(整理)复变函数与积分变换b答案.
《复变函数与积分变换复旦大学修订版》全部_习题答案
![《复变函数与积分变换复旦大学修订版》全部_习题答案](https://img.taocdn.com/s3/m/34ac8337bcd126fff7050b3d.png)
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z 2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根. 解:πi 4e ⎫⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z . 9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换习题解答
![复变函数与积分变换习题解答](https://img.taocdn.com/s3/m/39a805254431b90d6c85c7e2.png)
练 习 一1.求下列各复数的实部、虚部、模与幅角。
(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。
1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。
(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。
证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。
《复变函数与积分变换复旦大学修订版》全部习题答案
![《复变函数与积分变换复旦大学修订版》全部习题答案](https://img.taocdn.com/s3/m/7091fa7d941ea76e58fa04e8.png)
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xyz a x a y-⎛⎫=⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩¢. ∴当2n k =时,()()Re i 1kn=-,()Im i 0n=;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcosisin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z ⑶33i +的平方根. 解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=L证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=L又∵n ≥2. ∴z ≠1 从而211+0n z z z -+++=L11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
12-13(2)《复变函数与积分变换》试卷B答案
![12-13(2)《复变函数与积分变换》试卷B答案](https://img.taocdn.com/s3/m/30351ad98bd63186bdebbc09.png)
中国计量学院201 2 ~ 201 3 学年第二学期 《 复变函数与积分变换 》课程试卷( B )参考答案及评分标准开课二级学院: 理学院_ ,学生专业:电信等 教师:罗先发、沈鸿、吴跃生 一、选择题1、B2、D3、C4、B5、C 二、填空题1、五级极点2、|1|1z -<3、22i --4、-(21),k i k Z π+∈5、3 三、判断题1、√2、×3、×4、√5、√四、解答题 (第1、2小题各6分,3—8小题各8分,共60分) 1、求值:i i .解[l n ||(a r g i i L n i i i i iki e e π++==………………(3分)[ln1(2)](2)22i i k k eeππππ++-+==…………………(6分),2、计算:Czdz ⎰Ñ,其中C 是逆时针方向单位圆周曲线.解 :(02)i C z e θθπ=≤≤………………………(2分) 2220()2i i i i Czdz e d e e ie d i d i πππθθθθθθπ--==⋅==⎰⎰⎰⎰Ñ………………………(6分)3、计算:22cos 1z zdz z =-⎰Ñ. 解:因为21111()1211z z z =---+, 所以由柯西积分公式得2||2||2||2c o s 1c o s c o s[]1211z z z z z z dz dz dz z z z ====---+⎰⎰⎰蜒? ………………… (4分) 1112[cos |cos |][cos1cos(1)][cos1cos1]02z z i z z i i πππ==-=⋅-=--=-=……… (8分)4、计算:23223(1)z z z dz z =-+-⎰Ñ. 解 22332322233(1)(1)2112(1)(1)1(1)(1)z z z z z z z dz dz dz z z z z z ===⎡⎤-+---+==-+⎢⎥-----⎣⎦⎰⎰⎰蜒? 232221121(1)(1)z z z dz dz dz z z z ====-+---⎰⎰⎰蜒?……………… (4分) 2002i i ππ=-+=……………… (8分)5、计算:112()nn z zdz +∞=-=∑⎰Ñ.解 因为0n n z +∞=∑解析,所以由柯西积分定理知012()0nn z z dz +∞===∑⎰Ñ, 而1212z dz i z π==⎰Ñ……………… (4分)因此 1001111222211()()()nn n n n n z z z z z dz z dz dz z dz zz +∞+∞+∞=-=======+=+∑∑∑⎰⎰⎰⎰蜒蜒202i i ππ=+=……… (8分)6、判别函数21(1)sin 1z z --有限奇点的类型,并求出该奇点处的留数.(8分)解 1z =是函数21(1)sin 1z z --的有限孤立奇点,………………(1分)函数21(1)sin 1z z --在该孤立奇点的罗朗级数为2235711111(1)sin(1)[]113!