马尔科夫链考试例题整理

合集下载

马尔科夫链例题整理

马尔科夫链例题整理
例2 直线上的随机游动时的位置X(t),是 无后效性的随机过程.
例3 电话交换台在t时刻前来到的呼叫数X(t), 是无后效性的随机过程.
例4 无 记 忆 性 布朗运动 未来处于某状态的概率特性只与现在状态 有关,而与以前的状态无关,这种特性叫 无记忆性(无后效性)。
首页
一步转移概率矩阵的计算
引 例
首页

(1) 记甲获得“负2分”为状态1,获得 “负1分”为状态2,获得“0分”为状态3, 获得“正1分”为状态4,获得“正2分”为 状态5,则状态空间为
I {1 ,2,3,4,5}
一步转移概率矩阵
1 q P 0 0 0
0 r q 0 0
0 p r q 0
0 0 p r 0
0 q 0 P 1 ... 0 p p 0 q 0 p 0 0 ... 0 0 ... 0 p ... 0 q 0 0 q q 0 0 ... p 0
... ... ... ... ... 0 ... 0 0 ... 0
首页
4.一个质点在全直线的整数点上作随机游动,移 动的规则是:以概率p从i移到i-1,以概率q从i移到 i+1,以概率r停留在i,且 r p q 1 ,试 求转移概率矩阵。
例1 直线上带吸收壁的随机游动(醉汉游动) 设一质点在线段[1,5 ]上随机游动,每秒钟发生 一次随机游动,移动的规则是: 1 (1)若移动前在2,3,4处,则均以概率 向左 2 或向右 移动一单位; (2)若移动前在1,5处,则以概率1停留在原处。
1 2 3 4 5
质点在1,5两点被“吸收”
若 X (n) 表示质点在时刻n所处的位置,求 一步转移概率。
q
p
q

11章马尔可夫链习题课

11章马尔可夫链习题课

切普曼-柯莫哥洛夫方程(简称C -K方程)
设{ X (n), n T1}是一齐次马氏链, 则对任意的
u,v T1,有
Pij(u v) Pik (u) pkj (v), i, j 1,2,
k 1
由C-K方程知:
马氏链的n步转移概率是一步转移概率的 n次 方,链的有限维分布可由初始分布和一步移概率完 全确定.
pN ,1 p,
p1,N q,
例5 试证Wiener过程B(t)是马尔可夫过程. 证明
p{B(t s) y | B(s) x, B(u)(0 u s)} p{B(t s) B(s) y x | B(s) x,
B(u)(0 u s)} p{B(t s) B(s) y x}
条件下,过程在时刻t t0所处状态的条件分布与 与过程在时刻t0之前所处的状态无关的特性称为 马尔可夫性或无后效性.
马尔可夫链
时间和状态都是离散的马尔可夫过程称为 马尔可夫链. 简记为: { Xn X (n), n 0,1,2,}
齐次马尔可夫链
当转移概率Pij(m,n n)只与i, j及时间间距n 有关时, 称此链是齐次的或时齐的.
转移概率、转移概率矩阵
称条件概率 Pij(m,n n) P{ Xmn a j | Xm ai }
为马氏链在时刻m处于状态ai条件下,在时刻
m n转移到状态a j的转移概率.
转移概率的特点 Pij(m,m n) 1,i 1,2,.
j 1
由转移概率组成的矩阵 P(m,m n)(Pij(m,n n))
步转移概率矩阵为
3 4
1 4
0
初始分布pi (0)
P{ X 0
i}
1, 3
P
1
1

马尔科夫链考试例题整理

马尔科夫链考试例题整理
例1 直线上带吸收壁的随机游动(醉汉游动)
设一质点在线段[1,5 ]上随机游动,每秒钟发生 一次随机游动,移动的规则是: 1 (1)若移动前在2,3,4处,则均以概率 向左 2 或向右 移动一单位; (2)若移动前在1,5处,则以概率1停留在原处。
1 2 3 4 5
质点在1,5两点被“吸收”
若 X (n) 表示质点在时刻n所处的位置,分析它的 概率特性。
于是
d j rd j 1
d j rd j 1 r d j 2 r d 0
2 jΒιβλιοθήκη 需讨论 r19当
r 1 c 1 1 u 0 u c ( u j u j 1 )


c 1 j0
d j
c1 i j c 1
j 0 c 1

i

u j u j uc
p01 P( X1 1| X0 0) P(Y0 1) p1
p10 P( Xn1 0 | Xn 1) P( Xn 1 Yn 0 | Xn 1)
p20 P( Xn1 0 | Xn 2) P( Xn 1 Yn 0 | Xn 2)
13

(1) 记甲获得“负2分”为状态1,获得 “负1分”为状态2,获得“0分”为状态3, 获得“正1分”为状态4,获得“正2分”为 状态5,则状态空间为
I {1, 2,3, 4,5}
一步转移概率矩阵
1 q P 0 0 0
0 r q 0 0
0 p r q 0
0 0 p r 0
(u u
di
j0
r d0
i1
j
1 rc d0 1 r
)
i r d0 i j i j j c r r j c j 1 d0 r (1 r r )d 0 1 r j c 两式相比 r r uj c 1 r

