两种情况:1.P 、Q 点位于线段上;2.P 、Q 点位于线段的延长上,再通过三角形全等得出相应的边长,最后根据勾股即可求解.【详解】解:当P 点位于线段BC 上,Q 点位于线段CD 上时:∵四边形ABCD 是矩形,AP PQ∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC-PC=3-32=32∴AP=223322+()()=322当P 点位于线段BC 的延长线上,Q 点位于线段CD 的延长线上时:∵四边形ABCD 是矩形,AP PQ ⊥∴∠BAP=∠CPQ ,∠APB=∠PQC∵AP PQ =∴ABP PCQ ≅∴PC=AB=32,BP=BC+PC=3+32=92∴223922+()()31023223102【点睛】 此题主要考查三角形全等的判定及性质、勾股定理,熟练运用判定定理和性质定理是解题的关键.16.②③【分析】根据菱形的性质可知AC ⊥BD ,所以在Rt △AFP 中,AF 一定大于AP ,从而判断①;设∠BAE=x ,然后根据等腰三角形两底角相等表示出∠ABE ,再根据菱形的邻角互补求出∠ABE ,根据三角形内角和定理列出方程,求出x 的值,求出∠BFE 和∠BE 的度数,从而判断②③.【详解】解:在菱形ABCD 中,AC ⊥BD ,∴在Rt△AFP中,AF一定大于AP,故①错误;∵四边形ABCD是菱形,∴AD∥BC,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD是菱形,∴∠BAD=∠CBD=12∠ABE=36°,∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF.故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.17.6【分析】先证明△AEB≌△FEB≌△DEF,从而可知S△ABE =13S△DAB,即可求得△ABE的面积.【详解】解:由折叠的性质可知:△AEB≌△FEB ∴∠EFB=∠EAB=90°∵ABCD为矩形∴DF=FB∴EF垂直平分DB∴ED=EB在△DEF和△BEF中DF=BF EF=EF ED=EB∴△DEF≌△BEF∴△AEB≌△FEB≌△DEF∴13666AEB FEB DEF ABCDS S S S∆∆∆====⨯=矩形.故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.18.4【分析】证明CF∥DB,CF=DB,可得四边形CDBF是平行四边形,作EM⊥DB于点M,解直角三角形即可.【详解】解:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA).∴CF=BD.∴四边形CDBF是平行四边形.作EM⊥DB于点M,∵四边形CDBF是平行四边形,22BC=∴BE=122BC=,DF=2DE,在Rt△EMB中,EM2+BM2=BE2且EM=BM ∴EM=1,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=2,∴DF=2DE=4.故答案为:4.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,19.8或3【分析】根据AE和DF是否相交分类讨论,分别画出对应的图形,根据平行四边形的性质、平行线的性质、角平分线的定义和等角对等边即可得出结论.【详解】解:①当AE和DF相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF=BC+EF∴2AB=11+5解得:AB=8;②当AE和DF不相交时,如下图所示∵四边形ABCD为平行四边形,AD=11,EF=5,∴BC=AD=11,AD∥BC,AB=CD∴∠DAE=∠BEA,∠ADF=∠CFD∵AE 平分∠BAD,DF 平分∠ADC∴∠DAE=∠BAE,∠ADF=∠CDF∴∠BEA=∠BAE,∠CFD=∠CDF∴BE=AB,CF=CD∴BE=AB= CD= CF∵BE+CF+EF =BC∴2AB+5=11解得:AB=3综上所述:AB=8或3故答案为:8或3.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的性质,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.20.13【分析】根据12•BC •AH =12•AB •AC ,可得AH ,根据 12AD •BO =12BD •AH ,得OB =,再根据BE =2OB EC . 【详解】设BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∠BAC =90°,AB =2,AC =3,由勾股定理得:BC∵点D 是BC 的中点,∴AD =DC =DB , ∵12•BC •AH =12•AB •AC ,∴AH ∵AE =AB ,DE =DB ,∴点A 在BE 的垂直平分线上,点D 在BE 的垂直平分线上,∴AD 垂直平分线段BE , ∵12AD •BO =12BD •AH ,∴OB∴BE =2OB , ∵DE =DB=CD , ∴∠DBE=∠DEB ,∠DEC=∠DCE ,∴∠DEB+∠DEC=12×180°=90°,即:∠BEC=90°,∴在Rt △BCE 中,EC =22BC BE - =221213(13)()13-=51313. 故答案为:51313. 【点睛】本题主要考查直角三角形的性质,勾股定理以及翻折的性质,掌握“直角三角形斜边长的中线等于斜边的一半”以及面积法求三角形的高,是解题的关键.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。