(1)5!(1)7!(1)z z z z z z z -=--+-+-----L 35111(1)3!(1)5!(1)7!(1)z z z z =--+-+---L ………………(5分)因此,1z =是本性奇点,………………(6分) 函数该奇点处的留数为2111Re [(1)sin ;1]13!s z C z --==--.………………(8分)7、求函数1(1)(2)z z --在区域1||2z <<中的罗朗级数.解:因为1||2z <<,所以1||1,||12z z<<,由011n n u u ∞==-∑ (||1)u <得 ……………(4分) 1111111(1)(2)21112z z z z z z z=-=-------- ………………(6分) 00112n nn n z z z ∞∞==⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭∑∑1001 (1||2)2n n n n n z z z ∞∞+===--<<∑∑ ………………(8分)8、已知调和函数323u x xy =-,求其共轭调和函数v ,并求以u 为实部且满足条件(0)f i =的解析函数)(z f .解2233u x y x ∂=-∂,6,u xy y∂=-∂由C-R 条件得 y v ∂∂=2233,ux y x ∂=-∂ (1) v x ∂-=∂6u xy y∂=-∂, (2)………………(3分) 将(1)式对x 积分得2(,)63()v x y xydx x y y ϕ==+⎰,(3) …………………………………(5分) (3)式对y 求导,代入(2),2()3y y ϕ'=,得 3()y y C ϕ=+于是,23(,)3v x y x y y C =++,…………………………………………(7分) 由iv u z f +=)(,且(0)f i =,得 1C =因此所求的解析函数为:)(z f =32323(31)x xy i y x y -++-+………………(8分)五、证明(每小题5分,共10分)1、设()f z 在区域D 内解析,且Im ()f z 在D 内恒为常数,证明()f z 在区域D 内必为常数.证明 设()f z u iv =+,则Im v z =是常数,因为()f z 解析,所以由C-R 条件知0,0,u v u v x y y x∂∂∂∂===-=∂∂∂∂………………(3分) 于是知 Re u z = 也是常数,从而()f z u iv =+是常数.………………(5分)2、证明:0z 是函数()f z 的(1)m m ≥级极点的充分必要条件是:()f z 可以表示为0()()()mz f z z z ψ=-的形式,其中()z ψ在0z 点解析,且0()0z ψ≠.证明 因为0z 是函数()f z 的(1)m m ≥级极点,由定义有(1)1010010001(1)00010000()()()()()1()()()()()(),()m nm n m m m m n m m m n m mC C C f z C C z z C z z z z z z z z C C z z C z z C z z C z z z z z z z ψ-----++---=+++++-++-+---⎡⎤=+-++-+-++-+⎣⎦-=-L L L L L L 其中1(1)000100()()()()()m m n m m m n z C C z z C z z C z z C z z ψ++---=+-++-+-++-+L L L在0z 的某个邻域内收敛,所有在该邻域内()z ψ解析,且0()0m z C ψ-=≠.于是必要性的证,……………………(4分)逆上述过程,即可证明充分性.……………………(5分)。
复变函数与积分变换习题册(含答案)
![复变函数与积分变换习题册(含答案)](https://img.taocdn.com/s3/m/0c8f3cdb0242a8956bece4c0.png)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数与积分变换习题答案
![复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/731e55d72dc58bd63186bceb19e8b8f67c1cefdb.png)
复变函数与积分变换习题答案习题六1. 求映射1w z=下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:222211i=+i i x y w u v z x y x y x y ===-+++ 221x x u x y ax a===+,所以1w z =将22x y ax +=映成直线1u a=. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y ==-++ 222222x y kxu v x y x y x y ==-=-+++ v ku =-故1w z=将y kx =映成直线v ku =-.2. 下列区域在指定的映射下映成什么?(1)Im()0,(1i)z w z >=+;解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,.20.u x y v x y u v y =-=+-=-<所以Im()Re()w w >.故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 0=. 解:设z =x +i y , x >0, 0i i i(i )i x y y x w z x iy x y x y x y -====+++++ Re(w )>0. Im(w )>0. 若w =u +i v , 则2222,u vy x u v u v==++ 因为0221101,()22u u v u v <<-+>+ 故i w z =将Re(z )>0, 00,Im(w )>0, 1212w > (以(12,0)为圆⼼、12为半径的圆)3. 