课上练习题_离散时间马尔科夫链 423
马尔可夫链
马尔可夫链马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。
经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。
马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。
1) 离散时间参数的马尔可夫链 ①基本概念定义 5.7 设{()0,1,2,}X n n ∙∙∙=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数时间120k n n n ∙∙∙≤<<<,以及任意状态12,,,k i i i E ∈,都有条件概率11{()|()}k k k k P X n i X n i --=== (5-17)即过程{()0,1,2,}X n n ∙∙∙=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称{()0,1,2,}X n n ∙∙∙=,是一个离散时间参数的马尔可夫链。
当E 为可列无限集时称其为可列无限状态的马尔可夫链,否则称其为有限状态的马尔可夫链。
定义5.8 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E =上的马尔可夫链,条件概率(,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18)称为马尔可夫链{()0,1,2,}X n n ∙∙∙=,在m 时刻的k 步转移概率。
k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状态j 的条件概率。
特别地,当1k =时,(,1){(1)|()}ij p m P X m j X m i =+== (5-19)称为一步转移概率,简称转移概率。
如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。
定义5.9 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E ∙∙∙=上的马尔可夫链,矩阵000101011101(,)(,)(,)(,)(,)(,)(,)(,)(,)(,)n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦(5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。
马尔科夫链(与数列结合的概率递推问题)(解析版)
马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。
2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。
本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。
基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率; (3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q == = ∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6×−+×.(2)设()i i P A p =,依题可知,()1i i P B p =−,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+−×−=+, 构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=−,则1121353i i p p + −=−,又11111,236p p =−=,所以13i p−是首项为16,公比为25的等比数列,即11112121,365653i i i i p p −−−=×=×+. (3)因为1121653i i p − =×+,1,2,,i n =⋅⋅⋅, 所以当*N n ∈时,()122115251263185315nnn n n E Y p p p − =+++=×+=−+ − ,故52()11853nnE Y=−+.2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++…-+,,,,其中)1(a P X ==-,(0)b P X == (1)c PX ==. 假设0.5α=,0.8β=. ①证明:1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性. 【解析】(1)X 的所有可能取值为-1,0,1.11()()P X αβ=−−=,()()()011P X αβαβ=+−−=,()1(1)P X αβ=−=, 所以X 的分布列为X -11P(1)αβ− )1((1)αβαβ+−− ()1αβ−(2)①证明 由(1)得0.4a =,0.5b =,0.1c =.因此110.40.50.1i i i i p p p p −+=++,故()()110.10.4i i i i p p p p −=−+-,则()114i i i i p p p p −=−+-.又因为1010p p p −≠=,所以1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为公比为4,首项为1p 的等比数列. ② 由①得()()()88877610087761001413p p p p p p p p p p p p p p p p −=−+−+…+−+=−+−+…+−+=⋅. 由于81p =,故18341p =−, 所以()()()()444332*********3257p p p p p p p p p p p −=−+−+−+−+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.课本原题:人教A 版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n 次传球后球在甲手中的概率. 【解析】记第n 次传球后球在甲手中的概率为n P ,则第1n −次传球后球在甲手中的概率为1n P −, 开始时球在甲手中,则01P =.若第n 次传球后球在甲手中,则第1n −次传球后球不在甲手中,即第1n −次传球后球在乙或丙手中, 所以第1n −次传球后球不在甲手中的概率为11n P −−,又乙或丙在第n 次把球传到甲手上的概率为12, 于是有()1112n n P P −−=,即1111323n n P P − −=−− ,1n ≥, 于是数列13n P−是首项为0213P −=,公比为12−得等比数列, 所以121332nn P −=×−,所以()*211323nn P n =×−+∈ N .1.(2024届·武汉高三开学考)有编号为1,2,3,...,18,19,20的20个箱子,第一个箱子有2个黄球1个绿球,其余箱子均为2个黄球2个绿球,现从第一个箱子中取出一个球放入第二个箱子,再从第二个箱子中取出一个球放入第三个箱子,以此类推,最后从第19个箱子取出一个球放入第20个箱子,记i p 为从第i 个箱子中取出黄球的概率. (1)求23,p p ; (2)求20p . 