数学 平行四边形的专项 培优练习题及答案

数学 平行四边形的专项 培优练习题及答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.问题发现:(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.问题探究:(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.问题解决:(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .【解析】试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.(3)存在,直线y x =平分五边形OABCD 面积、周长.试题解析:(1)作图如下:(2)∵(6,7)P ,(4,3)O ',∴设:6PO y kx =+',67{43k b k b +=+=,2{5k b ==-, ∴25y x =-,交x 轴于5,02N ⎛⎫ ⎪⎝⎭, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2211563522MN ⎛⎫=+-= ⎪⎝⎭.(3)存在,直线y x =平分五边形OABCD 面积、周长.∵(1052,102)P --在直线y x =上,∴连OP 交OA 、BC 于点E 、F ,设:BC y kx b =+,(8,2)(2,8)B C ,82{28k b k +=+=,1{10k b =-=, ∴直线:10BC y x =-+,联立10{y x y x =-+=,得55x y =⎧⎨=⎩, ∴(0,0)E ,(5,5)F .2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

第18章《平行四边形》单元培优训练卷 原卷

第18章《平行四边形》单元培优训练卷  原卷

第18章《平行四边形》单元培优训练卷一、选择题1.(2021春•抚远市校级期末)下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线互相垂直的四边形是菱形C.对角线互相垂直的四边形是平行四边形D.对角线相等的平行四边形是矩形2.(2022秋•泰山区期末)如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.AB=CD,AO=COC.AB=CD,AD=BC D.∠BAD=∠BCD,AB∠CD3.(2022秋•深圳期末)要检验一个四边形画框是否为矩形,可行的测量方法是()A.测量四边形画框的两个角是否为90°B.测量四边形画框的对角线是否相等且互相平分C.测量四边形画框的一组对边是否平行且相等D.测量四边形画框的四边是否相等4.(2022秋•任城区期末)已知,在平行四边形ABCD中,∠A的平分线分BC成4cm和3cm两条线段,则平行四边形ABCD的周长为()cm.A.11B.22C.20D.20或225.(2021秋•青羊区期末)如图,菱形ABCD中,AC=6,BD=8,AH∠BC于点H,则AH=()A.24B.10C.D.6.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH∠AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为()A.4B.4C.8D.87.(2022•苏州模拟)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于点P.则下列结论不成立的是()A.AE=DF B.PC=PDC.AE∠DF D.S∠ADP=S四边形PFBE8.(2022春•东平县校级月考)如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E 作EG∠AD交CD于点G,过点F作FH∠AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH 的周长之差为12时,AE的值为()A.5.5B.4C.2D.69.