CO2焊机技术参数表

合集下载

CO2气体保护焊工艺参数

CO2气体保护焊工艺参数

第一节二氧化碳气体保护焊(CO2焊)二氧化碳气体保护焊是用CO2作为保护气体依靠,焊丝与焊件之间产生电弧溶化金属的气体保护焊方法简称CO2焊(MAG)。

一、二氧化碳气体保护焊发展动态二氧化碳气体保护焊是50年代发展起来的一种新的焊接技术。

半个世纪来,它已发展成为一种重要的熔焊方法。

广泛应用于汽车工业,工程机械制造业,造船业,机车制造业,电梯制造业,锅炉压力容器制造业,各种金属结构和金属加工机械的生产。

MIG气体保护焊焊接质量好,成本低,操作简便,取代大部分手工电弧焊和埋弧焊,已成定局。

二氧化碳气体保护焊装在机器手或机器人上很容易实现数控焊接,将成为二十一世纪初的主要焊接方法。

目前二氧化碳气体保护焊,使用的保护气体,分CO2和CO2+Ar两种。

使用的焊丝主要是锰硅合金焊丝,超低碳合金焊丝及药芯焊丝。

焊丝主要规格有:0.5mm、0.8 mm、0.9 mm、1.0 mm、1.2 mm、1.6 mm、2.0 mm、2.5 mm、3.0 mm、4.0mm等。

二、二氧化碳气体保护焊特点(一)MAG焊具有下列优点:1、焊接成本低:其成本只有埋弧焊和手工电弧焊的40~50%。

2、生产效率高:其生产率是手工电弧焊的1~4倍。

3、操作简便:明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。

4、焊缝抗裂性能高:焊缝低氢且含氮量也较少。

5、焊后变形较小:角变形为千分之五,不平度只有千分之三。

6、焊接飞溅小:当采用超低碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。

(二)MAG焊的缺点:1、对焊接设备的技术焊接要求高。

2、设备造价相对较贵。

3、气体保护效果易受外来气流的影响。

4、焊接参数之间的匹配关系较严格。

三、气体保护焊的设备C02气体保护焊的主要设备包括焊接电源、送丝机、焊枪、供气系统、焊丝盘和指示仪表等组成。

四、气体保护焊的工艺参数(焊接范围)主要包括气体保护焊的工艺参数主要包括以下几点:1、焊丝直径、焊接电流、电弧电压。

二氧化碳气体保护焊焊接参数

二氧化碳气体保护焊焊接参数

分享]二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。

本文是笔者站在巨人的肩膀上结合自身实践心得而成的一家之言,文中以自己观点、经验为主。

本文已经发表。

这次上传论坛,旨在抛砖引玉。

一、焊丝直径,焊丝直径影响焊缝熔深。

本文就最常用的焊丝直径1.2mm实心焊丝展开论述。

牌号:H08MnSiA。

焊接电流在150~300时,焊缝熔深在6~7mm。

二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。

短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡(射滴/我习惯称为喷射)的焊接电流在250~300A之间(我习惯280A)。

焊接电流决定送丝速度。

焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。

三、电弧电压,电弧电压不是焊接电压。

电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。

焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。

通常情况下,电弧电压在17~24V之间。

电压决定熔宽。

四、焊接速度,焊接速度决定焊缝成形。

焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。

通常情况下,焊接速度在80mm/min比较合适。

五、气体流量,CO2气体具有冷却特点。

因此,气体流量的多少决定保护效果。

通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。

六、干伸长度,干伸长度是指从导电嘴到焊件的距离。

保证干伸长度不变是保证焊接过程稳定的重要因素。

干伸长度决定焊丝的预热效果,直接影响焊接质量。

当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。

二保焊

二保焊

二保焊5-16mmco2气保焊,焊接参数,电流.电压,焊丝大小.气流就算给你一定的数值,两台焊机一样的数值,焊出来的效果也是不一样的,主要是你自己积累经验,你可以先把电压调到最大,电流不动,然后焊一下你就知道,好像是熔池的铁水很稀,你在把电压调到最小,你就发现铁水很稠。

你然后电压不动,把电流调到最大,你会发现送丝很快,还可能会焊丝没有熔化就送出来了,你在把电流调到最小,你会发现送丝很慢,不就知道电流电压是做什么的了吗先试焊一下,如果弧光大却没有多钢水也就是熔滴,那就是电流太小,要调大一点电流,如果是弧光不是很大只是听到啪啪声,那是电压太小,要调高一点电压,当听到好听的咝咝声时,说明电流电压秕配了这个说起来确实很复杂,建议去买书学习理论;总体来说,增大电流,送丝速度加快,可以加大熔深;增大电压,焊接电弧变长,可以增大焊缝宽度;在考虑电流和电压的同时,一定还要考虑焊接走行速度co2保护焊焊接工艺焊接工艺co2保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1 适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求。

注:产品有工艺标准按工艺标准执行。

编制参考标准《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸》术语母材:被焊的材料焊缝金属:熔化的填充金属和母材凝固后形成的部分金属。

层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度。

船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3 焊接准备按图纸要求进行工艺评定。

材料准备产品钢材和焊接材料应符合设计图样的要求。

焊丝应储存在干燥、通风良好的地方,专人保管。

焊丝使用前应无油锈。

坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本。

作业条件当风速超过2m/s时,应停止焊接,或采取防风措施。

作业区的相对湿度应小于90%,雨雪天气禁止露天焊接。

4 施工工艺工艺流程清理焊接部位检查构件、组装、加工及定位按工艺文件要求调整焊接工艺参数按合理的焊接顺序进行焊接自检、交检焊缝返修焊缝修磨合格交检查员检查关电源现场清理4 操作工艺焊接电流和焊接电压的选择不同直径的焊丝,焊接电流和电弧电压的选择见下表焊丝直径短路过渡细颗粒过渡电流(A)电压(V)电流(A)电压(V)50--100 18--2170--120 18--2290--150 19--23 160--400 25--38140--200 20--24 200--500 26--40焊速:半自动焊不超过min.打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边――㎜防止咬边。

二保焊

二保焊

二保焊5-16mmco2气保焊,焊接参数,电流.电压,焊丝大小.气流就算给你一定的数值,两台焊机一样的数值,焊出来的效果也是不一样的,主要是你自己积累经验,你可以先把电压调到最大,电流不动,然后焊一下你就知道,好像是熔池的铁水很稀,你在把电压调到最小,你就发现铁水很稠。