【答案】(1)2815P =,33875P =;(2)201911652P =+⋅【分析】(1)分第一次取出黄球和绿球两种情况,再由互斥事件概率加法公式计算可得答案; (2)由题意可得()132155+=+−i i i P P P ,可得答案. 【详解】(1)从第二个箱子取出黄球的概率223128353515P =⋅+⋅=, 从第三个箱子取出黄球的概率3838238115515575P =⋅+−⋅= ; (2)由题意可知,()1321215555i i i i P P P P +=+−=+, 即1111252i i P P + −=− ,又123P = 1111111111,,,26265652i i i i P P P −− −=∴−=⋅∴=+ ⋅ 201911652P ∴=+⋅.重点题型·归类精讲【答案】(1)1942,1311776n n P −=−−(2)第二次,证明见解析【分析】(1)根据全概率公式即可求解2P ,利用抽奖规则,结合全概率公式即可由等比数列的定义求解, (2)根据1311776n n P −=−−,即可对n 分奇偶性求解.【详解】(1)记该顾客第()*N i i ∈次摸球抽中奖品为事件A ,依题意,127P =, ()()()()()22121121212119||1737242P P A P A P A A P A P A A ==+=×+−×= . 因为()11|3n n P A A −=,()11|2n n P A A −=,()n n P P A =,所以()()()()()1111||n n n n n n n P A P A P A A P A P A A −−−−=+,所以()111111113262n n n n P P P P −−−=+−=−+, 所以1313767n n P P − −=−−, 又因为127P =,则131077P −=−≠, 所以数列37n P−是首项为17−,公比为16−的等比数列,故1311776n n P −=−−.(2)证明:当n 为奇数时,1131976742n n P −<<⋅,当n 为偶数时,131776n n P −=+⋅,则n P 随着n 的增大而减小, 所以,21942n P P ≤=,综上,该顾客第二次摸球抽中奖品的概率最大.3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出. (1)记甲乙丙三人中被抽到的人数为随机变量X ,求X 的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记n 次传球后球在甲手中的概率为,1,2,3,n p n = ,①直接写出123p p p ,,的值;②求1n p +与n p 的关系式*()n N ∈,并求n p *()n N ∈. 【答案】(1)分布列见解析(2)①10p =,212p =,314p =;②111,1,2,322n n p p n +=−+=;11(1)132n n − −+ 【分析】(1)由离散型随机变量的分布列可解;(2)记n A 表示事件“经过n 次传球后,球在甲手中”,由全概率公式可求111,22n n p p +=−+再由数列知识,由递推公式求得通项公式.【详解】(1)X 可能取值为1,2,3,()1232353110C C p X C ===;()213235325C C p X C ===;()3032351310C C p X C === 所以随机变量X 的分布列为(2)若刚好抽到甲乙丙三个人相互做传球训练,且n 次传球后球在甲手中的概率为,1,2,3,n p n = , 则有10,p =2221,22p ==3321,24p == 记n A 表示事件“经过n 次传球后,球在甲手中”,111n n n n n A A A A A +++=⋅+⋅所以()()()11111n n n n n n n n n p P A A A A P A A P A A +++++=⋅+⋅=⋅+⋅ ()()()()()()111110122n n nn n n n n n P A P A A P A P A A p p p ++=⋅+⋅=−⋅+⋅=−∣∣ 即111,1,2,322n n p p n +=−+=, 所以1111323n n p p + −=−− ,且11133p −=− 所以数列13n p− 表示以13−为首项,12−为公比的等比数列,所以1111332n n p −−=−×−所以1111111132332n n n p −−=−×−+=−−即n 次传球后球在甲手中的概率是11(1)132n n −−+.2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复. (1)求该同学第二天中午选择米饭套餐的概率 (2)记该同学第n 天选择米饭套餐的概率为n P(Ⅰ)证明:25n P −为等比数列;(Ⅱ)证明:当2n ≥时,512n P ≤. 【解析】(1)设1A =“第1天选择米饭套餐”,2A =“第2天选择米饭套餐”,则1A =“第1天不选择米饭套餐”,于是,()123P A =,()113P A =,()2114|P A A =,()2111122|P A A =−=, 由全概率公式()()()()()21211212111134323||P A P A P A A P A P A A =+=×+×=;(2)(Ⅰ)设n A =“第n 天选择米饭套餐”,则()n n P P A =,()1n n P A P =−,()14|1n n P A A +=,()11|1122n n P A A +=−=, ()()()()()()111111111424|2|n n n n n n n n n n n P P A P A P A A P A P A P P P A ++++==+=+−=−+, 所以1212545n n P P + −=−− ,25n P − 是以124515P −=为首项,14−为公比的等比数列。
离散时间马尔可夫模型例题
选择题在离散时间马尔可夫模型中,如果状态转移概率矩阵P的某一行所有元素之和不为1,这意味着什么?A. 该模型是稳态的B. 存在吸收状态C. 存在状态转移概率的误差(正确答案)D. 模型是周期性的设有一个三状态(S1, S2, S3)的离散时间马尔可夫模型,若从S1到S2的转移概率为0.4,从S1到S3的转移概率为0.5,则从S1到自身的转移概率是多少?A. 0.9B. 0.1(正确答案)C. 0.4D. 0.5在一个离散时间马尔可夫链中,如果一个状态是常返的,那么它满足什么条件?A. 平均返回时间为无穷大B. 在有限步内一定会返回到该状态(正确答案)C. 转移概率矩阵的对应行全为0D. 该状态是吸收状态假设一个离散时间马尔可夫模型有两个状态(A和B),从A到B的转移概率是0.7,从B 到A的转移概率是0.4,那么状态A是哪种类型的状态?A. 吸收状态B. 瞬时状态C. 常返状态(正确答案)D. 周期状态在离散时间马尔可夫链中,如果一个状态是瞬时的,那么它满足什么条件?A. 从该状态出发,最终会回到该状态B. 从该状态出发,永远不会回到该状态(正确答案)C. 该状态是链的起始状态D. 该状态是链的终止状态设有一个四状态(S1, S2, S3, S4)的离散时间马尔可夫模型,如果S1是吸收状态,那么从S1到其他状态的转移概率应该是多少?A. 大于0B. 小于1C. 等于0(正确答案)D. 无法确定在一个离散时间马尔可夫链中,如果状态转移概率矩阵P的某一列所有元素之和为1,这意味着什么?A. 存在一个吸收状态(正确答案)B. 模型是稳态的C. 存在状态转移概率的误差D. 模型是周期性的假设一个离散时间马尔可夫模型有三个状态(X, Y, Z),从X到Y的转移概率是0.3,从X到Z的转移概率是0.4,从X到自身的转移概率是0.2,那么从X状态出发,下一步不可能发生的情况是?A. 转移到Y状态B. 转移到Z状态C. 转移到一个新的未知状态(正确答案)D. 保持在X状态在离散时间马尔可夫模型中,如果一个状态是周期性的,且周期为2,那么这意味着什么?A. 该状态每隔一步就会返回到自身B. 该状态在两步之后才能返回到自身(正确答案)C. 该状态是吸收状态D. 该状态是瞬时状态。