(2022春•新罗区校级月考)如图,在∠ABCD中,AD=2AB,F是AD的中点,作CE∠AB,垂足E在线段AB 上(E不与A、B重合),连接EF、CF,则下列结论中正确个数是()∠∠DCF=∠BCD;∠EF=CF;∠S∠BEC<2S∠CEF;∠∠DFE=4∠AEFA.4B.3C.2D.110.(2022秋•渠县校级期末)如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任一点,PQ∠BC于点Q,PR∠BE于点R,则PQ+PR的值是()A.B.C.D.二、填空题11.(2022秋•碑林区校级期末)如图,菱形ABCD的周长是40cm,对角线AC为10cm,则菱形相邻两内角的度数分别为.12.如图,在平行四边形ABCD中,点M为边AD上一点,2AM=3MD,点E、F分别是BM、CM的中点,若EF =5,则AM的长为.13.(2022秋•锦江区期末)小颖将能够活动的菱形学具活动成为图1所示形状,并测得AC=5,∠B=60°,接着,她又将这个学具活动成为图2所示正方形,此时A'C'的长为.14.(2022秋•朝阳区校级期末)如图,菱形ABCD的周长为20,面积为24,P是对角线BD上一点,分别作P点到直线AB、AD的垂线段PE、PF,则PE+PF等于.15.(2022秋•朝阳区校级期末)如图,Rt∠ABC中,∠ACB=90°,∠B=30°,.点D为边AB上一个动点,作DE∠BC、DF∠AC,垂足为E、F,连结EF.则EF长度的最小值为.16.(2022秋•平桂区期末)如图,在长方形ABCD中,AB=8,GC=,AE平分∠BAG交BC于点E,E是BC 的中点,则AG的长为.三、解答题17.(2022秋•南关区校级期末)如图,在平行四边形ABCD中,E,F是对角线BD上两个点,且BE=DF.(1)求证:AE=CF;(2)若AD=AE,∠DFC=140°,求∠DAE的度数.18.如图,在正方形ABCD中,点E是对角线AC上的一点,点F在BC的延长线上,且BE=EF.(1)求证:DE=EF;(2)若BE=3,求DF的长.19.(2022秋•平遥县期末)如图,已知平行四边形ABCD中,延长AB至点E,使BE=AB,连接BD和CE.(1)求证:∠DAB∠∠CBE(2)请你给图中平行四边形ABCD补充适当的条件,使四边形DBEC成为菱形;请结合补充条件证明;20.(2023•黔江区一模)如图,在∠ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.21.(2022•苏州模拟)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是OA,OC的中点.(1)求证:四边形DEBF是平行四边形;(2)∠对角线AC,BD满足时,四边形DEBF是矩形;∠对角线AC,BD满足时,四边形DEBF是菱形.22.(2022春•杭州期中)已知:如图,在正方形ABCD中,E,F分别是BC,CD上的点,AE、BF相交于点P,并且AE=BF.(1)如图1,判断AE和BF的位置关系?并说明理由;(2)若AB=8,BE=6,求BP的长度;(3)如图2,FM∠DN,DN∠AE,点F在线段CD上运动时(点F不与C、D重合),四边形FMNP是否能否成为正方形?请说明理由.23.(2022春•梅江区期末)如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5,求证:以E、G、F、H为顶点的四边形始终是平行四边形.(2)在(1)的条件下,当t为何值时,以E、G、F、H为顶点的四边形为矩形?(3)若G、H分别是折线A﹣B﹣C,C﹣D﹣A上的动点,分别从A、C开始,与E、F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形为菱形?请直接写出t的值.。