你然后电压不动,把电流调到最大,你会发现送丝很快,还可能会焊丝没有熔化就送出来了,你在把电流调到最小,你会发现送丝很慢,不就知道电流电压是做什么的了吗?先试焊一下,如果弧光大却没有多钢水也就是熔滴,那就是电流太小,要调大一点电流,如果是弧光不是很大只是听到啪啪声,那是电压太小,要调高一点电压,当听到好听的咝咝声时,说明电流电压秕配了这个说起来确实很复杂,建议去买书学习理论;总体来说,增大电流,送丝速度加快,可以加大熔深;增大电压,焊接电弧变长,可以增大焊缝宽度;在考虑电流和电压的同时,一定还要考虑焊接走行速度co2保护焊焊接工艺焊接工艺co2保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1 适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求。

注:产品有工艺标准按工艺标准执行。

1.1 编制参考标准《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸》GB.985-881.2 术语2.1 母材:被焊的材料2.2 焊缝金属:熔化的填充金属和母材凝固后形成的部分金属。

2.3 层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度。

2.4 船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3 焊接准备3.1按图纸要求进行工艺评定。

3.2材料准备3.2.1产品钢材和焊接材料应符合设计图样的要求。

3.2.2焊丝应储存在干燥、通风良好的地方,专人保管。

3.2.3焊丝使用前应无油锈。

3.3坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本。

3.4 作业条件3.4.1 当风速超过2m/s时,应停止焊接,或采取防风措施。

CO2 保护焊的焊接参数

CO2 保护焊的焊接参数

CO2 保护焊的焊接参数一、焊丝直径焊丝直径越粗,允许使用的焊接电流越大焊接直径/mm 焊件厚度/mm施焊位置熔滴过渡形式0.8 1-3 各种位置短路过程1.0 1.5-6 各种位置短路过程1.2 2-12 各种位置短路过程中厚平焊、平角焊细颗粒过程1.6 6-25 各种位置短路过程中厚平焊、平角焊细颗粒过程2.0 中厚平焊、平角焊细颗粒过程焊接电流相同时,熔深将随着焊丝直径的减小而增加。

焊接电流相同时,焊丝越细则熔敷速度越快。

二、焊接电流应根据焊件厚度、材料、焊丝直径、施焊位置及要求的熔滴过渡形式来选择焊接电流的大小。

每种直径的焊丝都有一个合适的焊接电流范围,只有在这个范围内焊接过程才稳定进行。

通常直径0.8-1.6mm的焊丝,短路过渡的焊接电流在40-230A范围内;细颗粒过程过渡的焊接电流在250-500A范围内当电源外特性不变时,改变送丝速度,此时电弧电压不变,焊接电流则发生变化。

送丝速度越快,焊接电流越大。

在相同的送丝速度下,随着焊丝直径的增加,焊接电流也增加。

焊接电流的增大,熔深也会增加。

焊接电流的增加熔敷速度和熔深都会增加。

二、电弧电压电弧电压是指导电嘴与焊件间测得的电压。

焊接电压是焊机上电压表所显示的电压。

焊接电压比电弧电压高。

焊缝成形好,电弧电压与焊接电流配合适当。

通常焊接电流小时,电弧电压较低,焊接电流大时电弧电压较高。

三、焊接的速度在焊丝直径、焊接电流、电弧电压不变的条件下,焊接速度增加时,熔宽与熔深都减小。

焊接速度过快,产生咬边、未熔合出现气孔;速度过低变形增大。

四、CO2气体的流量流量过大过小都影响保护效果。

通常细丝焊接时,流量为止5-15L/min。

五、焊丝伸出长度焊丝伸出长度是指从导电嘴端部到焊件的距离。

保持伸长不变是保证焊接过程稳定的基本条件。

采用的电流密度较高,伸出长度越大,焊接的预热作用越强。

当送丝速度不变时,若焊丝伸出长度增加,因预热作用强,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,将造成热量不足,容量引起未焊透、未熔合。

CO2气体保护焊

CO2气体保护焊

CO2气体保护焊学习目的:了解CO2气体保护焊的冶金反应原理、焊接工艺特点和焊接设备,熟悉CO2气体保护焊的基本操作技术,掌握薄板对接CO2气体保护焊、立焊、横焊技术。

第一节CO2气体保护焊概述一、CO2气体保护焊工作原理CO2气体保护焊是采用CO2气体作为保护气体隔离空气,保护熔池的焊接方法。

CO2气体保护焊是活性气体保护焊,从喷嘴喷出的CO2气体,在高温下分解为CO并放出氧气。

二、CO2气体保护焊工艺特点(1)生产效率高,焊丝直径小,电流密度大,电流穿透能力强,熔深大焊丛熔化效率高;(2)焊接变形小,热量集中;(3)能耗少;(4)适应范围广,可进行全方位焊接;(5)抗锈能力强,含氢较低;(6)明弧操作;(7)飞测大;(8)弧光强;三、CO2气体保护焊冶金特点1.保护作用:保护熔池不跟空气的氧气、氮气接触,由于温度很高使焊件和焊丝中的合金元素烧损,同时生成氧化物。

2.脱氧作用:在焊丝中加入一定量的脱氧元素,如Si、AI,等。

3.焊缝金属合金化:药皮和焊丝中加入合金元素,提高焊缝的合金元素含量。

四、CO2气体保护焊熔滴过渡电弧燃烧的稳定性和焊缝成形的好坏取决于熔滴过渡形式。

过渡分三个形式。

1.短路过渡:当电流很小,电压很低时,弧长小于熔滴自由成形的直径,焊接时将不断发生短路,此时电弧稳定,飞溅小,焊弧成形好,这种过渡形式称短路过渡。

也就是说,短路的频率高,焊接过程越稳定。

最合适的电弧电压,对于直径0.8-1.2mm的焊丝,该值是20V左右,最高短路频率约100Hz,由于电弧不断地发生短路,可听见的“啪啪”声。

当电弧电压太低时,则弧长很短,短路频率很高,电弧燃烧时间短,焊丝端部来不及熔化就插入熔池,会发生固体短路,因短路电流很大,致使焊丝突燃爆断,产生严重的飞溅。

焊接过程不稳定。

2.射滴(颗粒)过渡当焊接电流较大,电弧电压较高时,会发生颗粒过渡。

(1)大颗粒过渡:当电弧电压较高,弧长较大但电接电流较小时,焊丝端部形成的熔滴不仅左右摆动,而且上下跳动,最后落入到熔池中,这种过渡形式称为大颗粒过渡。

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定

精心整理二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。

一、焊丝直径,焊丝直径影响焊缝熔深。

本文就最常用的焊丝直径1.2mm 实心焊丝展开论述。

牌号:H08MnSiA 。

焊接电流在150~300时,焊缝熔深在6~7mm 。

二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。

短路过渡的焊接电流在110~230A 之间(焊工手册为40~230A );细颗粒过渡的焊接电流在250~300A 之间。

焊接电流决定送丝速度。

焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深三、在六、八、;焊接电流制在以达到焊接电流是根据焊接结构母材厚度及焊缝位置来确定,如平焊时焊接电流一般在160-320A 、立焊、仰焊、横焊时一般在100-130A 。