马尔科夫链习题1解答
• 3、直线上带完全反射壁的随机游动
一个质点只能处在实数轴上1、2、3、4、5五 个点,当他处在2、3、4位置时,下一时刻 右移一格的概率为 p(0<p<1),左移一格 的为q,且 p+q=1。当质点处在1位置时,下 一时刻必定移动到位置2;当质点处在5位置 时,下一时刻必定移动到位置4;质点的随机 游动用 {X(n一个质点只能处在实数轴上1、2、3、4、5五 个点,当他处在2、3、4位置时,下一时刻 右移一格的概率为 p(0<p<1),左移一格 的为q,且 p+q=1。当质点处在1位置时,它 永远停留在1上,又当质点处在5位置时,它 永远停留在5上,质点的随机游动用
{X(n),n=0,1,2,…}表示。
试求其一步转移概率矩阵
• 4、直线上带完全反射壁允许停留的随机游动
一个质点只能处在实数轴上1、2、3、4、5五 个点,当他处在2、3、4位置时,下一时刻 停留在原位置上的概率为r,右移一格的概率 为 p(0<p<1),左移一格的为q,且 p+q+r=1。当质点处在1位置时,下一时刻必 定移动到位置2;当质点处在5位置时,下一 时刻必定移动到位置4;质点的随机游动用 {X(n),n=0,1,2,…}表示。
试求其一步转移概率矩阵
• 5、正半轴上带反射壁的随机游动
质点只能处在实数轴上正整数点的位置,当他 处在2、3、… 位置时,下一时刻右移一格的 概率为 p(0<p<1),左移一格的概率为q, 且 p+q=1。当质点处在1位置时,下一时刻留 在原位置上的概率为q,右移一格的概率为p。
质点的随机游动用 {X(n),n=0,1,2,…}表示。
试求其一步转移概率矩阵
离散时间马氏链例题
离散时间马氏链例题离散时间马氏链(离散时间马尔科夫链)是一种随机过程,其中每个状态的未来转变仅依赖于其当前状态,而不依赖于过去的状态或转变。
以下是离散时间马氏链的一个简单例题:天气预报问题假设明天的天气仅与今天的天气有关,而与过去的天气无关。
如果今天下雨,那么明天下雨的概率为0.7;如果今天不下雨,那么明天下雨的概率为0.4。
我们要求出今天下雨并且四天后仍然下雨的概率(假设α=0.7,β=0.4)。
解:定义状态:我们可以定义两个状态,状态0表示不下雨,状态1表示下雨。
建立转移概率矩阵:根据题目描述,我们可以得到以下的转移概率矩阵P:P = [0.6 0.4; 0.3 0.7]其中,P(i, j)表示从状态i转移到状态j的概率。
3. 应用马氏链的性质:我们知道马氏链的性质是未来的状态只与当前状态有关,与过去的状态无关。
因此,我们可以使用转移概率矩阵来计算四天后仍然下雨的概率。
我们从今天下雨(状态1)开始,想要知道四天后仍然下雨的概率。
我们可以通过连续应用转移概率矩阵来计算这个概率:今天下雨并且四天后仍然下雨的概率= P(1, 1)^4但是这是错误的,因为我们不能直接取四次方。
正确的做法是,考虑所有可能的路径,即在这四天中,天气可能如何变化。
例如,它可能一直保持下雨,或者可能在中间某天下雨然后再次下雨等等。
我们需要考虑所有这些可能性。
但是,对于较大的n值,直接计算所有路径是不切实际的。
我们可以使用一种称为“稳态概率”的概念来简化计算。
稳态概率是指,当时间趋于无穷大时,马氏链处于某个特定状态的概率。
在这个例子中,我们可以计算出稳态概率,然后用它来估计四天后下雨的概率。
然而在这个特定的例子中,由于转移概率矩阵不是对称的,因此没有简单的公式可以直接计算出n步转移概率。
我们需要使用矩阵的n次幂来计算这个概率。
但是注意,我们不能简单地取P(1,1)的四次幂,因为那将假设每天都独立地下雨,而实际上每天的天气都依赖于前一天的天气。
马尔可夫分析法练习题
马尔可夫分析法练习题一、基础概念题1. 马尔可夫过程的定义是什么?2. 简述马尔可夫链的基本特征。
3. 马尔可夫分析法在哪些领域有应用?4. 请解释转移概率矩阵的概念。
5. 什么是稳态概率分布?二、计算题| | A | B | C ||||||| A | 0.5 | 0.2 | 0.3 || B | 0.4 | 0.3 | 0.3 || C | 0.1 | 0.1 | 0.8 |2. 已知一个马尔可夫链的初始状态概率分布为 [0.4, 0.3, 0.3],求经过三个周期后的状态概率分布。
| | X | Y | Z ||||||| X | 0.3 | 0.2 | 0.5 || Y | 0.4 | 0.3 | 0.3 || Z | 0.1 | 0.5 | 0.4 |4. 一个公司有三个部门,员工可以在这三个部门之间调动。
已知转移概率矩阵如下,求各部门的稳态员工人数比例:| | 部门一 | 部门二 | 部门三 ||||||| 部门一 | 0.6 | 0.2 | 0.2 || 部门二 | 0.3 | 0.5 | 0.2 || 部门三 | 0.4 | 0.1 | 0.5 |三、应用题1. 假设某地区天气分为晴天、多云和雨天三种状态,已知转移概率矩阵如下,预测未来三天的天气状态概率分布:| | 晴天 | 多云 | 雨天 ||||||| 晴天 | 0.6 | 0.2 | 0.2 || 多云 | 0.3 | 0.5 | 0.2 || 雨天 | 0.4 | 0.1 | 0.5 |2. 某公司产品销售分为高、中、低三个市场,已知转移概率矩阵如下,预测未来两个季度的市场占有率:| | 高市场 | 中市场 | 低市场 ||||||| 高市场 | 0.7 | 0.2 | 0.1 || 中市场 | 0.3 | 0.5 | 0.2 || 低市场 | 0.4 | 0.2 | 0.4 |3. 假设一个网站的用户分为新用户、活跃用户和流失用户三种状态,已知转移概率矩阵如下,求各状态用户的稳态比例: | | 新用户 | 活跃用户 | 流失用户 ||||||| 新用户 | 0.5 | 0.3 | 0.2 || 活跃用户 | 0.2 | 0.6 | 0.2 || 流失用户 | 0.3 | 0.1 | 0.6 |四、案例分析题初始状态分布:潜在客户 60%,新客户 20%,老客户 15%,流失客户 5%转移概率信息:(请自行构建)初始状态分布:主干道 40%,次干道 30%,支路 30%转移概率信息:(请自行构建)五、综合分析题普通会员有20%的概率升级为银卡会员,5%的概率直接成为金卡会员。
随机过程第四章复习题及其解答马尔科夫链