平行四边形培优训练试卷整理及答案

平行四边形培优训练试卷整理及答案

第四章平行四边形培优训练一.选择题1.七边形外角和为()A. 180°°°°2.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()=OC,OB=OD∥BC,AB∥DC=DC,AD=BC∥DC,AD=BC3.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()B. 144.下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断为平行四边形的是()5.下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形B.矩形C.正三角形D.等腰梯形6.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C .D .7.如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使 △ABE ≌△CDF ,则添加的条件不能是( ) A. AE =CFB. BE =FDC. BF =DED. ∠1=∠28..已知ABCD 中,∠A +∠C =200°,则∠B 的度数是( ) A .100°B .160°C .80°D . 60°9.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC ;②AD =BC ;③OA =OC ;④OB =OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( ) A .3种B .4种C .5种D .6种10.在□ABCD 中,延长AB 到E ,使BE =AB ,连接DE 交BC 于F ,则下列结论不一定成立的是( )A .CDF E ∠=∠B .DF EF =C .BF AD 2= D .CF BE 2=11.如图,在平行四边形ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A. 7B. 10C. 11D. 1212.若以A (-,0),B (2,0),C (0,1)三点为顶点画平行四边形,则第四个顶点不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限ABCDE F第16题13.如图,在Rt △ABC 中,AB=CB ,BO ⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE 、EF .下列结论:①图中有4对全等三角形;②若将△DEF 沿EF 折叠,则点D 不一定落在AC 上;③BD=BF ;④S 四边形DFOE=S △AOF ,上述结论中正确的个数是( )A 、1个B 、2个C 、3个D 、4个14.如图,正方形ABCD 中,点E 、F 分别在BC 、CD上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④BE+DF=EF ,⑤S △CEF =2S △ABE .其中正确结论有【 】个.A .2B .3C .4D .515.下列给出的条件中,能判定四边形ABCD 是平行四边形的是 ( ). (A)AB ∥CD ,AD=BC (B)AB=AD ,CB=CD (C)AB=CD ,AD=BC (D)∠B=∠C ,∠A=∠D 16.已知,如图,在平行四边形ABCD 中,∠ABC 的平分线与AD 相交于点P ,下列说法中正确的是( )①△APB 是等腰三角形 ②∠ABP+∠BPD=180°③PD+CD=BC ④PDCB APB S S 梯形=∆ A. ①②④ B. ①②③ C. ①③④ D. ①②③④17.已知△ABC 的面积为36,将△ABC 沿BC 的方向平移到△A /B /C /的位置,使B / 和C 重合,连结AC / 交A /C 于D ,则△C /DC 的面积为 ( )A. 6B. 9C. 12D. 18 二.填空题1.将四根木条钉成的长方形木框变形为平行四边形ABCD 的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为AA 'C )(B 'C BD第5题2.在ABCD 中,BC 边上的高为4,AB =5,AC =52,则ABCD 的周长等于3.在下列图形中既是轴对称图形又是中心对称图形的是___________ ①线段,②角,③等边三角形,④圆,⑤平行四边形,⑥矩形.4.如图,ABCD 中,对角线AC 与BD 相交于点E ,∠AEB =45°,BD =2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ′,则DB ′的长为___5.如图,ABCD 与DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为_6.如图,ABCD 中,∠ABC =60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF =3,则AB 的长是7.如图,△ACE 是以ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,-33),则D 点的坐标是8..如图,ABCD 中,AE ⊥BD 于E ,∠EAC =30°,AE =3,则AC 的长等于9.如图,在ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 (填序号) ①∠DCF =21∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .10.如图,四边形ABCD 中,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则AC=__________11. 如图,在 ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E , 且AE =3,则AB =_____ 12.如图,分别以直角△ABC 的斜边AB ,直角边AC 为边向△ABC 外作等边△ABD 和等边△ACE ,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,∠ACB=90°,∠BAC=30°.给出如下结论:①EF ⊥AC ;②四边形ADFE 为菱形;③AD=4AG ;④FH=14BD 其中正确结论的为 (请将所有正确的序号都填上).13.如图,在梯形ABCD 中,AD14.如图,有八个全等的直角三角形拼成一个大四边形ABCD 和中间一个小四边形MNPQ ,连接EF 、GH 得到四边形EFGH ,设S 四边形ABCD =S 1,S 四边形EFGH =S 2,S 四边形MNPQ =S 3,若S 1+S 2+S 3=20,则S 2= . 15.如图,△ABC 是等边三角形,P 是△ABC 内一点,PE ∥AC 交AB 于点E,PF ∥AB 交BC 于点F,PD ∥BC 交AC 于点D.已知△ABC 的周长是12 cm,则PD+PE+PF=______________ cm.三.解答题1.如图,四边形ABCD 是平行四边形,E 、F 是对角线BD 上的点,∠1=∠2.(1)求证:BE =DF ; (2)求证:AF ∥CE .2.如图,在ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.3.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.4.如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.5.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形请证明你的结论.6.在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.7.(1)如图(1),ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图(2),将ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.(1)(2)8.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.∠BAC=30°,EF⊥AB,垂足为F,连接DF .(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.9.如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.10.如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP 交正方形外角的平分线CP于点P,交边CD于点F,(1)FCEF的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形若存在,请给予证明;若不存在,请说明理由.11.已知,如图,AC为平行四边形ABCD的对角线,点E是边AD上一点,(1)若∠CAD=∠EBC,AC=BE,AB=6,求CE的长。