马尔可夫分析法练习题

马尔可夫分析法练习题

马尔可夫分析法练习题一、基础概念题1. 马尔可夫过程的定义是什么?2. 简述马尔可夫链的基本特征。

3. 马尔可夫分析法在哪些领域有应用?4. 请解释转移概率矩阵的概念。

5. 什么是稳态概率分布?二、计算题| | A | B | C ||||||| A | 0.5 | 0.2 | 0.3 || B | 0.4 | 0.3 | 0.3 || C | 0.1 | 0.1 | 0.8 |2. 已知一个马尔可夫链的初始状态概率分布为 [0.4, 0.3, 0.3],求经过三个周期后的状态概率分布。

| | X | Y | Z ||||||| X | 0.3 | 0.2 | 0.5 || Y | 0.4 | 0.3 | 0.3 || Z | 0.1 | 0.5 | 0.4 |4. 一个公司有三个部门,员工可以在这三个部门之间调动。

已知转移概率矩阵如下,求各部门的稳态员工人数比例:| | 部门一 | 部门二 | 部门三 ||||||| 部门一 | 0.6 | 0.2 | 0.2 || 部门二 | 0.3 | 0.5 | 0.2 || 部门三 | 0.4 | 0.1 | 0.5 |三、应用题1. 假设某地区天气分为晴天、多云和雨天三种状态,已知转移概率矩阵如下,预测未来三天的天气状态概率分布:| | 晴天 | 多云 | 雨天 ||||||| 晴天 | 0.6 | 0.2 | 0.2 || 多云 | 0.3 | 0.5 | 0.2 || 雨天 | 0.4 | 0.1 | 0.5 |2. 某公司产品销售分为高、中、低三个市场,已知转移概率矩阵如下,预测未来两个季度的市场占有率:| | 高市场 | 中市场 | 低市场 ||||||| 高市场 | 0.7 | 0.2 | 0.1 || 中市场 | 0.3 | 0.5 | 0.2 || 低市场 | 0.4 | 0.2 | 0.4 |3. 假设一个网站的用户分为新用户、活跃用户和流失用户三种状态,已知转移概率矩阵如下,求各状态用户的稳态比例: | | 新用户 | 活跃用户 | 流失用户 ||||||| 新用户 | 0.5 | 0.3 | 0.2 || 活跃用户 | 0.2 | 0.6 | 0.2 || 流失用户 | 0.3 | 0.1 | 0.6 |四、案例分析题初始状态分布:潜在客户 60%,新客户 20%,老客户 15%,流失客户 5%转移概率信息:(请自行构建)初始状态分布:主干道 40%,次干道 30%,支路 30%转移概率信息:(请自行构建)五、综合分析题普通会员有20%的概率升级为银卡会员,5%的概率直接成为金卡会员。

马尔可夫链的模型解概率题

马尔可夫链的模型解概率题

马尔可夫链的模型解概率题马尔可夫链是一种随机过程,它描述了一系列可能的状态,以及在每个状态之间转移的概率。

这种模型特别适用于那些下一个状态只依赖于当前状态的情况。

假设我们有一个天气模型,其中只有两种状态:晴天(S)和雨天(R)。

我们观察到,如果今天是晴天,那么明天还是晴天的概率是0.9,变成雨天的概率是0.1。

如果今天是雨天,那么明天还是雨天的概率是0.8,变成晴天的概率是0.2。

我们可以使用马尔可夫链来描述这个模型。

首先,我们需要一个状态转移矩阵,它描述了从一个状态转移到另一个状态的概率。

在这个例子中,状态转移矩阵可以写成:= [0.9 0.10.2 0.8],第一行表示如果今天是晴天,那么明天还是晴天的概率是0.9,变成雨天的概率是0.1。

第二行表示如果今天是雨天,那么明天变成晴天的概率是0.2,还是雨天的概率是0.8。

现在,假设我们想知道,如果今天是晴天,那么接下来三天都是晴天的概率是多少。

我们可以使用马尔可夫链的模型来解决这个问题。

首先,我们知道今天是晴天的概率是1,雨天的概率是0。

我们可以把这个概率分布表示为一个向量:接下来,我们可以使用这个向量和状态转移矩阵来计算明天是晴天的概率。

根据马尔可夫链的性质,我们可以通过乘以状态转移矩阵来得到下一个状态的概率分布:1 = π_0 * P = [1 0] * [0.9 0.10.2 0.8] = [0.9 0.1],是雨天的概率是0.1。

接下来,我们可以使用同样的方法来计算接下来两天的天气概率分布:0.1] * [0.9 0.10.2 0.8] = [0.83 0.17]今天是晴天,那么接下来两天都是晴天的概率是0.83,有一天是雨天的概率是0.17。

最后,我们可以计算接下来三天都是晴天的概率:_3 = π_2 * [1 0] = [0.83 0.17] * [1 0] = 0.83错误,我们不能直接这样计算。

实际上,我们应该再次使用状态转移矩阵:= π_2 * P = [0.83 0.17] * [0.9 0.10.2 0.8] = [0.767 0.233],即0.767。