第四章一、填空1.参数集和状态集均为离散集的马尔可夫过程称为马尔可夫链。
2.设{X n ,n єT}为马尔可夫链,称pj=p{X0=j}为{X n ,n єT}的初始概率,称pj (n )=p{Xn=j}为{X n ,n єT}的绝对概率。
3.设{X n ,n>=0}为马尔可夫链,则一步转移概率p ij =P{X n+1=j|X n =i}4.矩阵()ij a 其元素非负且对每i 有1j=∑ija,称矩阵()ij a 为随机矩阵。
5.f (n)ij =P{T ij =n|X 0=i}=P{X n =j,X k ≠j,1<=k<=n-1|X 0=i}为首达概率。
6.若1=ii f ,称i 为常返状态;若1<ii f ,称i 为非常返状态。
7.状态相通关系为等价关系,具有自反性、对称性、传递性。
8.设马尔可夫链的状态集为E={0,±1,±2,…}或其有限子集,其初始时刻n=0的概率记为p i (0)=P{X(0)=i},i єE,称集合{p i (0)}为该马尔可夫链的初始分布。
9.设马尔可夫链的状态集为E={0,±1,±2,…}或其有限子集,其绝对时刻n 时的概率记为p i (n)=P{X(n)=i},i єE,称集合{p i (n)}为该马尔可夫链的绝对分布。
10.设C ⊂S ,如对任意i ∈C 及j ∉C,都有p ij =0,称C 为闭集。
若C 的状态相通,C 成为不可约的。
11.若平稳齐次马尔可夫链的初始分布为平稳分布,则绝对概率等于初始概率。
12.不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈I j ,u 1j 。
13.马氏链的绝对分布由其初始分布及相应的转移概率唯一确定。
二、1.设昨日、今日都下雨,明日有雨的概率为0.7;昨日无雨,今日有雨、明日有雨的概率为0.5;昨日有雨,今日无雨,明日有雨的概率为0.4;昨日、今日均无雨,明日有雨的概率为0.2。
连续时间马尔可夫链例题
连续时间马尔可夫链连续时间马尔可夫链(Continuous-time Markov Chain)是马尔可夫链在连续时间下的一种模型。
它受到时间的连续性限制,可以用于描述一些随机过程。
马尔可夫链基本概念马尔可夫链是指具有“无记忆性”的随机过程。
在离散时间中,马尔可夫链指的是一个随机变量序列,其中每个随机变量的取值依赖于其前一时刻的取值。
这个过程可以用一个状态转移概率矩阵来描述。
在连续时间中,马尔可夫链则是一个具有无记忆性的连续随机过程。
与离散时间不同,连续时间马尔可夫链的状态在一定时间段内可以发生任意多次的改变。
连续时间马尔可夫链的定义连续时间马尔可夫链是一个随机过程,其状态空间为有限个数。
该过程在任意时刻处于某个状态,并且满足无记忆性的马尔可夫性质。
连续时间马尔可夫链的演变是通过指数分布来描述的。
在每个状态之间的转移时间服从指数分布,转移时间的参数与当前状态有关。
连续时间马尔可夫链的转移速率矩阵与离散时间马尔可夫链中的状态转移矩阵类似,连续时间马尔可夫链使用转移速率矩阵来描述状态之间的转换关系。
设连续时间马尔可夫链的状态空间为{1, 2, …, n},转移速率矩阵为Q。
矩阵Q的元素qij表示从状态i到状态j的速率,且满足以下条件:•qij≥0, i≠j;•对于每一个状态i,有qii = -∑qij(i≠j)。
在连续时间马尔可夫链中,从状态i到状态j的转移概率为pij(t),t表示时间。
转移概率在给定时间段内满足以下等式:equation1其中X(t)表示在时刻t的状态,P表示概率。
连续时间马尔可夫链的性质连续时间马尔可夫链有许多属性与离散时间马尔可夫链类似。
•遍历性:如果状态空间中的每一个状态在有限时间内是可达的,则称连续时间马尔可夫链是遍历的。
•稳态概率分布:马尔可夫链可能存在稳态概率分布,对于连续时间马尔可夫链也是如此。
稳态概率分布表示在长时间内各个状态的概率分布。
•等距离转换概率:等距离转换概率描述了在任意的相同时间间隔内,从一个状态转移到另一个状态的概率。
随机过程第四章习题解答
第四章习题解答4.1Y1,Y2,···是来自总体Y的随机变量,与X0独立,h(x,y)是实函数.对于n 1,取X n=h(X n−1,Y n).设{X n}的状态空间为I,验证{X n}是马氏链,给出转移概率p ij.解:由题知,Y k与X1,···,X k−1独立,k 1,∀n,i,j,i1,...,i n−1∈I有,P(X n+1=j|X n=i,X n−1=i n−1, (X0)i0)=P(h(i,Y n+1)=j|X n=i,X n−1=i n−1,···,X0=i0)=P(h(i,Y n+1)=j|X n=i)=P(h(i,Y)=j)=P(h(i,Y1)=j|X0=i)=P(X1=j|X0=i).∴X n是马氏链,P ij=P(h(i,Y)=j).4.2设{X i,i 0}是取非负整数值的独立同分布的随机变量序列,V ar(X0)>0.验证以下随机序列是马氏链:(a){X n,n 0};(b){S n,n 0},其中S n=∑ni=0X i;(c){ξn,n 0},其中ξn=∑ni=0(1+X i).解:∀n,i,j,i0,···,i n−1∈N+,(a).P(X n+1=j|X n=i,X n−1=i n−1,···,X0=i0)=P(X n+1=j)= P(X n+1=j|X n=i)=P(X1=j)=P(X1=j|X0=i).1第四章离散时间马尔可夫链第四章离散时间马尔可夫链(b).P(S n+1=j|S n=i,S n−1=i n−1,···,X0=i0)=P(X n+1=j−i|X n=i−i n−1,···,X0=i0)=P(X n+1=j−i)=P(X n+1=j−i,S n=i|S n=i)=P(S n+1=j|S n=i)=P(X1=j−i)=P(X1=j−i|X0=i)=P(S1=j|S0=i).(c).P(ξn+1=j|ξn=i,ξn−1=i n−1,···,ξ0=i0)=P(X n+1=ji −1)=P(X n+1=ji−1|ξn=i)=P(ξn+1=j|ξn=i)=P(X1=ji −1)=P(X1=ji−1|X0=i)=P(ξ1=j|ξ0=i).4.3马氏链的状态空间是I=(1,2,3,4,5),转移概率矩阵P=0.20.80000.50.5000000.50.500.20.3000.500001界定马氏链的状态。
《马尔科夫链例题》课件
设随机游动的状态空间I = {0,1,2,…},移动的 规则是:
(1)若移动前在0处,则下一步以概率p向右移 动一个单位,以概率q停留在原处(p+q=1);
(2)若移动前在其它点处,则均以概率p向右移 动一个单位,以概率q向左移动一个单位。
设 X n 表示在时刻n质点的位置,
则
{ X n , n 0 }是一个齐次马氏链,写出其一步转
p2
p (1) 21
iE
定理4.3 马尔科夫链的有限维分布:
P{X1 i1, X2 i2 , , Xm im}
p p p i ii1 i1i2
iI
pim-1im
由全概率公式得到证明,它是公式(1)的推广。
例3:考虑状态0,1,2上的一个马氏链Xn , n 0,
0.1 0.2 0.7
它又转移概率矩阵P 0.9 0.1
1
0
a 1
0
... 0
一步转移矩阵是
a
a
2
a2
0
0
... 0
P1 a
a
... ... ... ... ... ...