求w =z 2在z =i 处的伸缩率和旋转⾓,问w =z 2将经过点z =i 且平⾏于实轴正向的曲线的切线⽅向映成w 平⾯上哪⼀个⽅向?并作图.解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转⾓arg w '=π2. 于是, 经过点i 且平⾏实轴正向的向量映成w 平⾯上过点-1,且⽅向垂直向上的向量.如图所⽰.→4. ⼀个解析函数,所构成的映射在什么条件下具有伸缩率和旋转⾓的不变性?映射w =z 2在z 平⾯上每⼀点都具有这个性质吗?答:⼀个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.5. 求将区域06. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az bw cz d+=+(ad -bc ≠0)由11-→-.得 1a bb acd c d-+-==+--+ 因为(1)a z c dw cz d ++-=+,即(1)(1)1a z c z w cz d++++=+,由11→代⼊上式,得22a ca d c d+=?=+. 因此11(1)(1)d cd cd c w z z cz d z +++=+=+?++ 令dq c =,得 1(1)(1)/()(1)(1)11(1)(1)/()2(1)(1)1w z q z q z q z a w z q z q z q z +++++++===?-+++---- 其中a 为复数.反之也成⽴,故所求分式线性映射为1111w z a w z ++=?--, a 为复数.7. 若分式线性映射,az bw cz d+=+将圆周|z |=1映射成直线则其余数应满⾜什么条件?解:若az b w cz d +=+将圆周|z |=1映成直线,则dz c=-映成w =∞. ⽽dz c=-落在单位圆周|z |=1,所以1d c -=,|c |=|d |.故系数应满⾜ad -bc ≠0,且|c |=|d |.8. 试确定映射,11z w z -=+作⽤下,下列集合的像. (1) Re()0z =; (2) |z |=2; (3) Im(z )>0. 解:(1) Re(z )=0是虚轴,即z =i y 代⼊得. 22222i 1(1i )12i i 1111y y y yw y y y y ----+===+?++++ 写成参数⽅程为2211y u y -+=+, 221yv y =+, y -∞<<+∞. 消去y 得,像曲线⽅程为单位圆,即u 2+v 2=1.(2) |z |=2.是⼀圆围,令i 2e ,02πz θθ=≤≤.代⼊得i i 2e 12e 1w θθ-=+化为参数⽅程.354cos u θ=+ 4sin 54cos u θθ=+ 02πθ≤≤ 消去θ得,像曲线⽅程为⼀阿波罗斯圆.即22254()()33u v -+=(3) 当Im(z )>0时,即11Im()011w w z w w ++=-?<--, 令w =u +i v 得221(1)i 2Im()Im()01(1)i (1)w u v v w u v u v +++-==<--+-+.即v >0,故Im(z )>0的像为Im(w )>0.9. 求出⼀个将右半平⾯Re(z )>0映射成单位圆|w |<1的分式线性变换. 解:设映射将右半平⾯z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞,所以所求分式线性变换形式为00z z w k z z -=?-其中k 为常数.⼜因为00z z w k z z -=?-,⽽虚轴上的点z 对应|w |=1,不妨设z =0,则i 00||1e ()z z w k k k z z θθ-=?==?=∈-R故000e (Re()0)i z z w z z z θ-=?>-.10. 映射e 1i z w zαα-=?-?将||1z <映射成||1w <,实数?的⼏何意义显什么?解:因为2i i 22(1)()()1||()e e (1)(1)z z w z z z ?αααααα-----'=?=?-?- 从⽽2i i 2221||1()e e (1||)1||w ?αααα-'=?=?-- 所以i 2arg ()arg e arg (1||)w ?αα?'=-?-= 故?表⽰i e 1z w zθαα-=?-在单位圆α处的旋转⾓arg ()w α'.11. 求将上半平⾯Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满⾜条件(1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f.解:将上半平⾯Im(z )>0, 映为单位圆|w |<1的⼀般分式线性映射为w =k z z αα-?-(Im(α)>0). (1) 由f (i)=0得α=i ,⼜由arg (i)0f '=,即i 22i()e (i)f z z θ'=?+,πi()21(i)e 02f θ-'==,得π2θ=,所以ii iz w z -=?+. (2) 由f (1)=1,得k =11αα--;由f ,得k α联⽴解得w =12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满⾜条件: (1) f (12)=0, f (-1)=1. (2) f (12)=0, 12πarg ()2f '=, (3) f (a )=a , arg ()f a ?'=.解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为i e1z w zθαα-=-?, |α|<1.(1) 由f (12)=0,知12α=.⼜由f (-1)=1,知 1i i i 2121e e (1)1e 1π1θθθθ--?=-=?=-?=+.故12221112zz z w z --=-?=--. (2) 由f (12)=0,知12α=,⼜i 254e (2)z w z θ-'=?- i 11224π()earg ()32f f θθ''=?