电弧电压是根据焊接电流而定公式如下:(1) 实芯焊丝:当电流≥300A 时×0.04+20±2=电压当电流≤300A 时×0.05+16±2=电压(2) 药芯焊丝:当电流≥200A 时×0.06+20±2=电压当电流≤200A 时×0.07+16±2=电压CO2气体保护焊机操作规程CO2气体保护焊机操作规程1、操作者必须持电焊操作证上岗。

2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置。

3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值。

供气开关置于“焊接”位置。

4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压。

5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接。

6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止。

CO2气体保护焊参数

CO2气体保护焊参数

CO2气体保护焊焊接工艺CO2气体保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1 适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求。

注:产品有工艺标准按工艺标准执行。

1.1 编制参考标准《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸》GB.985-881.2 术语2.1 母材:被焊的材料2.2 焊缝金属:熔化的填充金属和母材凝固后形成的部分金属。

2.3 层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度。

2.4 船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3 焊接准备3.1按图纸要求进行工艺评定。

3.2材料准备3.2.1产品钢材和焊接材料应符合设计图样的要求。

3.2.2焊丝应储存在干燥、通风良好的地方,专人保管。

3.2.3焊丝使用前应无油锈。

3.3坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本。

3.4 作业条件3.4.1 当风速超过2m/s时,应停止焊接,或采取防风措施。

3.4.2 作业区的相对湿度应小于90%,雨雪天气禁止露天焊接。

4 施工工艺4.1 工艺流程清理焊接部位检查构件、组装、加工及定位按工艺文件要求调整焊接工艺参数按合理的焊接顺序进行焊接自检、交检焊缝返修焊缝修磨合格交检查员检查关电源现场清理4 操作工艺4.1 焊接电流和焊接电压的选择不同直径的焊丝,焊接电流和电弧电压的选择见下表焊丝直径短路过渡细颗粒过渡电流(A)电压(V)电流(A)电压(V)0.8 50--100 18--211.0 70--120 18--221.2 90--150 19--23 160--400 25--381.6 140--200 20--24 200--500 26--404.2 焊速:半自动焊不超过0.5m/min.4.3 打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面1.5㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边0.5――1.5㎜防止咬边。

二氧化碳气体保护焊的焊接参数分析

二氧化碳气体保护焊的焊接参数分析

二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。

一、焊丝直径,焊丝直径影响焊缝熔深。

本文就最常用的焊丝直径实心焊丝展开论述。

牌号:H08MnSiA。

焊接电流在150~300时,焊缝熔深在6~7mm。

二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。

短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。

焊接电流决定送丝速度。

焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。

三、电弧电压,电弧电压不是焊接电压。

电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。

焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。

通常情况下,电弧电压在17~24V之间。

电压决定熔宽。

四、焊接速度,焊接速度决定焊缝成形。

焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。

通常情况下,焊接速度在80mm/min比较合适。

五、气体流量,CO2气体具有冷却特点。

因此,气体流量的多少决定保护效果。

通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。

六、干伸长度,干伸长度是指从导电嘴到焊件的距离。

保证干伸长度不变是保证焊接过程稳定的重要因素。

干伸长度决定焊丝的预热效果,直接影响焊接质量。

当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。

根据焊接要求,干伸长度在8~20mm之间。

另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。

焊接工艺参数一览表

焊接工艺参数一览表

文件编号:版本号:1/0一、目的为了保证产品焊接质量,现对生产时使用的焊接工艺参数进行统一规定。

二、焊接设备①抽头式气体保护焊机(分体) 厂家:凯尔达 型号:NBC-250②气动式点凸焊机 厂家:凯尔达 型号:D(T)N-100三、焊接参数①CO2气体保护焊接工艺表:I形对焊项目 示意图板厚(mm)焊丝直径Φ(mm)根部间隙G(mm)焊接电流(A)焊接电压(V)焊接速度(cm/min)导电嘴母材间距离(mm)气体流量(L/min)0.860~7016~16.5101.075~8517~17.51.280~9017~181.695~10518~192.00~0.5110~12019~19.52.30.5~1.0120~13019.5~203.2 1.0~1.220~2110~154.5 1.0~1.522~2340~501515平角焊T形接头项目 示意图板厚(mm)焊丝直径Φ(mm)瞄准位置①、②或 ③焊接电流(A)焊接电压(V)焊接速度(cm/min)导电嘴母材间距离(mm)气体流量(L/min) 1.070~8017~181.285~9018~191.6100~11018~19.52.0115~12519.5~202.3130~14019.5~213.2150~17021~2245~504.5180~20023~2440~4510~1515~2050~601.0140~15045~50①10151050~60温州市光上高新技术发展有限公司焊接工艺参数规定1.0010~15平角焊接接头(薄板)项目 示意图板厚(mm)焊丝直径Φ(mm)瞄准位置①、②或 ③焊接电流(A)焊接电压(V)焊接速度(cm/min)导电嘴母材间距离(mm)气体流量(L/min)0.2①60~7016~1740~451.2②80~9018~191.690~10019~202.3120~15021~223.2150~18022~2335~454.5200~25024~2540~45角接头(薄板)项目 示意图板厚(mm)焊丝直径Φ(mm)瞄准位置①、②或 ③焊接电流(A)焊接电压(V)焊接速度(cm/min)导电嘴母材间距离(mm)气体流量(L/min)1.665~7516~172.380~10019~203.2130~15020~2235~404.5150~18021~2330~35②点(凸)焊接工艺表:项目 示意图板厚(mm)焊接电流(A)焊接电压(V)电极压力预压时间焊接时间休止时间气体流量(L/min)编制: 审核: 批准:10~151.040~451010~151.0③45~501010~1510~15。

二保焊焊接参数

二保焊焊接参数

1、短路过渡焊接CO2电弧焊中短路过渡应用最广泛,主要用于薄板及全位置焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。