(完整版)八年级平行四边形培优练习题

(完整版)八年级平行四边形培优练习题

八年级平行四边形培优练习题
1.已知:如图,四边形ABCD 是平行四边形,DE//AC ,交BC 的延长线于点E ,EF ⊥AB 于点F ,
求证:AD=CF 。

2. .如图,已知ΔABC 中,E 、F 分别是AB 、BC 中点,M 、N 是AC 的两个三等分点,EM 与FN 的延长线相交于点D,
求证:四边形ABCD 是平行四边形。

3.如图,平行四边形ABCD 中,点E 为AB 边上一点,连接DE ,点F 为DE 的中点,且CF ⊥DE ,点M 为线段CF 上一点,使DM=BE ,CM=BC .
(1)若AB=13,CF=12,求DE 的长度;
(2)求证:13DCM DMF ∠=
∠.
4.已知:在□ABCD 中,AE ⊥BC ,垂足为E ,CE =CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF ,EG ,AG ,∠1=∠2.
(1)若CF =2,AE =3,求BE 的长; A B C D E F
M F
E D C B
A 第3题
(2)求证:∠CEG=∠AGE.
7.如图:已知Y ABCD中,以长为斜边在Y ABCD内作等腰直角△ABE,且AE=AD,连接DE,过E作EF⊥DE交AB于F交DC于G,且∠AEF=15°
(1)若EF=3,求AB的长.
(2)求证:2GE+EF=AB.
8、已知:如图,在ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E,
(1)、若∠ADB=25°,求∠BAE的度数;
(2)、求证:AB=2OE
A D
E
B
C。