概率与数列(含马尔可夫链问题)

概率与数列(含马尔可夫链问题)

概率与数列(含马尔可夫链问题)·华师大附中压轴卷)长江十年禁渔计划全面施行,渔民老张积极配合政府工作,如期收到政府的补偿款.他决定拿出其中10万元进行投资,并看中了两种为期60天(视作2个月)的稳健型(不会亏损)理财方案.方案一:年化率2.4%,且有10%的可能只收回本金;方案二:年化率3.0%,且有20%的可能只收回本金;已知老张对每期的投资本金固定(都为10万元),且第一次投资时选择了方案一,在每期结束后,老张不间断地进行下一期投资,并且他有40%的可能选择另一种理财方案进行投资.(1)设第i次投资(i=1,2,3,⋯,n)选择方案一的概率为P i,求P4;(2)求一年后老张可获得总利润的期望(精确到1元).注:若拿1千元进行5个月年化率为2.4%的投资,则该次投资获利ω=2.4%×512×1000=10元.【答案】解:(1)由题意知P i+1=(1-40%)P i+40%(1-P i)=25+15P i,整理得P i+1-12=15P i-12,其中P1=1,故数列P n-1 2是以P1-12为首项,15为公比的等比数列,则P n-12=12×15 n-1,即P n=12+12×15n-1,那么P4=63125.(2)当某期选择方案一时,获利期望值为W1=(1-10%)×2.4%×212×100000 =360元;当某期选择方案二时,获利期望值为W2=(1-20%)×3.0%×212×10000=400元;那么,在一年间,老张共投资了6次,获得的总利润的期望为W=[P1W1+(1-P1)W2]+[P2W1+(1-P2)W2]+⋯+[P6W1+(1-P6)W2]=(P1+P2+⋯+P6)W1+[(1 -P1)+(1-P2)+⋯+(1-P6)]W2≈2400-40×3+58=2255元.即一年后老张可获得的利润的期望约为2255元.·杭州一模)中国男篮历史上曾12次参加亚运会,其中8次夺得金牌,是亚运会夺冠次数最多的球队.第19届亚运会将于2023年9月23日至10月8日在杭州举办.(1)为了解喜爱篮球运动是否与性别有关,某学校随机抽取了男生和女生各1002列联表如下:喜爱篮球不喜爱篮球合计男生6535100女生2575100合计90110200依据小概率值α=0.001的独立性检验,能否认为喜爱篮球运动与性别有关?(2)校篮球队中的甲、乙、丙三名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到,记开始传球的人为第1次触球者,第n次触球者是甲的概率记为P n,即P1=1.①求P3,P4,并证明:P n-1 3为等比数列;②比较第15次触球者是甲与第15次触球者是乙的概率的大小.参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量.参考数据:α=P(χ2≥k)0.100.050.010.0050.001k 2.706 3.841 6.6357.87910.828【答案】解:(1)假设H0:喜爱足球运动与性别独立,即喜爱足球运动与性别无关,计算χ2=200×(65×75-25×35)2100×100×90×110≈32.323>10.828,根据小概率值α=0.001的独立性检验,我们推断H0不成立,即认为喜爱足球运动与性别有关,此推断犯错误的概率不超过0.001.(2)①由题意知,P1=1,P2=0,P3=12,P4=12×0+1-12×12=14.证明:第n次触球者是甲的概率记为P n,则当n≥2时,第n-1次触球者是甲的概率为P n-1,第n-1次触球者不是甲的概率为1-P n-1,则P n=P n-1×0+(1-P n-1)×12=12(1-P n-1),从而P n-13=-12P n-1-13,又P1-13=23,所以P n-1 3是以23为首项,公比为-12的等比数列.②第n 次触球者是甲的概率为P n =23×-12n -1+13,所以P 15=23×-1214+13=13×1213+13>13,第15次触球者是乙的概率为Q 15=12(1-P 15)=121-13×1213-13=13-13×1214<13,所以第15次触球者是甲的概率比第15次触球者是乙的概率大.·惠州一模)为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐.已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率;(2)记该同学第n 天选择米饭套餐的概率为P n .证明:①P n -25为等比数列;②当n ≥2时,P n ≤512.【答案】(1)解 设A 1=“第1天选择米饭套餐”,A 2=“第2天选择米饭套餐”,则A 1 =“第1天不选择米饭套餐”.根据题意P (A 1)=23,P (A 1)=13,P (A 2|A 1 )=14,P (A 2|A 1 )=1-12=12.由全概率公式,得P (A 2)=P (A 1)P (A 2|A 1)+P (A 1 )P (A 2|A 1 )=23×14+13×12=13.(2)证明 ①设A n =“第n 天选择米饭套餐”,则P n =P (A n ),P (A n)=1-P n ,根据题意P A n +1|A n )=14, P (A n +1|A n )=1-12=12.由全概率公式,得P n +1=P (A n +1)=P (A n )P (A n +1|A n )+P (A n )·P A n +1|A n )=14P n +12(1-P n )=-14P n +12.因此P n +1-25=-14P n -25.因为P 1-25=415≠0,所以P n -25 是以415为首项,-14为公比的等比数列.②由①可得P n =25+415-14n -1.当n 为大于1的奇数时,P n =25+41514 n -1≤25+415142=512.当n 为正偶数时,P n =25-41514n -1<25<512.因此当n ≥2时,P n ≤512.·荆州统测)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6∶7∶8.(1)现从三个班中随机抽取一位同学:①求该同学有购买意向的概率;②如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).【答案】解:(1)①设事件A =“该同学有购买意向”,事件B i =“该同学来自i 班”(i =1,2,3).由题意可知P (B 1)=621,P (B 2)=721,P (B 3)=821,P (A |B 1)=12,P A |B 2)=13, P A |B 3)=14, 所以由全概率公式可得,P(A)=P(B1)·P(A|B1)+P(B2)·P(A|B2)+P(B3)·P(A|B3)=621×12+721×13+821×14=2263.②由条件概率可得P(B2|A)=P(B2A)P(A)=P(B2)·P(A|B2)P(A)=721×132263=722.(2)由题意可得每次叫价增加1元的概率为23,每次叫价增加2元的概率为1 3.设叫价为n(3≤n≤10)元的概率为P n,叫价出现n元的情况只有下列两种:①叫价为n-1元,且骰子点数大于2,其概率为23P n-1;②叫价为n-2元,且骰子点数小于3,其概率为13P n-2.于是得到P n=23P n-1+13P n-2(n≥3),易得P1=23,P2=23×23+13=79,由于P n-P n-1=-13P n-1+13P n-2=-13(P n-1-P n-2)(n≥3),于是当n≥2时,数列{P n-P n-1}是以首项为19,公比为-13的等比数列,故P n-P n-1=19×-13n-2(n≥2).于是P10=P1+(P2-P1)+(P3-P2)+⋯+(P9-P8)+(P10-P9)=23+19×1--1391--13=34+14×1310≈0.75,于是,甲同学能够获得笔记本购买资格的概率约为0.75.。