(1)电弧电压和焊接电流,对于一定的焊丝直径及焊接电流(即送丝速度),必须匹配合适的电弧电压,才能获得稳定的短路过渡过程,此时的飞溅最少。

不同直径焊丝的短路过渡时参数如表:焊丝直径(㎜)0.8 1.2 1.6电弧电压(V)18 19 20焊接电流(A)100-110 120-135 140-180(2)焊接回路电感,电感主要作用:a 调节短路电流增长速度di/dt, di/dt过小发生大颗粒飞溅至焊丝大段爆断而使电弧熄灭,di/dt 过大则产生大量小颗粒金属飞溅。

b 调节电弧燃烧时间控制母材熔深。

c 焊接速度。

焊接速度过快会引起焊缝两侧吹边,焊接速度过慢容易发生烧穿和焊缝组织粗大等缺陷。

d 气体流量大小取决于接头型式板厚、焊接规范及作业条件等因素。

通常细丝焊接时气流量为5-15 L/min,粗丝焊接时为20-25 L/min。

e 焊丝伸长度。

合适的焊丝伸出长度应为焊丝直径的10-20倍。

焊接过程中,尽量保持在10-20㎜范围内,伸出长度增加则焊接电流下降,母材熔深减小,反之则电流增大熔深增加。

电阻率越大的焊丝这种影响越明显。

f 电源极性。

CO2电弧焊一般采用直流反极性时飞溅小,电弧稳定母材熔深大、成型好,而且焊缝金属含氢量低。

2、细颗粒过渡。

(1)在CO2气体中,对于一定的直径焊丝,当电流增大到一定数值后同时配以较高的电弧压,焊丝的熔化金属即以小颗粒自由飞落进入熔池,这种过渡形式为细颗粒过渡。

细颗粒过渡时电弧穿透力强母材熔深大,适用于中厚板焊接结构。

细颗粒过渡焊接时也采用直流反接法。

(2)达到细颗粒过渡的电流和电压范围:焊丝直径(mm)电流下限值(A)电弧电压(V)1.2 300 34- 351.6 4002.0 500随着电流增大电弧电压必须提高,否则电弧对熔池金属有冲刷作用,焊缝成形恶化,适当提高电弧电压能避免这种现象。

二氧化碳气体保护焊

二氧化碳气体保护焊

CO2气体保护焊1.焊接的分类名词解释熔化焊接:将被连接金属局部熔化,然后冷却结晶使分子或原子彼此达到晶格距离并形成结合力,这种焊接方法叫熔化焊接。

熔化焊接需要一个能量集中,热量足够的热源。

电弧焊:以气体导电时产生的电弧热为热源。

熔化极:焊丝或焊条既是电极又是填充金属。

铝热焊:利用金属氧化物和金属铝之间的放热反应所产生的过热熔融金属来加热金属而实现结合的方法。

压力焊接:焊接过程中必须对焊件施加压力,加热或不加热的焊接方法。

钎焊:利用某些熔点低于被连接金属熔点的熔化金属(钎料)在连接界面上起流散浸润作用,然后冷却形成结合力。

2.熔化焊接的主要特征焊接部位必须采取有效的隔离空气保护,使焊接部位不能和空气接触,以免造成焊道的成分和性能不良,保护方式有三种:气相、渣相、真空。

熔化焊接的保护方式保护类型材料及设施适用范围气相保护气体CO2、TIG、MIG、MAG焊渣相保护焊剂手工焊条、埋弧焊剂、药芯焊丝...真空保护真空设备及设施航空航天或稀有金属3.气体保护焊的定义用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。

常用的保护气体:二氧化碳气(CO2)、氩气(Ar)、氦气(He)及它们的混合气体: CO2+Ar、CO2+Ar+He、……。

4.二氧化碳气体保护焊的简单介绍气体保护焊的定义:用外加气体作为电弧介质并保护电弧和焊接区的电弧焊称为气体保护电弧焊,简称气体保护焊。

常用的保护气体:二氧化碳气( CO2)、氩气( A r )、氦气(He)及它们的混合气体: CO2+Ar、CO2+Ar+He、……。

CO2气体保护焊,全称是熔化极二氧化碳气体保护电弧焊接,是焊接方法中的一种,是以CO2气为保护气体,进行焊接的方法。

在应用方面操作简单,适合自动焊和全方位焊接。

在焊接时不能有风,适合室内作业。

但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。

由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。

一、焊丝直径,焊丝直径影响焊缝熔深。

本文就最常用的焊丝直径1.2mm实心焊丝展开论述。

牌号:H08MnSiA。

焊接电流在150~300时,焊缝熔深在6~7mm。

二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。

短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。

焊接电流决定送丝速度。

焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。

三、电弧电压,电弧电压不是焊接电压。

电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。

焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。

通常情况下,电弧电压在17~24V之间。

电压决定熔宽。

四、焊接速度,焊接速度决定焊缝成形。

焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。

通常情况下,焊接速度在80mm/min比较合适。

五、气体流量,CO2气体具有冷却特点。

因此,气体流量的多少决定保护效果。

通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。

六、干伸长度,干伸长度是指从导电嘴到焊件的距离。

保证干伸长度不变是保证焊接过程稳定的重要因素。

干伸长度决定焊丝的预热效果,直接影响焊接质量。

当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。

根据焊接要求,干伸长度在8~20mm之间。

另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。

CO2焊机技术参数表

CO2焊机技术参数表

1.6
使用说明书
1本
重 量
Kg
12
4. 标准附件构成
项目 型号
数量
IB-350
备 注
焊 接
电缆线
正 极
1根
50㎜²×5m
可按用户需要延长
负 极
1根
50㎜²×1.5m
可按用户需要延长
CO2流量表
1块
36V
控制电缆
1根
9P×5m
附着型遥控器
气 管
1根
Φ7×5m
可按用户需要延长
保险丝管
1个
10A
1个
5A
导电嘴
3个
1.0
3个
1.2
H
外壳防护等级

IP 21
焊接电缆最大延长尺寸
m
40
适用焊丝直径范围
mm
∮0.8~∮1.2(实芯和药芯)
冷却方式
-
风冷
重 量
Kg
45
外部尺寸
mm
480(长)×355(宽)×660(高)
2. 焊枪
型号
单位
CT-C35CA
备 注
额定电流ALeabharlann 350额定负载持续率
%
60
焊丝类型
--
实芯、药芯
电缆长度
M
3
重量(含电缆)
CO2焊机技术参数表
1.焊接电源
项目 型号
单位
IB-350
备 注
输入电压及相数
V
三相, 380V±10%
额定频率
Hz
50
额定输入功率
KVA
16
额定输入电流
A
25