首页
0
...
0
0
...
0
a 1 a
0
1
a
0
1
0
练习题. 扔一颗色子,若前n次扔出的点数的最大值为j,
就说 Xn j, 试问 Xn j, 是否为马氏链?求一步转移概率矩
右移(即赢1元)的概率为p,向左移(即输1元)的 概率为q。如果一旦到达0(即甲输光)或a + b(即 乙输光)这个游动就停止。这时的状态空间为{0,1, 2,…,c},c = a + b,。现在的问题是求质点从a出 发到达0状态先于到达c状态的概率。
随机过程英文练习题_离散时间马尔科夫链-南京大学
1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes?2、4.24 Consider three urns, one colored red, one white, and one blue. The red urn contains 1 red and 4 blue balls; the white urn contains 3 white balls, 2 red balls, and 2 blue balls; the blue urn contains 4 white balls, 3 red balls, and 2 blue balls. At the initial stage, a ball is randomly selected from the red urn and then returned to that urn. At every subsequent stage, a ball is randomly selected from the urn whose color is the same as that of the ball previously selected and is then returned to that urn. In the long run, what proportion of the selected balls are red? What proportion are white? What proportion are blue?3、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?4、4.41Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i.5、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 genes with probability j m j m i m m i j m -⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛. Let Xn denote the numberof type 1 genes in the nth generation, and assume that X0 = i. (a) Find E[Xn](b) What is the probability that eventually all the genes will be type 1?6、4.47 Let {Xn, n >=0} denote an ergodic Markov chain with limiting probabilities ri. Define the process {Yn, n>=1} by Yn = {Xn-1,Xn}. That is , Yn keeps track of the last two states of the original chain. Is {Yn} a Markov chain? If so, determine its transition probabilities and find )},({lim j i Y P n n =∞>-7、4.54 M balls are distributed between two urns, and at each time point one of the balls is chosen at random and is then removed from its urn and placed in the other one. Let Xn denote the number of molecules in urn 1 after the nth switch and let u n=E[Xn]. Find u n+1 as a function of u n.8、4.5.1 Consider a gambler who at each play of the game has probability p of winning one unit and probability q = 1-p of losing one unit. Assuming that successive plays of the game are independent, what is the probability that, starting with i units, the gambler’s fortune will reach N before reaching 0?9、4.57 A particle moves among n+1 vertices that are situated ona circle in the following manner. At each step it moves one step either in the clockwise direction with probability p or in the counterclockwise direction with probability q = 1-p. Starting at a specified state, call it state 0, let T be the time of the first return to state 0. Find the probability that all states have been visited by time T.。
马尔可夫链法
马尔可夫链法1. 简介马尔可夫链法(Markov Chain)是一种基于概率的数学模型,用于描述具有随机性质的离散事件序列。
它是根据马尔可夫性质而命名的,该性质指的是未来状态只与当前状态相关,与过去状态无关。
马尔可夫链法被广泛应用于各个领域,如自然语言处理、金融市场预测、信号处理等。
它的核心思想是通过建立状态转移矩阵来描述事件之间的转移关系,并利用概率计算不同状态出现的概率。
2. 历史背景马尔可夫链法最早由俄国数学家安德烈·马尔可夫在20世纪初提出。
他在研究随机过程时发现了一种特殊的概率性质,即未来状态只与当前状态有关,而与过去状态无关。
这一发现为后来的马尔可夫链方法奠定了基础。
20世纪50年代以后,随着计算机技术的快速发展和数学理论的深入研究,马尔可夫链方法得到了广泛应用。
尤其是在自然语言处理领域,马尔可夫链法被用于模拟文本生成、语音识别等任务,取得了显著的成果。
3. 基本概念3.1 状态空间马尔可夫链方法中,事件被抽象为若干个状态。
这些状态构成了一个状态空间,记作S。
每个状态表示系统在某一时刻的特定情况或状态。
3.2 状态转移概率马尔可夫链的核心是描述不同状态之间的转移关系。
假设当前时刻系统处于状态i,下一个时刻系统可能转移到另一个状态j。
这个转移的概率可以用条件概率P(j|i)表示,其中i和j都属于状态空间S。
3.3 转移矩阵将所有可能的状态转移概率按照一定规则组织起来形成一个矩阵,称为转移矩阵。
转移矩阵通常记作P,其元素P(i,j)表示从状态i到状态j的转移概率。
3.4 马尔可夫性质马尔可夫性质指的是未来状态只与当前状态相关,与过去状态无关。
具体而言,在马尔可夫链中,给定当前状态,过去状态对未来状态的影响可以通过当前状态来表示。
4. 马尔可夫链模型4.1 离散时间马尔可夫链离散时间马尔可夫链是指系统在离散时间点上的状态转移。
假设在每个时间点t,系统处于某个状态Si,那么在下一个时间点t+1,系统将以一定概率转移到另一个状态Sj。
4--离散时间马尔可夫链--beamer
(2) ������ (������������+������ = ������ |������������ = ������) = ������ (������������ = ������ |������0 = ������); (3) ������ (������������+������ = ������ |������������ = ������, ������������−1 ∈ ������������−1 , · · · , ������0 ∈ ������0 ) = ������ (������������ = ������ |������0 = ������); (4) ������ (������������+������ ∈ ������|������������ = ������, ������������−1 ∈ ������������−1 , · · · , ������0 ∈ ������0 ) = ������ (������������ ∈ ������|������0 = ������).