马尔科夫链例题整理(课堂PPT)

马尔科夫链例题整理(课堂PPT)
首页 2
一步转移概率矩阵的计算
引 例 例1 直线上带吸收壁的随机游动(醉汉游动)
设一质点在线段[1,5 ]上随机游动,每秒钟发生 一次随机游动,移动的规则是:
(1)若移动前在2,3,4处,则均以概率 或向右 移动一单位;
1 2
向左
(2)若移动前在1,5处,则以概率1停留在原处。
12
3
4
5
质点在1,5两点被“吸收”
首页
9
5.设袋中有a个球,球为黑色的或白色的,今随 机地从袋中取一个球,然后放回一个不同颜色的 球。若在袋里有k个白球,则称系统处于状态k, 试用马尔可夫链描述这个模型(称为爱伦菲斯特 模型),并求转移概率矩阵。
解 这是一个齐次马氏链,其状态空间为
I={0,1,2,…,a} 0 1 0 0 ... 0
i+1,以概率r停留在i,且 r p q 1 ,试
求转移概率矩阵。
E {...,2,1,0,1, 2,...}
... ... ... ... ... ... ... ...
P1
... ...
0 0
p 0
r p
q r
0 q
0 0
... ...
... ... ... ... ... ... ... ...
0 p 0 0 ... 0
0
0 q 0 p ... 0 0 P1 ... ... ... ... ... ... ...
0 0 ... 0 q 0 p
p 0 ... 0 0 q 0
首页 8
4.一个质点在全直线的整数点上作随机游动,移 动的规则是:以概率p从i移到i-1,以概率q从i移到
移概率。
首页 5
qp