==,于是π21i 2221e ()i 12zz z w z--==?--. (3) 先求=()z ξ?,使z =a 0ξ→=,arg ()a ?θ'=,且|z |<1映成|ξ|<1. 则可知 i =()=e 1z a z a zθξ?-?-?再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1. 先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且arg ()arg(1/(0))0w g ψ''==,则=()=1w aw a wξψ--?.因此,所求w 由等式给出.i =e 11w a z aa w a zθ--?-?-?.13. 求将顶点在0,1,i 的三⾓形式的部映射为顶点依次为0,2,1+i 的三⾓形的部的分式线性映射.解:直接⽤交⽐不变性公式即可求得02w w --∶1i 01i 2+-+-=02z z --∶i 0i 1--2w w -.1i 21i +-+=1z z -.i 1i- 4z(i 1)(1i)w z -=--+.14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射. 解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交⽐不变性,有2525-+∶2525---+=104104-+--∶104104+- 故w =f (z )应为55z z -+∶2525---+=44w w +-∶104105+- 即 44w w +-=55z z --+20w z=-.讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.⼜w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.15.映射2w z =将z 平⾯上的曲线221124x y ??-+= ??映射到w 平⾯上的什么曲线?解:略.16. 映射w =e z将下列区域映为什么图形. (1) 直线⽹Re(z )=C 1,Im(z )=C 2;(2) 带形区域Im(),02πz αβαβ<<≤<≤; (3) 半带形区域Re()0,0Im(),02πz z αα><<≤≤.解:(1)令z =x +i y , Re(z )=C 1, z =C 1+i y 1i =e e Cyw ??, Im(z )=C 2,则z =x +i C 22i =e e C x w ??故=e zw 将直线Re(z )映成圆周1e Cρ=;直线Im(z )=C 2映为射线2C ?=.(2)令z =x +i y ,y αβ<<,则i i =e ee e ,z x yx y w y αβ+==?<<故=e zw 将带形区域Im()z αβ<<映为arg()w αβ<<的⾓为βα-的⾓形区域. (3)令z =x +i y ,x >0,0 i =e e e (0,0)e 1,0arg z x yx w x y w αα=?><<<故=e zw 将半带形区域Re(z )>0,01, 0arg w α<<(02πα≤≤).17. 求将单位圆的外部|z |>1保形映射为全平⾯除去线段-1w z=将|z |>1映为|w 1|<1,再⽤分式线性映射. 1211i 1w w w +=-?-将|w 1|<1映为上半平⾯Im(w 2)>0, 然后⽤幂函数232w w =映为有割痕为正实轴的全平⾯,最后⽤分式线性映射3311w w w -=+将区域映为有割痕[-1,1]的全平⾯. 故221121132222132111111i 1111111()11211i 1111z z z z w w w w w z w w z w w ++--?- ? ?----=====+++?? ++-?++ ? ?--.18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππIm()22z -<<映射为半带形区域πIm()πw -<<,Re(w )>0的映射.解:⽤1e zw =将区域映为有割痕(0,1)的右半平⾯Re(w 1)>0;再⽤1211ln1w w w +=-将半平⾯映为有割痕(-∞,-1]的单位圆外域;⼜⽤3w =⾯;再⽤43ln w w =将区域映为半带形00;最后⽤42i πw w =-映为所求区域,故e 1ln e 1z z w +=-.19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平⾯Im(w )>0的映射. 解:略.20. 映射cos w z =将半带形区域00保形映射为∞平⾯上的什么区域. 解:因为 1cos ()2iz iz w z e e -==+ 可以分解为w 1=i z ,12e ww =,32211()2w w w =+由于cos w z =在所给区域单叶解析,所以(1) w 1=i z 将半带域旋转π2,映为0w =将区域映为单位圆的上半圆部|w 2|<1,Im(w 2)>0. (3) 2211()2w w w =+将区域映为下半平⾯Im(w )<0.。
复变函数与积分变(北京邮电大学)课后的习题答案
![复变函数与积分变(北京邮电大学)课后的习题答案](https://img.taocdn.com/s3/m/c0170a2e647d27284b7351a1.png)
(1) arg z π; (2) z 1 z ; (3)1 z i | 2; (4) Re z Im z;
k 0,1
∴
3 3i 6 e
1 π 2 i 4
ie2
i
π
③解: 1 eiπ eπi
2 ④解: 8π 1 3i 16π π . 3
z z z w w z w w z zw z w w z w
≤
2
2 2 2
2 Re z w
2
∴ 8π 1 3i 16π e
① 则 :∵设 z=x+iy
3
3
∴当 n 2k 时, Re in 1k , Im in 0 ; 当
k
n 2k 1
时
,
R
e i
n
,0
x a iy x a iy z a x iy a x a iy 2 2 z a x iy a x a iy x a y