1 0 ������ . . . 0 0 0 ������ 0 . . . 0 0 0 0 ������ . . . 0 0 0 0 0 . . . 0 0 ··· ··· ··· ··· ··· 0 0 0 . . . ������ 0 0 0 0 . . . 0 1 0 0 0 . . . ������ 0
0 ������ 0 . . . 0 0
则 {������������ } 是马氏链, 且 1 1 ������ ������ ������ − 1, ������ = ������ − 1, ������ − 1, ������ = ������ + 1,
随机过程课后试题答案
随机过程课后试题答案1. 题目:简述离散时间马尔可夫链和连续时间马尔可夫链的基本概念和性质。
答案:离散时间马尔可夫链(Discrete-time Markov Chain)是指在时间上的变化是离散的、状态空间是有限或可列无限的马尔可夫链。
其基本概念和性质如下:1.1 基本概念:- 状态空间:马尔可夫链的状态空间是指系统可能处于的状态集合,记作S。
离散时间马尔可夫链的状态空间可以是有限集合或可列无限集合。
- 转移概率:转移概率是指在给定前一个状态的条件下,系统转移到下一个状态的概率。
用P(i, j)表示系统从状态i转移到状态j的概率,其中i和j属于状态空间S。
- 转移概率矩阵:转移概率矩阵P是指表示从任一状态i到任一状态j的转移概率的矩阵。
对于离散时间马尔可夫链,转移概率矩阵是一个方形矩阵,维数与状态空间大小相同。
- 平稳概率分布:对于离散时间马尔可夫链,如果存在一个概率分布π,满足π = πP,其中π是一个行向量,P是转移概率矩阵,则称π为马尔可夫链的平稳概率分布。
1.2 性质:- 马尔可夫性:离散时间马尔可夫链具有马尔可夫性,即将来状态的发展只与当前状态有关,与过去的状态无关。
- 遍历性:若马尔可夫链中任意两个状态之间都存在路径使得概率大于零,则称该马尔可夫链是遍历的。
遍历性保证了马尔可夫链具有长期稳定的性质。
- 正常概率性:对于离散时间马尔可夫链,转移概率矩阵P的元素都是非负的,并且每一行的元素之和等于1。
- 可约性和不可约性:如果一个马尔可夫链中的所有状态彼此之间都是可达的,则称该马尔可夫链是不可约的。
反之,则称它是可约的。
不可约性保证了任意状态之间都可以相互转移。
- 周期性:对于不可约的离散时间马尔可夫链,如果存在某个状态,从该状态出发回到该状态所需的步数的最大公约数大于1,则称该状态是周期的。
若所有状态都是非周期的则称该马尔可夫链是非周期的。
2. 题目:连续时间马尔可夫链的定义和性质有哪些?答案:连续时间马尔可夫链(Continuous-time Markov Chain)是指在时间上的变化是连续的、状态空间是有限或可列无限的马尔可夫链。
马尔可夫链专题讲义——2024届高三数学二轮复习
马尔可夫链专题马尔可夫链:)(),,,,(11211n n n n n x x P x x x x x P +-+=等式的意义:对于一个马尔可夫链来说,第n +1次的状态的结果,只跟上一次(也即第n 次)有关,与其他次无关。
马尔可夫链性质:无记忆性破题技巧:1.找到当下状态的“前一次”的所有可能情况;2.结合对应概率写出“前一次”所有可能中蕴含的数列递推关系;3.利用数列递推技巧求答案,例1.跳格游戏:如图,人从格外只能进入第1格,在格中每次可向前跳1格或2格,那么人从格外跳到第8格的方法种数为( C )A. 8种B. 13种C. 21种D. 34种【例2】质点在x 轴上从原点O 出发向右运动,每次平移一个单位或两个单位,且移动一个单位的概率为32,移动两个单位的概率为31,设质点运动到点)0,(n 的概率为n P . (1) 求1P 和2P ;(2) 求n P .【例3】为迅速抢占市场举行促销活动,销售公司现面向意向客户推出“玩游戏,赢大奖,送汽车模型”活动,客户可根据抛掷骰子向上的点数,遥控汽车模型在方格图上行进,若汽车模型最终停在“幸运之神”方格,则可获得购车优惠券2万元;若最终停在“赠送汽车模型”方格,则可获得汽车模型一个.方格图上标有第0格、第1格、第2格、……、第 20 格。
汽车模型开始在第0格,客户每掷一次骰子,汽车模型向前移动一次.若掷出 1,2,3,4点,汽车模型向前移动一格(从第k 格到第k +1格),若掷出5,6点,汽车模型向前移动两格(从第k 格到第k +2格),直到移到第 19 格(幸运之神)或第 20 格(赠送汽车模型)时游戏结束.设汽车模型移到第n (1≤n ≤19)格的概率为n P .则19P =_________.【例 4】【淮北高三二模T12】已知棋盘上标有第 0,1,2,.,100 站,棋子开始时位于第0站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳一站:若掷出反面,棋子向前跳两站,直到跳到第 99 站(胜利大本营)或第 100 站(欢乐大本营)时,游戏结束.设棋子跳到第n 站的概率为n P . ( )A. 211=P B. 833=P C. )981(,212111≤≤+=-+n P P P n n n D. )211(32101100+=P赌徒问题(随机游走)例5:(2023·杭州市二模/湖南师大附中三模T21)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…X t-2, X t-1,X t, X t+1…,那么X t+1时刻的状态的条体概率仅依赖前一状态X t,即P(X t+1|… X t-2, X t-1,X t)=P(X t+1 |X t).现实生活中也存在着许多马尔科大链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B元,赌徒停止赌博.记赌徒的本金为A(A∈N*,A<B),赌博过程如图的数轴所示.当赌徒手中有n元(0≤n≤B,n∈N)时,最终输光的概率为P(n),请回答下列问题:(1)请直接写出P(0)与P(B)的数值;(2)证明{ P(n)}是个等差数列,并写出公差d;(3)当A=100时,分别计算B=200,B=1000时,P(A)的数值,并结合实际,解释当B→+∞时,P(A)的统计含义.例6:(2023·惠州一模T22改编)为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐(吐槽一下惠州学生命真苦啊……).已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率;(2)记该同学第n 天选择米饭套餐的概率为P n ;(i)求P n 表达式;(ii)证明:当n ≥2时,P n ≤512;并结合实际,说明当n →+∞时, P n 的实际意义.传球问题中的马尔可夫模型例7:三人互相传球,由甲开始发球,并作为第一次传球,每人得球后传球给其他人的可能性均相等.经过5次传球后,球仍回到甲手中,则不同的传球方式共有( )A .6种B .8种C .10种D .16种(例7升级Plus 版本):甲乙丙丁4人传接球训练,球从甲脚下开始,等可能地随机传向其余3人中的1人,接球者接到球后,再等可能地随机传向另外3人中的1人,依此类推.假设所有传出的球都能接住.记第n 次传球之前,球在甲脚下的概率为P n (n ∈N ∗) ,易知P 1=1 ,P 2=0.(1)推导P n 的表达式;(2)设第n 次传球之前,球在乙脚下的概率为Q n ,比较Q n 与P n ( n ≥3 )的大小; 并结合实际,解释当n→+∞时, P n 与Q n 的统计含义;(3) 假设经历了6次传球后,球依旧在甲的脚下,请问共有多少种不同的传球路径?【例 8】【武汉九调 T16】甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于 3,则丙将球传给甲,若骰子点数不大于 3,则丙将球传给乙.初始时,球在甲手中,投掷n 次骰子后(*∈N n ),记球在甲手中的概率为n P ,则3P =_____________;n P =____________ .【例9】【茂名高三&郴州高三二模 T22】马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,…次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n (*∈N n )次操作后,记甲盒子中黑球个数为n X ,甲盒中恰有1个黑球的概率为n a ,恰有2个黑球的概率为n b 。