CO2气体保护焊工艺参数

CO2气体保护焊工艺参数

CO2气体保护焊接工艺参数影响焊接的因素多种多样,通过内在因素的分析和总结,对于其外在因素(主要指使用过程),我们结合实际情况并作了很多工艺试验,归纳如下,以供广大焊工参考。

1. 焊接过程稳定性与规范匹配的关系1.1 在保证外围系统(送丝、导电)良好的前提下,建议:I<200A时,U=(14+0.05I)±2VI>200A(尤其是有加长线)时,电压略配高些U=(16+0.05I)±2V★最佳焊接规范的主要特征:a. 焊缝成形好。

b. 焊接过程稳定,飞溅小。

c. 焊接时听到沙、、、沙的声音。

d. 焊接时看到焊机的电流表、电压表的指针稳定,摆动小。

★最佳焊接规范的调整步骤:a. 根据工件厚度,焊缝位置,选择焊丝直径,气体流量,焊接电流。

b. 在试板上试焊,根据选择的焊接电流,细心调整焊接电压和电弧推力,最佳的焊接电压一般在1~2V之间。

c. 根据试板上焊缝成形情况,适当调整焊接电流,焊接电压,气体流量,达到最佳焊接规范。

d. 在工件上正式焊接过程中,应注意焊接回路,接触电阻引起的电压降,及时调整(微调)焊接电压,确保焊接过程稳定(针对工件比较大的情况)。

1.2 规范匹配不良的焊接现象及排除①当焊丝端头始终有滴状金属小球存在,且过渡频率偏低,此情况说明焊接电压偏高,加大送丝速度(焊接电流)或降低焊接电压以解决。

②当干伸长偏短时能正常焊接,稍长就出现顶丝问题。

说明焊接电压偏低,通过降低送丝速度(焊接电流)或升高焊接电压解决。

③要注意面板上旋钮状态:一般情况下,我们将推力旋钮按标准刻度向右偏2~3格。

电流偏大时, 建议把推力旋钮根据焊接过程的稳定性继续加大些,对于细焊丝Φ0.8、Φ1.0小电流(Φ0.8 I<80A、Φ1.0 I<100A),电弧推力可适当调小,这样做对电弧的柔韧性有好处。

④焊丝直径开关焊丝直径开关一定要选对,要与所使用焊丝直径相符。

2. 焊缝成型与焊接规范的关系2.1 焊接规范、板厚对成型的影响①一般I=(20~30)δ,若δ>6mm一般应采用多层或多道、多层焊才能保证良好的成型。

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊得焊接参数设定二氧化碳气体保护焊得焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。

一、焊丝直径,焊丝直径影响焊缝熔深。

本文就最常用得焊丝直径1、2mm实心焊丝展开论述。

牌号:H08MnSiA。

焊接电流在150~300时,焊缝熔深在6~7mm。

二、焊接电流,依据焊件厚度、材质、施焊位置及要求得过渡形式来选择焊接电流得大小。

短路过渡得焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡得焊接电流在250~300A之间。

焊接电流决定送丝速度。

焊接电流得变化对熔池深度有决定性得影响,随着焊接电流得增大, 熔深明显增加,熔宽略有增加。

三、电弧电压,电弧电压不就是焊接电压。

电弧电压就是在导电嘴与焊件之间测得得电压,而焊接电压就是焊机上得电压表所显示得电压。

焊接电压就是电弧电压与焊机与焊件间连接得电缆上得电压降之与。

通常情况下,电弧电压在17~24V之间。

电压决定熔宽。

四、焊接速度,焊接速度决定焊缝成形。

焊接速度过快,熔深与熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。

通常情况下,焊接速度在80mm/min比较合适。

五、气体流量,CO2气体具有冷却特点。

因此,气体流量得多少决定保护效果。

通常情况下,气体流量为15L/min;当在有风得环境中作业,流量在20L/min以上(混合气体也应当加热)。

六、干伸长度,干伸长度就是指从导电嘴到焊件得距离。

保证干伸长度不变就是保证焊接过程稳定得重要因素。

干伸长度决定焊丝得预热效果,直接影响焊接质量。

当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。

根据焊接要求,干伸长度在8~20mm之间。

CO2焊焊接参数及对焊接质量的影响

CO2焊焊接参数及对焊接质量的影响

JIU JIANG UNIVERSITY毕业设计题目:CO2焊焊接参数及对焊接质量的影响院系:机械与材料工程学院专业:焊接技术及自动化姓名:年级:指导教师:二零一零年十二月摘要二氧化碳气体保护焊是焊接方法中的一种,是以二氧化碳气为保护气体,进行焊接的方法。

在应用方面操作简单,适合自动焊和全方位焊接。

在焊接时不能有风,适合室内作业。

由于二氧化碳气体的热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多.但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度.由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的质量焊接接头.因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。

本文主要是介绍二氧化碳气体保护焊的发展及前景。

分析二氧化碳焊的特点及在薄板厚板、工程机械、供水管道当中的应用。

介绍了二氧化碳焊焊接工艺参数对成形质量的影响及二氧化碳中飞溅问题的分析与处理。

通过实验研究得出实验前所设计工艺参数中最为合理的应用参数。

【关键词】:二氧化碳气体保护焊焊接参数缺陷成形质量目录第1章绪论 (1)1.1 焊接发展概况 (1)1.2 焊接方法分类及特点 (2)1.3 本课题研究的内容及意义 (4)第2章二氧化碳焊 (6)焊原理特点及应用 (6)2.1 CO22.1.1 CO2焊基本原理 (6)2.1.2 CO2焊基本特点 (6)2.1.3 CO2焊的一些应用 (7)焊设备 (7)2.2 CO2焊的焊接材料.......................................... ..92.3 CO22.3.1 CO2保护气体 (9)2.3.2 CO2焊焊丝 (9)焊缺陷及处理措施 (10)2.4 CO22.4.1合金元素的氧化 (10)2.4.2 CO2焊气孔 (10)2.4.3 CO2焊飞溅及处理措施 (11)第3章二氧化碳焊实验设计 (13)3.1 实验材料 (13)3.1.1 20R钢板成分及性能 (13)3.1.2 H08Mn2SiA焊丝 (14)3.1.3焊缝分布 (15)焊设备及工艺 (15)3.2 CO23.3 实验工艺参数 (16)第4章实验及数据 (18)4.1 焊接试样 (18)4.1.1 焊前准备 (18)4.1.2焊接过程 (18)4.1.3焊后处理 (19)4.2 外观无损检测 (20)4.3 形貌观察 (22)4.4 硬度 (25)第5章数据整理及分析 (26)5.1 数据整理 (26)5.1.1 焊接电流对焊缝质量影响 (26)5.1.2电弧电压对焊缝质量影响 (27)5.1.3接头性能分析 (27)5.2 工艺参数对比及分析 (28)结论 (30)参考文献 (31)致谢 (32)第1章绪论焊接是被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的建和而形成永久性连接的工艺过程。