高三数学二模马尔可夫链

高三数学二模马尔可夫链

高三数学二模马尔可夫链高三的学生们,纷纷开始备战第二次月考。

在各科的迎考复习中,数学是一门让很多考生感到头疼的学科。

此刻笔者作为一名AI,为大家介绍一下在考试中常见的数学知识点——马尔科夫链。

一、什么是马尔可夫链?马尔可夫链是一种数学模型,它是基于时间序列上有限状态和满足马尔可夫性质的随机过程。

马尔可夫链的特点是:随机性的下一步状态只与当前状态有关,而与之前状态无关。

因此,在实际的应用中,马尔可夫链常被用于描述一些具有状态转移属性的系统。

比如,天气预测、股票走势分析等。

二、马尔可夫链的分类马尔可夫链分为时间齐次马尔可夫链和非时间齐次马尔可夫链。

时间齐次马尔可夫链指的是在相邻两个时刻的状态转移概率矩阵是相同的,它主要用于建立稳态概率分布。

非时间齐次马尔可夫链指的是状态转移概率矩阵在时间上不稳定。

它常用于描述实际应用中状态变化不稳定的情况。

三、马尔可夫链的数学描述1.状态有限若状态S有限,则状态集合为:S={S1,S2,S3,…,Sn}。

2.状态转移概率矩阵设Pij为从状态Si到Sj的概率。

那么,状态转移概率矩阵为:P={Pij}(n×n)i,j=1,2,3,…,n3.状态转移图因为Pij是从Si到Sj的概率,所以我们可将其用有向线性图表示。

四、马尔可夫链的性质1.状态转移概率矩阵的性质- 0≤pij≤1- 满足条件:∑j=1npij=1,i=1,2,3,...,n。

2.状态稳态概率假设在马尔可夫链状态转移的过程中,状态最终将稳定在某个状态时,称这个状态为马尔可夫链的稳态。

n→∞时Pi即为平稳分布,若该分布存在,则称该马尔可夫链有平稳分布。

3.可约性与非可约性如果状态集合中有两个状态,从一个状态不能到达另一个状态,那么称这个链是可约的;如果状态集合中任意两个状态都可达,则称这个链是不可约的。

五、例题解析现在我们通过一道题目来了解下马尔可夫链的应用。

题目:一辆汽车停在自己汽车库的随机位置上。

马氏过程试题

马氏过程试题

1. 设{,}n X n T ∈是一个齐次马尔可夫链,其状态空间{0,1,2}I =,其一步转移概率矩阵为 3104411142431044P ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭其初始状态的概率分布为01(0)(),0,1,2,3i i p P X i i ====求:(1)求2{1}P X =; (2)求2{2|1}n n P X X +==;(3)求012{1,2,1}P X X X ===;(4)讨论此链是否具有遍历性,若是遍历的求其极限分布。

解:2551816165311621639116164P ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 2001011021(1){1}{0}(2){1}(2){2}(2)15191131621624P X P X p P X p P X p ===+=+=⎛⎫=++= ⎪⎝⎭2123(2){2|1}(2)16n n P X X p +====012010211221(3){1,2,1}{1}{2|1}{1|2}11131(1)(1)334416P X X X P X P X X P X X p p ============2(4)P无零元,所以是遍历的。

123123(,,),P1πππππππππ==⎧⎨++=⎩使解得:123331(,,)(,,)777πππ=2.根据市场调查,3月份甲型洗衣粉占有市场0.35, 乙型洗衣粉占有市场0.3,其他各型号(简记为丙)占有市场0.35. 4月份再调研得到的结果是:甲保持原有顾客的60%,分别获得乙、丙顾客的15%和30%;乙保持原有顾客的70%,分别获得甲、丙顾客的10%和20%;丙型号洗衣粉保持原有顾客的50%,分别获得甲、乙型号洗衣粉顾客的30%和15%.令状态1代表甲型,状态2代表乙型,状态3代表丙型。

求:(1)求5月份各型号洗衣粉的市场占有率;(2)求转移步数为2时,从状态2到状态3的概率;(3)若市场按照这种态势发展,求稳定状态时的市场占有率。

专题8-1 马尔科夫链(与数列结合的概率递推问题)(原卷版)

专题8-1 马尔科夫链(与数列结合的概率递推问题)(原卷版)

专题8-1 马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。

2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。

本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。

基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=-==+-==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+-==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11-+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+-++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++⋯-+,,,,其中)1(a P X ==-,(0)b P X == (1)c P X ==. 假设0.5α=,0.8β=.①证明:1)0{,1,2,,}7(i i p p i -=⋅⋅⋅+为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性.课本原题:人教A 版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n 次传球后球在甲手中的概率.1.(2024届·武汉高三开学考)有编号为1,2,3,...,18,19,20的20个箱子,第一个箱子有2个黄球重点题型·归类精讲1个绿球,其余箱子均为2个黄球2个绿球,现从第一个箱子中取出一个球放入第二个箱子,再从第二个箱子中取出一个球放入第三个箱子,以此类推,最后从第19个箱子取出一个球放入第20个箱子,记i p 为从第i 个箱子中取出黄球的概率.(1)求23,p p ;(2)求20p .3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出.(1)记甲乙丙三人中被抽到的人数为随机变量X ,求X 的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记n 次传球后球在甲手中的概率为,1,2,3,n p n =,①直接写出123p p p ,,的值;②求1n p +与n p 的关系式*()n N ∈,并求n p *()n N ∈.2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率(2)记该同学第n天选择米饭套餐的概率为n P(Ⅰ)证明:25nP⎧⎫-⎨⎬⎩⎭为等比数列;(Ⅱ)证明:当2n≥时,512nP≤.2023届佛山二模·165.有n 个编号分别为1,2,3,,n ⋅⋅⋅的盒子,第1个盒子中有2个白球1个黑球,其余盒子均为1个白球1个黑球,现从第1个盒中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n 个盒子中取到白球的概率是 .2023·唐山调研6.甲、乙、丙三人玩传球游戏,第1次由甲传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第k 次传球后球在甲手中的概率为*N k p k ∈,,则下列结论正确的有( )A. 10p =B. 213p = C. 121k k p p ++= D. 202313p >2024届武汉高三九月调研T167.甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中,投掷n 次骰子后(),记球在甲手中的概率为,则 ; .2024届·湖北荆荆恩高三9月起点联考·218.甲、乙两个盒子中都装有大小、形状、质地相同的2个黑球和1个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作后,记甲盒子中黑球的个数为,甲盒中恰有2个黑球的概率为,恰有3个黑球的概率为.(1)求;(2)设,证明:;(3)求的数学期望的值.*n ∈N n p 3p =n p =()*n n ∈N n X n p n q 11,p q 2n n n c p q =+11233n n c c +=+n X ()n E X2023·济南开学考10.甲、乙两人进行抛掷骰子游戏,两人轮流地掷一枚质均匀的骰子.规定:先掷出点数6的获胜,游戏结束.(1)记两人抛掷骰子的总次数为X,若每人最多抛掷两次骰子,求比赛结束时,X的分布列和期望;(2)已知甲先掷,求甲恰好抛掷n 次骰子并获得胜利的概率.2023届·杭州二模11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X -,1t X -,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()t 1t 2t 1t t 1t ,,,X X X X X X P P +--+=∣∣. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为*(,)A A N A B ∈<元,赌博过程为如图所示的数轴.当赌徒手中有n 元()0,n B n N ≤≤∈时,最终输光的概率为()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值;(2)证明(){}P n 是一个等差数列,并写出公差d ;(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →+∞时,()P A 的统计含义.12.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到。