随机过程课后试题答案
随机过程课后试题答案一、选择题1. 随机过程的基本定义中,样本空间通常表示为:A. 一个集合B. 一个函数集合C. 一个概率空间D. 一个参数集合答案:A2. 若随机过程的样本轨迹几乎是连续的,则该过程是:A. 离散时间随机过程B. 连续时间随机过程C. 泊松过程D. 马尔可夫过程答案:B3. 马尔可夫性质的含义是未来的状态只依赖于当前状态,而与过去的状态无关。
这一性质不适用于:A. 泊松过程B. 布朗运动C. 马尔可夫链D. 所有随机过程答案:D4. 在随机过程中,如果两个随机变量的联合分布可以表示为它们各自的边缘分布的乘积,则这两个随机变量是:A. 独立的B. 相关的C. 正相关的D. 负相关的答案:A5. 随机游走的期望步长是:A. 1B. 2C. 依赖于起始点D. 依赖于步长分布答案:D二、填空题1. 一个随机过程的样本函数是定义在参数集合上的_________函数。
答案:实值或随机2. 在随机过程中,如果给定当前状态,下一状态的条件概率分布仅依赖于当前状态而不依赖于之前的状态,那么该过程是一个_________过程。
答案:马尔可夫3. 随机过程的均值函数(或称数学期望函数)是描述过程长期行为的重要工具,它是一个关于_________的函数。
答案:时间4. 布朗运动是一种连续时间随机过程,其样本轨迹具有_________性质。
答案:无处处可微5. 泊松过程是一种描述事件在时间上随机发生的随机过程,其特点是事件在任意两个不重叠时间区间内发生是_________的。
答案:相互独立三、计算题1. 假设有一个离散时间马尔可夫链,其状态转移矩阵为:\[P = \begin{bmatrix}0.7 & 0.3 \\0.4 & 0.6\end{bmatrix}\]求该马尔可夫链在第二时刻的状态概率分布,给定初始状态概率分布为:\\[\pi_0 = \begin{bmatrix}0.5 \\0.5\end{bmatrix}\]解:首先计算\( P^2 \),即状态转移矩阵的二次幂,然后利用\( \pi_0 \)和\( P^2 \)来计算第二时刻的状态概率分布。
连续时间马尔可夫链例题
连续时间马尔可夫链例题假设有一个连续时间马尔可夫链,描述一个人的健康状态。
该马尔可夫链包含三个状态:健康、生病和康复。
人的健康状态可以根据以下转移概率进行模拟:1. 在任何时间点,一个健康的人以0.1的速率生病。
2. 在任何时间点,一个生病的人以0.2的速率康复。
3. 在任何时间点,一个康复的人以0.05的速率重新生病。
现在假设一个人的初始状态是健康,我们可以使用连续时间马尔可夫链模型来模拟他的健康状态随时间的变化。
假设每个时间单位是一周,我们希望模拟他一年内的健康状态。
根据上面的转移概率,我们可以得到如下的转移矩阵:```| 健康 | 生病 | 康复 |----------------------------健康 | 0.9 | 0.1 | 0 |生病 | 0.05 | 0.75 | 0.2 |康复 | 0 | 0.05 | 0.95|```该矩阵中的每个元素表示从当前状态转移到下一个状态的概率。
例如,一个健康的人在一周后仍然健康的概率为0.9,在一周后生病的概率为0.1,在一周后康复的概率为0。
使用该转移矩阵,我们可以模拟一个人一年内的健康状态。
假设每个时间单位是一周,则一年共有52个时间单位。
我们可以使用随机数生成器来生成每个时间单位的状态。
假设生成的随机数在[0,1)之间,我们可以根据转移概率进行状态转移。
例如,如果生成的随机数小于0.9,则人在下一个时间单位仍然健康;如果生成的随机数介于0.9和0.95之间,则人在下一个时间单位康复;如果生成的随机数大于等于0.95,则人在下一个时间单位重新生病。
使用这种方法,我们可以模拟一个人一年的健康状态,并观察他在这段时间内的状态变化。
这可以帮助我们更好地了解和预测一个人的健康动向。
课上练习题_离散时间马尔科夫链 423
1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes?2、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?3、Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i.4、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 geneswith probabilityjmjmimmijm-⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛. Let Xn denote the numberof type 1 genes in the nth generation, and assume that X0 = i.(a) Find E[Xn](b) What is the probability that eventually all the genes will be type 1?5、4.47 Let {Xn, n >=0} denote an ergodic Markov chain with limiting probabilities ri. Define the process {Yn, n>=1} by Yn = {Xn-1,Xn}. That is , Yn keeps track of the last two states of the original chain. Is {Yn} a Markov chain? If so, determine its transition probabilities and find )},({lim j i Y P n n =∞>-6、4.54 M balls are distributed between two urns, and at each time point one of the balls is chosen at random and is then removed from its urn and placed in the other one. Let Xn denote the number of molecules in urn 1 after the nth switch and let u n =E[Xn]. Find u n+1 as a function of u n .7、4.5.1 Consider a gambler who at each play of the game has probability p of winning one unit and probability q = 1-p of losing one unit. Assuming that successive plays of the game are independent, what is the probability that, starting with i units, the gambler’s fortune will reach N before reaching 0?8、4.57 A particle moves among n+1 vertices that are situated ona circle in the following manner. At each step it moves one step either in the clockwise direction with probability p or in the counterclockwise direction with probability q = 1-p. Starting at a specified state, call it state 0, let T be the time of the first return to state 0. Find the probability that all states have been visited by time T.。