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定

二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角.一、焊丝直径,焊丝直径影响焊缝熔深.本文就最常用的焊丝直径1.2mm实心焊丝展开论述.牌号:H08MnSiA.焊接电流在150~300时,焊缝熔深在6~7mm.二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小.短路过渡的焊接电流在110~230A之间焊工手册为40~230A;细颗粒过渡的焊接电流在250~300A之间.焊接电流决定送丝速度.焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加.三、电弧电压,电弧电压不是焊接电压.电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压.焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和.通常情况下,电弧电压在17~24V之间.电压决定熔宽.四、焊接速度,焊接速度决定焊缝成形.焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷.通常情况下,焊接速度在80mm/min比较合适.五、气体流量,CO2气体具有冷却特点.因此,气体流量的多少决定保护效果.通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上混合气体也应当加热.六、干伸长度,干伸长度是指从导电嘴到焊件的距离.保证干伸长度不变是保证焊接过程稳定的重要因素.干伸长度决定焊丝的预热效果,直接影响焊接质量.当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷.根据焊接要求,干伸长度在8~20mm之间.另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴.七、电源极性,通常采取直流反接反极性.焊件接阴极,焊丝接阳极,焊接过程稳定、飞溅小、熔深大.如果直流正接,在相同条件下,焊丝融化速度快约为反接的1.6倍,熔深浅,堆高大,稀释率小,飞溅大.八、回路电感,回路电感决定电弧燃烧时间,进而影响母材的熔深.通过调节焊接电流的大小来获得合适的回路电感,应当尽可能的选择大电流.通常情况下,焊接电流150A,电弧电压19V;焊接电流280A,电弧电压22~24V比较合适,能够满足大多数焊接要求.九、焊枪倾角,当倾角大于25°时,飞溅明显增大,熔宽增加,熔深减小.所以焊枪倾角应当控制在10~25°之间.尽量采取从右向左的方向施焊,焊缝成形好.如果采用推进手法,焊枪倾角可以达到60度,并且可以得到非常平整、光滑的漂亮焊缝.焊接电流是控制送丝速度,电弧电压是控制焊丝融化速度,电流加大焊丝送进加快、电压增大焊丝熔化加快.焊接电流是根据焊接结构母材厚度及焊缝位置来确定,如平焊时焊接电流一般在160-320A、立焊、仰焊、横焊时一般在100-130A.电弧电压是根据焊接电流而定公式如下:(1)实芯焊丝:当电流≥300A时×0.04+20±2=电压当电流≤300A时×0.05+16±2=电压(2)药芯焊丝:当电流≥200A时×0.06+20±2=电压当电流≤200A时×0.07+16±2=电压CO2气体保护焊机操作规程CO2气体保护焊机操作规程1、操作者必须持电焊操作证上岗.2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置.3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值.供气开关置于“焊接”位置.4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压.5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接.6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止.7、焊接完毕后,应及时关闭焊电源,将CO2气源总阀关闭.8、收回焊把线,及时清理现场.9、定期清理机上的灰尘,用空压机或氧气吹机芯的积尘物,一般时间为一周一次.CO2气体保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求.注:产品有工艺标准按工艺标准执行.1.1编制参考标准气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸GB.985-881.2术语2.1母材:被焊的材料2.2焊缝金属:熔化的填充金属和母材凝固后形成的部分金属.2.3层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度.2.4船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3焊接准备3.1按图纸要求进行工艺评定.3.2材料准备3.3坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本.3.4作业条件3.4.1当风速超过2m/s时,应停止焊接,或采取防风措施.3.4.2作业区的相对湿度应小于90%,雨雪天气禁止露天焊接.4施工工艺4.1工艺流程清理焊接部位检查构件、组装、加工及定位按工艺文件要求调整焊接工艺参数按合理的焊接顺序进行焊接自检、交检焊缝返修焊缝修磨合格交检查员检查关电源现场清理4操作工艺4.1焊接电流和焊接电压的选择不同直径的焊丝,焊接电流和电弧电压的选择见下表焊丝直径短路过渡细颗粒过渡电流A电压V0.850--10018--211.070--12018--221.290--15019--23160--40025--381.6140--20020--24200--50026--404.2焊速:半自动焊不超过0.5m/min.4.3打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面1.5㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边0.5――1.5㎜防止咬边.4.4不应在焊缝以外的母材上打火、引弧.4.5定位焊所用焊接材料应与正式施焊相当,定位焊焊缝应与最终焊缝有相同的质量要求.