马尔科夫链考试例题

马尔科夫链考试例题
阵。
I={1,2,3,4,5,6}
11
1 1 1 1 1 1
6
6
6
6
6
6
0
2 6
1 6
1 6
1 6
1 6
P
0
0
3 6
1 6
1 6
1
6
0
0
0
4
1
1
6 6 6
0
...
0
0
5
1
6 6
0 ... 0 0 1 0
12
例1
甲、乙两人进行比赛,设每局比赛中甲胜的概率
是p,乙胜的概率是q,和局的概率是 r ,
0
0
p2
prp
1
15
(3)
从而结束比赛的概率; 从而结束比赛的概率。 所以题中所求概率为
( p rp) 0 p(1 r)
16
例2 赌徒输光问题
赌徒甲有资本a元,赌徒乙有资本b元,两人进行 赌博,每赌一局输者给赢者1元,没有和局,直 赌至两人中有一人输光为止。设在每一局中,甲
获胜的概率为p,乙获胜的概率为 q 1 p ,
前言:马尔可夫过程的描述分类
例1 直线上带吸收壁的随机游动(醉汉游动)
设一质点在线段[1,5 ]上随机游动,每秒钟发生
一次随机游动,移动的规则是:
1
(1)若移动前在2,3,4处,则均以概率 向左
或向右 移动一单位;
2
(2)若移动前在1,5处,则以概率1停留在原处。
12
3
4
5
质点在1,5两点被“吸收”
求甲输光的概率。
分 这个问题实质上是带有两个吸收壁的随机游动。从 析 甲的角度看,他初始时刻处于a,每次移动一格,向

马尔可夫转移矩阵例题

马尔可夫转移矩阵例题

马尔可夫转移矩阵例题
假设有一个马尔可夫链,其中状态空间为{A, B, C, D},转移
概率矩阵为:
```
A B C D
A 0.2 0.5 0.1 0.2
B 0.3 0.3 0.2 0.2
C 0.1 0.2 0.5 0.2
D 0.4 0.2 0.1 0.3
```
这个矩阵描述了马尔可夫链中一个状态到另一个状态的转移概率。

例如,在当前状态为A的情况下,下一个状态为A的概率为0.2,为B的概率为0.5,为C的概率为0.1,为D的概率为
0.2。

同样地,我们可以根据转移概率矩阵计算其他状态之间的转移概率。

马尔可夫链的概率转移矩阵是非负的,每一行的元素之和为1。

这个例子中的转移概率矩阵满足这些条件,因此是一个合法的马尔可夫转移矩阵。

离散时间马尔可夫模型例题

离散时间马尔可夫模型例题

选择题在离散时间马尔可夫模型中,如果状态转移概率矩阵P的某一行所有元素之和不为1,这意味着什么?A. 该模型是稳态的B. 存在吸收状态C. 存在状态转移概率的误差(正确答案)D. 模型是周期性的设有一个三状态(S1, S2, S3)的离散时间马尔可夫模型,若从S1到S2的转移概率为0.4,从S1到S3的转移概率为0.5,则从S1到自身的转移概率是多少?A. 0.9B. 0.1(正确答案)C. 0.4D. 0.5在一个离散时间马尔可夫链中,如果一个状态是常返的,那么它满足什么条件?A. 平均返回时间为无穷大B. 在有限步内一定会返回到该状态(正确答案)C. 转移概率矩阵的对应行全为0D. 该状态是吸收状态假设一个离散时间马尔可夫模型有两个状态(A和B),从A到B的转移概率是0.7,从B 到A的转移概率是0.4,那么状态A是哪种类型的状态?A. 吸收状态B. 瞬时状态C. 常返状态(正确答案)D. 周期状态在离散时间马尔可夫链中,如果一个状态是瞬时的,那么它满足什么条件?A. 从该状态出发,最终会回到该状态B. 从该状态出发,永远不会回到该状态(正确答案)C. 该状态是链的起始状态D. 该状态是链的终止状态设有一个四状态(S1, S2, S3, S4)的离散时间马尔可夫模型,如果S1是吸收状态,那么从S1到其他状态的转移概率应该是多少?A. 大于0B. 小于1C. 等于0(正确答案)D. 无法确定在一个离散时间马尔可夫链中,如果状态转移概率矩阵P的某一列所有元素之和为1,这意味着什么?A. 存在一个吸收状态(正确答案)B. 模型是稳态的C. 存在状态转移概率的误差D. 模型是周期性的假设一个离散时间马尔可夫模型有三个状态(X, Y, Z),从X到Y的转移概率是0.3,从X到Z的转移概率是0.4,从X到自身的转移概率是0.2,那么从X状态出发,下一步不可能发生的情况是?A. 转移到Y状态B. 转移到Z状态C. 转移到一个新的未知状态(正确答案)D. 保持在X状态在离散时间马尔可夫模型中,如果一个状态是周期性的,且周期为2,那么这意味着什么?A. 该状态每隔一步就会返回到自身B. 该状态在两步之后才能返回到自身(正确答案)C. 该状态是吸收状态D. 该状态是瞬时状态。