马尔科夫链例题整理
q c 1 ( ) p
首页
例3 排队问题 顾客到服务台排队等候服务,在每一个服务周期中只 要服务台前有顾客在等待,就要对排在前面的一位提 供服务,若服务台前无顾客时就不能实施服务。
设在第 n 个服务周期中到达的顾客数为一随机变量 Yn
且诸Yn 独立同分布:
P Yn k ) pk , k 0,1, 2, L , (
0 q 0 P 1 ... 0 p p 0 q 0 p 0 0 ... 0 0 ... 0 p ... 0 q 0 0 q q 0 0 ... p 0
... ... ... ... ... 0 ... 0 0 ... 0
首页
4.一个质点在全直线的整数点上作随机游动,移 动的规则是:以概率p从i移到i-1,以概率q从i移到 i+1,以概率r停留在i,且 r p q 1 ,试 求转移概率矩阵。
p20 P( X n1 0 | X n 2) P( X n 1 Yn 0 | X n 2) P(Yn 1) 0 p21 P( X n1 1 | X n 2) P( X n 1 Yn 1 | X n 2)
p11 P( X n1 1 | X n 1) P( X n 1 Yn 1 | X n 1) P(Yn 1) p1
1 6 1 6 1 6 4 6 0 0
1 6 1 6 1 6 1 6 5 6 1
1 6 1 6 1 6 1 6 1 6 0
例1
甲、乙两人进行比赛,设每局比赛中甲胜的概率 是p,乙胜的概率是q,和局的概率是 r , ( p q r 1 )。设每局比赛后,胜者记“+1” 分,负者记“—1”分,和局不记分。当两人中有 一人获得2分结束比赛。以 X n 表示比赛至第n 局时甲获得的分数。 (1)写出状态空间; (2)求 P(2) ; (3)问在甲获得1分的情况下,再赛二局可 以结束比赛的概率是多少?
EXANS_C4马尔可夫链
练习四:马尔可夫链 随机进程练习题1.设质点在区间[0,4]的整数点作随机游动,抵达0点或4点后以概率1停留在原处,在其它整数点别离以概率31向左、右移动一格或停留在原处。
求质点随机游动的一步和二步转移的概率矩阵。
2.独立地重复抛掷一枚硬币,每次抛掷显现正面的概率为p ,关于2≥n 求,令n X =0,1,2或3,这些值别离对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。
求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。
3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P}|,,,{111100++=====n n n n i X i X i X i X P ==⋅+++m n n n X i X P ,,{22 }|11+++=n n m n i X i4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始散布和转移概率矩阵为==0{X P p i4,3,2,1,41}==i i ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证}41|4{}41,1|4{12102<<=≠<<==X X P X X X P5.设}),({T t t X ∈为随机进程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独立同散布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes?
2、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?
3、Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i.
4、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 genes
with probability
j
m
j
m
i
m
m
i
j
m-
⎪
⎭
⎫
⎝
⎛-
⎪
⎭
⎫
⎝
⎛
⎪⎪
⎭
⎫
⎝
⎛
. Let Xn denote the number
of type 1 genes in the nth generation, and assume that X0 = i.
(a) Find E[Xn]
(b) What is the probability that eventually all the genes will be type 1?
5、4.47 Let {Xn, n >=0} denote an ergodic Markov chain with limiting probabilities ri. Define the process {Yn, n>=1} by Yn = {Xn-1,Xn}. That is , Yn keeps track of the last two states of the original chain. Is {Yn} a Markov chain? If so, determine its transition probabilities and find )},({lim j i Y P n n =∞>-
6、4.54 M balls are distributed between two urns, and at each time point one of the balls is chosen at random and is then removed from its urn and placed in the other one. Let Xn denote the number of molecules in urn 1 after the nth switch and let u n =E[Xn]. Find u n+1 as a function of u n .
7、4.5.1 Consider a gambler who at each play of the game has probability p of winning one unit and probability q = 1-p of losing one unit. Assuming that successive plays of the game are independent, what is the probability that, starting with i units, the gambler’s fortune will reach N before reaching 0?
8、4.57 A particle moves among n+1 vertices that are situated on
a circle in the following manner. At each step it moves one step either in the clockwise direction with probability p or in the counterclockwise direction with probability q = 1-p. Starting at a specified state, call it state 0, let T be the time of the first return to state 0. Find the probability that all states have been visited by time T.。