钢衬垫的定位焊宜在接头坡口内焊接,定位焊厚度不宜超过设计焊缝厚度的2/3,定位焊长度不宜大于40㎜,填满弧坑,且预热高于正式施焊预热温度.定位焊焊缝上有气孔和裂纹时,必须清除重焊.4.9焊接工艺参数见表一和表二表一:Φ1.2焊丝CO2焊对接工艺参数板厚层数焊接电流电弧电压焊丝外伸焊机速度气体流量装配间隙㎜AVmmm/minLminmm612702712-140.5510-151.0-1.562190/21019/30150.25150-182120-130/130-14026-27/28-30150.55201-1.5102130-140/280-30020-30/30-33150.55201-1.5102300-320/300-32037-39/37-39150.55201-1.5121310-33032-33150.5201-1.5163120-140/300-340/300-340A25-2733-3535-3715201-1.5 164140-160/260-280/270-290/270-290A24-26/31-33/34-36/34-3615201-1.5204120-140/300-340/300-340/300-340A25-2733-3533-3533-3715251-1.5204140-160/260-280/300-320/300-320A24-26/31-33/35-37/201-1.5表二:Φ1.2焊丝CO2气体保护焊T形接头板厚焊丝直径焊接电流电弧电压焊接速度气体流量焊角尺寸㎜㎜Avm/minL/min㎜2.3Φ1.2120200.510-153.03.2Φ1.214020.50.510-153.04.5Φ1.2160210.4510-154.06Φ1.2230230.5510-156.012Φ1.2290280.510-157.05交检6焊接缺陷与防止方法,缺陷形成原因,防止措施焊缝金属裂纹形成原因:1.焊缝深宽比太大2.焊道太窄3.焊缝末端冷却快.防治措施:1.增大焊接电弧电压,减小焊接电流2.减慢焊接速度3.适当填充弧坑.夹杂形成原因:1.采用多道焊短路电弧2.高的行走速度.防治措施:1.仔细清理渣壳2.减小行走速度,提高电弧电压.气孔形成原因:1.保护气体覆盖不足2.焊丝污染3.工件污染4.电弧电压太高5.喷嘴与工件距离太远.防治措施:1.增加气体流量,清除喷嘴内的飞溅,减小工件到喷嘴的距离2.清除焊丝上的润滑剂3.清除工件上的油锈等杂物.4.减小电压5.减小焊丝的伸出长度.咬边形成原因:1.焊接速度太高2.电弧电压太高3.电流过大4.停留时间不足5.焊枪角度不正确.防治措施:1.减慢焊速2.降低电压3.降低焊速4.增加在熔池边缘停留时间5.改变焊枪角度,使电弧力推动金属流动.未融合形成原因:1.焊缝区有氧化皮和锈2.热输入不足3.焊接熔池太大4.焊接技术不高5.接头设计不合理.防治措施:1.仔细清理氧化皮和锈2.提高送丝速度和电弧电压,减慢焊接速度3.采用摆动技术时应在靠近坡口面的边缘停留,焊丝应指向熔池的前沿4.坡口角度应足够大,以便减小焊丝伸出长度,使电弧直接加热熔池底部.未焊透形成原因:1.坡口加工不合适2.焊接技术不高3.热输入不合适.防治措施:1.加大坡口角度,减小钝边尺寸,增大间隙2.调整行走角度3.提高送丝的速度以获得较大的焊接电流,保持喷嘴与工件的距离合适.飞溅形成原因:1.电压过低或过高2.焊丝与工件清理不良3.焊丝不均匀4.导电嘴磨损5.焊机动特性不合适.防治措施:1.根据电流调电压2.清理焊丝和坡口3.检查送丝轮和送丝软管4.更新导电嘴5.调节直流电感.蛇行焊道形成原因:1.焊丝伸出过长2.焊丝的矫正机构调整不良3.导电嘴磨损.防治措施:1.调焊丝伸出长度2.调整矫正机构3.更新导电.CO2气保焊的使用近况CO2气体保护焊自50年代诞生以来,作为一种高效率的焊接方法,在我国工业经济的各个领域获得了广泛的运用.尤其是近几年,中国成为“世界工厂”后,大量的外贸金属加工、钢结构行业大力发展,CO2气体保护焊以其高生产率比手工焊高1~3倍、焊接变形小和高性价比的特点,得到了前所未有的普及,成为最优先选择的焊接方法之一.但是据我们这几年的工作经历,CO2气体保护焊在实际生产运用中还存在不少问题,综合如下:一、气源的问题我国现在还没有对焊接用CO2气体纯度要求的国家标准,市场上出售的CO2气体主要是制氧厂、酿造厂、化工厂的副产品,如未经处理就作为焊接保护气体使用,其水分及杂质气体含量很高且不稳定,从而增加焊接飞溅、焊缝产生气孔及影响焊缝塑性等焊接缺陷.比对国外多数国家规定,要求焊接用CO2气体纯度不低于99.5%,有些国家甚至要求CO2纯度高于99.8%,水分含量低于0.0066%,来作为获得优质焊缝的前提条件.二、焊接参数选择的问题一般焊工培训大多把手工电弧焊作为基础项目,主要让焊工掌握焊接电流的选择、焊接速度及运条方法、焊接电弧的控制.在施焊操作上,一个熟练的手工电弧焊焊工对掌握CO2气保焊基本不成问题,但在焊接参数的选择上,很大一部份焊工显得不够老练,以我国CO2气保焊中应用最为广泛的短路过渡形式为例,归纳下来问题主要在电弧电压、焊接电流、焊接回路电感匹配得不太合适,以及焊丝干伸长不合适,造成焊接电弧不稳定、飞溅以及未焊透等,影响焊缝成形、焊缝的机械性能.只有电弧电压与焊接电流匹配得较合适时,才能获得较稳定的焊接过程,在一定的焊丝直径和焊接电流下,若电弧电压偏低,电弧短、焊缝成型高,甚至会造成冲丝、电弧引燃困难,使焊接过程不稳定;若电弧电压偏高,则熔滴过渡的频率变慢、颗粒变大,电弧长度长、焊缝成型宽,过高的电弧电压会烧毁导电咀;因焊接回路电感量的大小直接影响焊接电弧的燃烧时间,关系到熔滴过渡的稳定、焊接熔深及焊缝成型,在一定的焊丝直径和焊接电流、电压下,若选择过小的电感量,焊接时会造成熔深太浅,即使再增加焊接电流、电压,只能会使过渡到熔池的液态金属溢出熔池,形成未熔合、未焊透.要选择合适的电感量,一般视焊丝直径、母材厚薄及不同的焊接设备通过试焊来确定;合适的焊丝伸出导电咀长度应为焊丝直径的10~12倍一般在10~20mm范围内,焊丝的干伸长太短,就会因为焊枪喷嘴与工件距离近而增加飞溅金属堵塞喷嘴,焊丝的干伸长太长,则会增加飞溅、引起焊接不稳定,气体保护效果变差等.