随机过程与马尔可夫链习题答案

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。

若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。

假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析:天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。

由题意可知已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P即题目实际上给出了八个个条件概率和四个概率[][][][]0,0|00|000===⋅==⋅===X Y Z P X Y P X P Z P[][][]0,1|00|10===⋅==⋅=+X Y Z P X Y P X P [][][]1,0|01|01===⋅==⋅=+X Y Z P X Y P X P [][][]1,1|01|11===⋅==⋅=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有[][][][]0,0|0000===⋅=⋅===X Y Z P Y P X P Z P[][][]0,1|010===⋅=⋅=+X Y Z P Y P X P [][][]1,0|001===⋅=⋅=+X Y Z P Y P X P [][][]1,1|011===⋅=⋅=+X Y Z P Y P X P[]5.02.03.00⨯⨯==Z P 1.08.03.0⨯⨯+9.02.07.0⨯⨯+1.08.07.0⨯⨯+ =?注意:全概率公式的应用2、已知随机变量X 和Y 的联合分布律如又表所示,且()Y X Y X g Z +==211,,()Y X Y X g Z /,22==,求:1)1Z 的分布律与数学期望X Y 56 1 0.2 0.3 20.10.42)2Z 的分布律与数学期望 3)1Z 大于10的概率4)由上面的例子,你是否能得到离散随机变量函数的数学期望的一般表达式?包括一元和多元随机变量函数。

马尔可夫转移矩阵例题

马尔可夫转移矩阵例题

马尔可夫转移矩阵例题
假设有一个马尔可夫链,其状态空间为{A, B, C},转移概率矩阵如下:
A B C
A 0.2 0.5 0.3
B 0.6 0.1 0.3
C 0.4 0.4 0.2
这个转移矩阵表示从状态A转移到状态A的概率为0.2,从状态A转移到状态B的概率为0.5,从状态A转移到状态
C的概率为0.3,以此类推。