1 i 3 , ∴ Re 1 2
2.求下列各复数的实部和虚部(z=x+iy)
k n 2k 1 , n i k . ⑤解: ∵ k n 2k 1 1 i,
za (a ); z 3 ; 1 i 3 ; 1 i 3 ; i n . za 2 2
2π 2π ⑤解: cos i sin 9 9
复变函数与积分变换习题册(含答案)
![复变函数与积分变换习题册(含答案)](https://img.taocdn.com/s3/m/0c8f3cdb0242a8956bece4c0.png)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数与积分变换(修订版-复旦大学)课后的习题答案
![复变函数与积分变换(修订版-复旦大学)课后的习题答案](https://img.taocdn.com/s3/m/65f546ee102de2bd960588c7.png)
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ①:∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根.解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+=+z . 2551cos πisin πi 662=+=z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.πi 4e ⎫⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换习题答案
![复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/5e7dfbac51e79b8968022645.png)
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3) 13i +解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7) 11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值 (1) a ib +解:1ar 2ar 2222421ar 22421ar 2242 b b i ctg k i ctg k a a bi ctg abi ctg a a ib a b ea b ea b ea b e ππ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭+=+=+⎧+⎪=⎨⎪-+⎩(2)3i解:62263634632323322322i k i i i i k i e i i eee e iπππππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)ii解:()1/2222ii k k i i e eππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i e e ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=(1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=(1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
(完整版)复变函数与积分变换习题答案
![(完整版)复变函数与积分变换习题答案](https://img.taocdn.com/s3/m/37178cd369eae009581becaa.png)
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换(马柏林)课后的习题答案
![复变函数与积分变换(马柏林)课后的习题答案](https://img.taocdn.com/s3/m/d8623983d0d233d4b04e6907.png)
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-=+=+=∴1ππ13cos isin i 3322=+=+z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换(马柏林)课后的习题答案
![复变函数与积分变换(马柏林)课后的习题答案](https://img.taocdn.com/s3/m/d8623983d0d233d4b04e6907.png)
习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-=+=+=∴1ππ13cos isin i 3322=+=+z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变(北京邮电大学)课后的习题答案
![复变函数与积分变(北京邮电大学)课后的习题答案](https://img.taocdn.com/s3/m/c0170a2e647d27284b7351a1.png)
③解: 2 i 3 2i 2 i 3 2i 5 13 65 .
2 i 3 2i 2 i 3 2i 2 i 3 2i 4 7i
2
2
2
2
2
的平方根. ⑴i 的三次根. 解:
3
并给出最后一个等式的几何解释. 证明: z w z 2Re z w w 在上面第五题 的证明已经证明了. 下面证 z w z 2Re z w w . ∵ z w z w z w z w z w
π i 4
3 5i 1 3 . ; (2 i)(4 3i); 7i 1 i 1 i
1 i 3 ∴ Re 1, 2
④解: ∵
3
1 i 3 Im 0. 2
2 2 2 2 π π cos isin i i 2 4 4 2 2 2
π 4 映射成 w 平面内虚
5、Imz>1,且|z|<2. 解:表示圆盘内的一弓形域。
习题二
w z 1 z 下圆周 | z | 2 的像.