在实际工作中,一般先根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,使飞溅降低到最小.CO2气体保护焊操作规程1.准备工作1认真熟悉焊接有关图样,弄清焊接位置和技术要求.2焊前清理.CO2焊虽然没有钨极氩弧焊那样严格,但也应清理坡口及其两侧表面的油污、漆层、氧化皮以及铁金属等杂物.3检查设备.检查电源线是否破损;地线接地是否可靠;导电嘴是否良好;送丝机构是否正常;极性是否选择正确.4气路检查.CO2气体气路系统包括CO2气瓶、预热器、干燥器、减压阀、电磁气阀、流量计.使用前检查各部连接处是否漏气,CO2气体是否畅通和均匀喷出.2.安全技术1穿好白色帆布工作服,戴好手套,选用合适的焊接面罩.2要保证有良好的通风条件,特别是在通风不良的小屋内或容器内焊接时,要注意排风和通风,以防CO2气体中毒.通风不良时应戴口罩或防毒面具.3CO2气瓶应远离热源,避免太阳曝晒,严禁对气瓶强烈撞击以免引起爆炸.4焊接现场周围不应存放易燃易爆品.3.焊接工艺CO2气体保护焊的工艺参数有焊接电流、电弧电压、焊丝直径、焊丝伸出长度、气体流量等.在其采用短路过渡焊接时还包括短路电流峰值和短路电流上升速度.1焊接电流和电弧电压短路过渡焊接时,焊接电流和电弧电压周期性的变化.电流和电压表上的数值是其有效值,而不是瞬时值,一定的焊丝直径具有一定的电流调节范围.2焊丝伸出长度是指导电嘴端面至工件的距离.由于CO2焊时选用焊丝较细,焊接电流流经此段所产生的电阻热对焊接过程有很大影响.生产经验表明,合适的伸出长度应为焊丝直径的10~20倍,一般在5~15mm范围内.3气体流量小电流时,气体流量通常为5~15L/min;大电流时,气体流量通常为10~20L/min,并不是流量越大保护效果越好.气体流量过大时,由于保护气流的紊流度增大,反而会把外界空气卷入焊接区.4电源极性CO2气体保护焊一般都采用直流反接,飞溅小,电弧稳定,成形好.常用焊接术语在实际应用过程中,经常会碰到一些与焊接相关的术语,行话.先总结如下:正极性:指直流焊接时,被焊物接+极,焊条、焊丝接-极反极性:与正极性直流电弧焊或电弧切割时,焊件与焊接电源输出端正、负极的接法称为极性.极性分正极性和反极性两种.焊件接电源输出端的正极,电极接电源输出端的负极的接法为正极性常表示为DCSP.反之,焊件接电源输出端的负极,电极接电源输出端的正极的接法为反极性常表示为DCRP.欧美常常用另外一种表示方法,将DCSP称为DCEN,而将DCRP称为DCEP.焊接电流:为向焊接提供足够的热量而流过的电流电弧电压指电弧部的电压,与电弧长大致成比例地增加,一般电压表所示电压值包括电弧电压及焊丝伸出部,焊接电缆部的电压下降值.弧长:弧部长度弧坑:在焊缝终点产生的凹坑气孔:熔敷金属里有气产生空洞飞溅:焊接时未形成熔融金属而飞出来的金属小颗粒焊渣:焊后覆盖在焊缝表面上的固态熔渣熔渣:包覆在熔融金属表面的玻璃质非金属物咬边:由于焊缝两端的母材过烧,致使熔融金属未能填满,形成槽状凹坑.熔深:母材熔化部的最深位与母材表面之间的距离熔池:因焊弧热而熔化成池状的母材部分熔化速度:单位时间里熔敷金属的重量熔敷率:有效附着在焊接部的金属重量占熔融焊条、焊丝重量的比例未熔合:对焊底部的熔深不良部,或第一层等里面未融合部余高:鼓出母材表面的部分或角焊末端连接线以上部分的熔敷金属坡口角度:母材边缘加工面的角度预热:为防止急热,焊接前先对母材预热如火焰加热后热:为防止急冷进行焊后加热如火焰加热平焊:从接头上面焊接横焊:从接头一侧开始焊接立焊:沿接头由上而下或由下而上焊接仰焊:从接头下面焊接垫板:为防止熔融金属落下,在焊接接头下面放上金属、石棉等支撑物.夹渣:夹渣是非金属固体物质残留于焊缝金属中的现象,夹杂物出现在熔焊过程中焊剂:焊接时,能够熔化形成熔渣和气体,对熔化金属起保护和冶金处理作用的一种物质.碳弧气刨:使用石磨棒或碳棒与工件间产生的电弧将金属熔化,并用压缩空气将其吹掉,实现在金属表面上加工沟槽的方法保护气体:焊接过程中用于保护金属熔滴、熔池及焊缝区的气体,它使高温金属免受外界气体的侵害焊接夹具:为保证焊件尺寸,提高装配精度和效率,防止焊接变形所采用的夹具焊接工作台为焊接小型焊件而设置的工作台焊接操作机:将焊接机头或焊枪送到并保持在待焊位置,或以选定的焊接速度沿规定的轨迹移动焊剂的装置焊接变位机:将焊件回转或倾斜,使接头处于水平或船行位置的装置焊接滚轮架:借助焊件与主动滚轮间的摩擦力来带动圆筒形或圆锥形焊件旋转的装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
镙镐铜
喷嘴材料
-
铜(表面镀镍)
3.送丝机
型号
单位
C-WF-35US
备注
适用焊丝尺寸
Φ/mm
0.8(1.0)1.2
适用焊丝类型
--
实芯、药芯
送丝速度
米/分
1-18
适用
焊丝盘
轴尺寸
mm
Φ50
外部尺寸
mm
Φ280
宽度
mm
105
外部尺寸
mm
490(长)×190(宽)×300(高)
重量
Kg
12
4.标准附件构成
CO2焊机技术参数表
1.焊接电源
项目型号
单位
IB-350
备注
输入电压及相数
V
三相, 380V±10%
额定频率
Hz
50
额定输入功率
KVA
16
额定输入电流
A
25
额定输出电流
A
350
输出电流范围
A
40~350
输出电压范围
V
16~36
空载电压
V
71
额定负载持续率
%
60
功率因素
%
93
效率
%
85
绝缘等级

H
外壳防护等级

IP 21
焊接电缆最大延长尺寸
m
40
适用焊丝直径范围
mm
∮0.8~∮1.2(实芯和药芯)
冷却方式
-
风冷
重量
Kg
45
外部尺寸
mm
480(长)×355(宽)×660(高)
2.焊枪
型号
单位
CT-C35CA
备注
额定电流
A
350
额定负载持续率
%
60
焊丝类型
--
实芯、药芯
电缆长度
M
3
重量(含电缆)Kg4.2导嘴材料项目型号数量
IB-350
备注
焊接
电缆线
正极
1根
50㎜²×5m
可按用户需要延长
负极
1根
50㎜²×1.5m
可按用户需要延长
CO2流量表
1块
36V
控制电缆
1根
9P×5m
附着型遥控器
气管
1根
Φ7×5m
可按用户需要延长
保险丝管
1个
10A
1个
5A
导电嘴
3个
1.0
3个
1.2

1.6
使用说明书
1本
相关文档
最新文档