现在假设初始状态为A,我们希望求出经过2步之后的状态分布。

首先,我们将初始状态向量表示为 [1, 0, 0],表示初始状态为A的概率为1,其他状态为0。

根据转移矩阵,我们可以计算出经过一步之后的状态分布。

将初始状态向量与转移矩阵相乘,得到结果为 [0.2, 0.5, 0.3]。

接下来,将上一步计算得到的状态分布作为初始状态向量,再与转移矩阵相乘,得到经过两步之后的状态分布。

将[0.2, 0.5, 0.3] 与转移矩阵相乘,得到结果为[0.38, 0.29, 0.33]。

因此,经过两步之后的状态分布为:A的概率为0.38,B的概率为0.29,C的概率为0.33。

这样,我们就得到了经过两步之后的马尔可夫链的状态分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若 X (n) 表示质点在时刻n所处的位置,分析它的
概率特性。
1
例 2 直 线 上 的 随 机 游 动 时 的 位 置 X(t),是 无后效性的随机过程.
例3 电话交换台在t时刻前来到的呼叫数X(t), 是无后效性的随机过程.
例4 布朗运动 无记忆性
未来处于某状态的概率特性只与现在状态 有关,而与以前的状态无关,这种特性叫 无记忆性(无后效性)。
6
q p 0 0 0 ...
P1 q0
0 q
p 0
0 p
0 0
... ...
... ... ... ... ... ...
qp
0123 反 射 壁
7
例3.一个圆周上共有N格(按顺时针排列),一 个质点在该圆周上作随机游动,移动的规则是: 质点总是以概率p顺时针游动一格, 以概率
q 1 p 逆时针游动一格。试求转移概率 矩阵。 I {1, 2, ..., N }
0
0
p2
prp
1
15
(3)
从而结束比赛的概率; 从而结束比赛的概率。 所以题中所求概率为
( p rp) 0 p(1 r)
16
例2 赌徒输光问题
赌徒甲有资本a元,赌徒乙有资本b元,两人进行 赌博,每赌一局输者给赢者1元,没有和局,直 赌至两人中有一人输光为止。设在每一局中,甲
获胜的概率为p,乙获胜的概率为 q 1 p ,
2
一步转移概率矩阵的计算
引例 例1 直线上带吸收壁的随机游动(醉汉游动)
设一质点在线段[1,5 ]上随机游动,每秒钟发生
一次随机游动,移动的规则是:
1
(1)若移动前在2,3,4处,则均以概率 向左
或向右 移动一单位;
2
(2)若移动前在1,5处,则以概率1停留在原处。
12
3
4
5
质点在1,5两点被“吸收”
9
5.设袋中有a个球,球为黑色的或白色的,今随 机地从袋中取一个球,然后放回一个不同颜色的 球。若在袋里有k个白球,则称系统处于状态k, 试用马尔可夫链描述这个模型(称为爱伦菲斯特 模型),并求转移概率矩阵。
解 这是一个齐次马氏链,其状态空间为
I={0,1,2,…,a} 0 1 0 0 ... 0
阵。
I={1,2,3,4,5,6}
11
1 1 1 1 1 1
6
6
6
6
6
6
0
2 6
1 6
1 6
1 6
1 6
P
0
0
3 6
1 6
1 6
1
6
0
0
0
4
1
1
6 6 6
0
...
0
0
5
1
6 6
0 ... 0 0 1 0
12
例1
甲、乙两人进行比赛,设每局比赛中甲胜的概率
是p,乙胜的概率是q,和局的概率是 r ,
0 p 0 0 ... 0 q
q
0
p
0 ... 0
0
0 q 0 p ... 0 0 P1 ... ... ... ... ... ... ...
0 0 ... 0 q 0 p
p 0 ... 0 0 q 0
8
4.一个质点在全直线的整数点上作随机游动,移
动的规则是:以概率p从i移到i-1,以概率q从i移到
移概率。
5
qp
q p
012 左反射壁
m-1 m 右反射壁
q p 0 0 0 ... 0 0 0
q 0 p 0 0 ... 0 0 0
0 q 0 p 0 ... 0 0 0 P1 ... ... ... ... ... ... ... ... ...
0 0 0 0 0 ... q 0 p
0 0 0 0 0 ... 0 q p
若 X (n) 表示质点在时刻n所处的位置,求
一步转移概率。
3
状态空间I={1,2,3,4,5},
参数集T={1,2,3,………},
1 0 0 0 0
其一步转 移矩阵为
1
2
P1
0
0 1 2
1 2 0
0 1 2
0
0
0
0
1 2
0
1 2
0
0
0
0
1
有两个吸收壁的随机游动
4
例2.带有反射壁的随机游动( p q r 1 )源自设每局比赛后,胜者记“+1”
分,负者记“—1”分,和局不记分。当两人中有
一人获得2分结束比赛。以 X n 表示比赛至第n局
时甲获得的分数。
(1)写出状态空间;
(3)问在甲获得1分的情况下,再赛二局可以 结束比赛的概率是多少?
13

(1)
记甲获得“负2分”为状态1,获得 “负1分”为状态2,获得“0分”为状态3, 获得“正1分”为状态4,获得“正2分”为 状态5,则状态空间为
i+1,以概率r停留在i,且 r p q 1 ,试
求转移概率矩阵。
E {..., 2, 1,0,1, 2,...}
... ... ... ... ... ... ... ...
P1
... ...
0 0
p 0
r p
q r
0 q
0 0
... ...
... ... ... ... ... ... ... ...
设随机游动的状态空间I = {0,1,2,…},移动的 规则是:
(1)若移动前在0处,则下一步以概率p向右移 动一个单位,以概率q停留在原处(p+q=1);
(2)若移动前在其它点处,则均以概率p向右移 动一个单位,以概率q向左移动一个单位。
设 X n 表示在时刻n质点的位置,

{ X n , n 0 }是一个齐次马氏链,写出其一步转
1
0
a 1
0
... 0
一步转移矩阵是
a
a
P1
0
2 a
0
a2
...
0
a
... ... ... ... ... ...
0
...
0
a 1 a
0
1 a
0
...
0
0
1
0
10
练习题. 扔一颗色子,若前n次扔出的点数的最大值为j,
就说 Xn j, 试问 Xn j, 是否为马氏链?求一步转移概率矩
I {1,2,3,4,5}
一步转移概率矩阵
1 0 0 0 0
q
r
p
0
0
P 0 q r p 0
0
0
q
r
p
0 0 0 0 1
14
(2)二步转移概率矩阵
P(2) P2
1
qrp
q2
0
0
0 r2 pq
2rq q2 0
0 2pr r2 2pq 2qr 0
0 p2 2pr r2 pq 0
求甲输光的概率。
分 这个问题实质上是带有两个吸收壁的随机游动。从 析 甲的角度看,他初始时刻处于a,每次移动一格,向
前言:马尔可夫过程的描述分类
例1 直线上带吸收壁的随机游动(醉汉游动)
设一质点在线段[1,5 ]上随机游动,每秒钟发生
一次随机游动,移动的规则是:
1
(1)若移动前在2,3,4处,则均以概率 向左
或向右 移动一单位;
2
(2)若移动前在1,5处,则以概率1停留在原处。
12
3
4
5
质点在1,5两点被“吸收”
相关文档
最新文档