w u iv 则
π ,0 r 2 4 映成了 w 平面 π 0 4,0 . 2 上扇形域,即
i (2) 记 w e ,则
ie2
i
π
③解: 1 eiπ eπi
2 ④解: 8π 1 3i 16π π . 3
z z z w w z w w z zw z w w z w
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)题目一:复变函数就是结果含有虚数的函数。(F)
2)题目二:若 则 。(F)
规划环境影响评价技术导则由国务院环境保护主管部门会同国务院有关部门制定;规划环境影响评价技术规范由国务院有关部门根据规划环境影响评价技术导则制定,并抄送国务院环境保护主管部门备案。
7)题目七:积分 给出了函数 的傅立叶变换.( F )
(二)安全评价的基本原则
1.规划环境影响评价的报审四、计算题(每题5分五小题共25分)
1)题目一:设a、b是实数,函数 在复平面解析.求出a、b的值,并求
是复平面上的解析函数,则 在平面上满足C—R方程,即:
(1)规划实施后实际产生的环境影响与环境影响评价文件预测可能产生的环境影响之间的比较分析和评估;
2)题目二:计算积分
解 在 内有有两个孤立奇点 , ,其中 为f(z)的10阶极点, 为一阶极点。由留数定理
又因为
而
,z=0为其可去奇点,于是
,
共页第页
题目三:题目三:求余弦函数 的复频函数(其中k为任意复数)。
解
3)题目四:解微分方程 .
解:设 ,对方程两边取拉氏变换,根据拉氏变换的微分性质并考虑到初始条件,可得到方程:
3)题目三:如果一个复函数在某点解析,那个它的各阶导数在该点也解析。
4)题目四:设C是一条简单反向闭曲线,f(z)在以C为边界的区域内解析,
则积分 。
5)题目五:级数 的收敛半径是。
6)题目六:函数 在 内解析,则 是 的可去奇点的充分必要条件是____ _。
7)题目七:函数 的傅立叶积分是____ _。
,
于是:
取逆变换,得:
A柯西积分B面积分C留数D泰勒级数
6)题目六:级数 :(A)
A绝对收敛B条件收敛C发散D既不收敛又不发散
7)题目七:在傅立叶积分 中, 是实或复函数, 是(D)。
A复常数B实常数C复变数D实变数
二、填空题(每题2分五小题共14分)
1)题目一:表示复数z的平面称为复平面或z平面。
2)题目二:设 ,那么 ( )
A处处可导B处处不可导C在z=0处可导D无法确定
3)题目三: 在 处可展成Taylor级数,那么与 在 处(B)。
A奇异B解析C不存在D可积分
4)题目四:设 为函数 的奇点,若 在 的某一个去心领域内解析,则 是 的(C)。
A极点B一阶极点C孤立奇点D零点
5)题目五:函数 在 内解析, 为函数 的孤立奇点。那么 定义了 在 处的(C)。
3)题目三:函数在某区域上任一一点都可导且导数为0,则该函数为常数( F )。
4)题目四:若级数 在 处收敛,则该级数对任意 的z都发散收敛。( F )
共页第页
5)题目五: 是 的m阶极点的充分必要条件是: 是 的m阶零点。(T)
6)题目六:若函数在D内的朗洛展开式中有无穷多个 的负幂项,则 是 的可去奇点。(F)
那么
(3)建设项目对环境可能造成影响的分析、预测和评估。
4)题目四:求函数 的傅氏逆变换。
1.建设项目环境影响评价机构的资质管理
2.环境影响报告表的内容
5)题目五:求 的拉式变换
解因为
ch kt = ,所以
[ ch kt ]=
=
=
五、综合题(每题10分四小题共40分)
1)题目一:将函数 按照 的幂展开并求其收敛半径。
故 对 成立,
2)题目二:求 的收敛半径
(三)安全评价的内容和分类R=
3)题目三:将函数 在 处展开为泰勒级数
一、环境影响评价的发展与管理体系、相关法律法规体系和技术导则的应用由于f(z)=sin z在整个复平面上析
根据工程、系统生命周期和评价的目的,安全评价分为三类:安全预评价、安全验收评价、安全现状评价。 =sin(z+ ), ,
命题方式:独立命题
佛山科学技术学院2011—2012学年第1学期
《复变函数与积分变换》课程期末考试试题B答案
专业、班级:电子信息工程10级1、2班姓名:学号:
题号
一
二
三
四
五
六
十二
总成绩
得分
一、单选题(每题2分七小题共14分)
1)题目一:设 ,则下面正确的是(A)
A B
C D
2)题目二:函数 的可导性为(C)