数学数学平行四边形的专项培优练习题(含答案

数学数学平行四边形的专项培优练习题(含答案

数学数学平行四边形的专项培优练习题(含答案一、选择题1.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=12AB;②图中与△EGD 全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④ S四边形ODGF= S△ABF.其中正确的结论是()A.①③B.①③④C.①②③D.②②④2.在正方形ABCD 中,P 为AB 的中点,BE PD⊥的延长线于点E ,连接AE 、BE ,FA AE⊥交DP 于点F ,连接BF 、FC ,下列结论:①ABE ADF≅;②FB =AB ;③CF PD⊥;④FC =EF . 其中正确的是()A.①②④B.①③④C.①②③D.①②③④3.如图,菱形ABCD中,AC交BD于点O,DE BC⊥于点E,连接OE,若50BCD∠=︒,则OED∠的度数是()A.35°B.30°C.25°D.20°4.□ABCD中,∠A=60°,点E、F分别在边AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,则EF的长度为()A21B.5C.26D.55.如图,在长方形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连结PE、PF、PG、PH,则△PEF和△PGH的面积和为()A.5 B.6C.7 D.86.矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为( )A.3 B.32C.2或3 D.3或327.如图,在正方形ABCD中,点G是对角线AC上一点,且CG=CB,连接BG,取BG上任意一点H,分别作HM⊥AC于点M,HN⊥BC于点N,若正方形的边长为2,则HM+HN的值为()A.2B.1 C.3D.2 28.如图,点E是正方形ABCD外一点,连接AE、BE和DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=3.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE 的距离为7;④S正方形ABCD=8+14.则正确结论的个数是()A.1 B.2 C.3 D.49.如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2、B2、C2分别是边B1C1、A1C1、A1B1的中点;点A3、B3、C3分别是边B2C2、A2C2、A2B2的中点;……;以此类推,则第2019个三角形的周长是()A .201412B .201512 C .201612 D .20171210.如图,正方形ABCD 的边长为2,Q 为CD 边上(异于C ,D ) 的一个动点,AQ 交BD 于点M .过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下面结论:①AM=MN ;②MP=2;③△CNQ 的周长为3;④BD+2BP=2BM ,其中一定成立的是( )A .①②③④B .①②③C .①②④D .①④二、填空题11.如图,某景区湖中有一段“九曲桥”连接湖岸A ,B 两点,“九曲桥”的每一段与AC 平行或BD 平行,若AB =100m ,∠A =∠B =60°,则此“九曲桥”的总长度为_____.12.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.13.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.14.如图,正方形ABCD 中,DAC ∠的平分线交DC 于点E ,若P ,Q 分别是AD 和AE 上的动点,则DQ+PQ 能取得最小值4时,此正方形的边长为______________.15.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.16.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).17.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________18.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.19.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.22.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.23.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.24.社团活动课上,数学兴趣小组的同学探索了这样的一个问题:如图1,90MON ∠=,点A 为边OM 上一定点,点B 为边ON 上一动点,以AB 为一边在∠MON 的内部作正方形ABCD ,过点C 作CF OM ⊥,垂足为点F (在点O 、A 之间),交BD 与点E ,试探究AEF ∆的周长与OA 的长度之间的等量关系该兴趣小组进行了如下探索:(动手操作,归纳发现)(1)通过测量图1、2、3中线段AE 、AF 、EF 和OA 的长,他们猜想AEF ∆的周长是OA 长的_____倍.请你完善这个猜想(推理探索,尝试证明)为了探索这个猜想是否成立,他们作了如下思考,请你完成后续探索过程:(2)如图4,过点C 作CG ON ⊥,垂足为点G则90CGB ∠=90GCB CBG ∴∠+∠= 又四边形ABCD 正方形,AB BC =,90ABC ∠=则90CBG ABO ∠+∠=GCB ABO ∴∠=∠在CBE ∆与ABE ∆中,(类比探究,拓展延伸)(3)如图5,当点F 在线段OA 的延长线上时,直接写出线段AE 、EF 、AF 与OA 长度之间的等量关系为 .25.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求CP PQ的值. 26.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.27.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 的面积可能等于53吗?如果能,求此时x 的值;如果不能,请说明理由.28.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.29.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.30.在四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF ,GH 分别交边AB 、CD ,AD 、BC 于点E 、F 、G 、H .(1)观察发现:如图①,若四边形ABCD 是正方形,且EF ⊥GH ,易知S △BOE =S △AOG ,又因为S △AOB =14S 四边形ABCD ,所以S 四边形AEOG = S 正方形ABCD ; (2)类比探究:如图②,若四边形ABCD 是矩形,且S 四边形AEOG =14S 矩形ABCD ,若AB =a ,AD =b ,BE =m ,求AG 的长(用含a 、b 、m 的代数式表示);(3)拓展迁移:如图③,若四边形ABCD 是平行四边形,且S 四边形AEOG =14S ▱ABCD ,若AB =3,AD =5,BE =1,则AG = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果. 【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BD BAG EDG ABO BCO CDO AODCD DE AB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴=在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ), ∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形, ∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形, ∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确; ∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG , 在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F E D C B A E
C B A C B A E O C B A H G F E 红绿橙蓝黄紫2l 1l F
D C
E B A P F
E D C B A E D
C B A 《平行四边形》培优训练
1、如图,□ABCD 的周长为20,BE ⊥AD ,BF ⊥CD ,BE=2,BF=3。

则□ABCD 的面积为 。

1题图 2题图
2、如图,在□ABCD 中,已知AD=8,AB=6,DE 平分∠ADC 交BC 边于点E ,则BE 等于( )
A 、2
B 、4
C 、6
D 、8
3、如图,在周长为20的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )
A 、4
B 、6
C 、8
D 、10 3题图 4题图
4、某广场上有一个形状是平行四边形的花坛(如图),分别有红、黄、蓝、绿、橙、紫6种颜色的花。

如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法中错误的是( )
A 、红花、绿花种植面积一定相等
B 、紫花、橙花种植面积一定相等
C 、红花、蓝花种植面积一定相等
D 、蓝花、黄花种植面积一定相等
5、如图,1l ∥2l ,BE ∥CF ,BA ⊥1l ,DC ⊥2l ,下面的四个结论中:①AB=DC ;②BE=CF ;③DCF ABE S S ∆∆=;④S □ABCD =S □BCFE 。

其中正确的有( )
A 、4个
B 、3个
C 、2个
D 、1个
5题图 6题图
6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点,AD=BC ,∠PEF=180,则∠PFE 的度数为 。

7、四边形中,有两条边相等,另两条边也相等,则这个四边形( )
A 、一定是平行四边形
B 、一定不是平行四边形
C 、可能是平行四边形
D 、以上答案都不对
8、如图,□ABCD 中,E 是BC 边上的一点,且AB=AE 。

(1)求证:△ABC ≌△EAD ;
(2)若AE 平分∠DAB ,∠EAC=250,求∠AED 的度数。

E D C B A H
F E D C B A
G F E D
C B A 9、如图,□ABC
D 内一点
E 满足ED ⊥AD 于D ,且∠EBC=∠EDC ,∠ECB=450。

找出图中条与EB 相等的线段,并加以证明。

10、如图,在△ABC 中,AB=AC ,延长BC 至D ,使CD=BC 。

点E 在边AC 上,以CD 、CE 为邻边作□CDFE 。

边点C 作CG ∥AB 交EF 于点G ,连接BG 、DE 。

(1)∠ACB 与∠DCG 有怎样的数量关系请说明理由;
(2)求证:△BCG ≌△DCE 。

11、如图,在□ABCD 中,∠BAD=320,分别以BC 、CD 为边向外作△BCE 和△DCF ,使BE=BC ,DF=DC ,∠EBC=∠CDF ,延长AB 交边EC 于点H ,点H 在E 、C 两点之间,连接AE 、AF 。

(1)求证:△ABE ≌△FDA ;
(2)当AE ⊥AF 时,求∠EBH 。

F E D C B A 21N M F D C B A H N M O F
E D C B A G
F E D C B A 12、如图,□ABCD 中,BF ⊥CD ,BE ⊥AD ,∠EBF=600,AE=3,DF=2。

求EC 、EF 的长。

13、如图1,在四边形ABCD 中,AB=CD ,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与BA 、CD
的延长线交于点M 、N ,则∠BME=∠CNE (不需证明)。

(温馨提示:在图1中,连接BD ,取BD 的中点H ,连接HE 、HF ,根据三角形中位线定理,证明HE=HF ,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE 。


问题一:如图2,在四边形ADBC 中,AB 与CD 相交于点O ,AB=CD ,E 、F 分别是BC 、AD 的中点,连
接EF ,分别交DC 、AB 于点M 、N ,判断△OMN 的形状,请直接写出结论。

问题二:如图3,右△ABC 中,AC AB ,D 点在AC 上,AB=CD ,E 、F 分别是BC 、AD 的中点,连接EF
并延长,与BA 的延长线交于点G ,若∠EFC=600,连接GD ,判断△AGD 的形状并证明。

图① 图②
图③。

相关文档
最新文档